Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Authors = Ieda Del’Arco Sanches ORCID = 0000-0003-1296-0933

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 66814 KiB  
Article
Characterization of Irrigated Rice Cultivation Cycles and Classification in Brazil Using Time Series Similarity and Machine Learning Models with Sentinel Imagery
by Andre Dalla Bernardina Garcia, Ieda Del’Arco Sanches, Victor Hugo Rohden Prudente and Kleber Trabaquini
AgriEngineering 2025, 7(3), 65; https://doi.org/10.3390/agriengineering7030065 - 4 Mar 2025
Viewed by 1132
Abstract
The mapping and monitoring of rice fields on a large scale using medium and high spatial resolution data (<10 m) is essential for efficient agricultural management and food security. However, challenges such as managing large volumes of data, addressing data gaps, and optimizing [...] Read more.
The mapping and monitoring of rice fields on a large scale using medium and high spatial resolution data (<10 m) is essential for efficient agricultural management and food security. However, challenges such as managing large volumes of data, addressing data gaps, and optimizing available data are key focuses in remote sensing research using automated machine learning models. In this sense, the objective of this study was to propose a pipeline to characterize and classify three different irrigated rice-producing regions in the state of Santa Catarina, Brazil. To achieve this, we used Sentinel-1 Synthetic Aperture Radar (SAR) polarizations and Sentinel-2 optical multispectral spectral bands along with multiple time series indices. The processing of input data and exploratory analysis were performed using a clustering algorithm based on Dynamic Time Warping (DTW), with K-means applied to the time series. For the classification step in the proposed pipeline, we utilized five traditional machine learning models available on the Google Earth Engine platform to determine which had the best performance. We identified four distinct irrigated rice cropping patterns across Santa Catarina, where the northern region favors double cropping, the south predominantly adopts single cropping, and the central region shows both, a flattened single and double cropping. Among the tested classification models, the SVM with Sentinel-1 and Sentinel-2 data yielded the highest accuracy (IoU: 0.807; Dice: 0.885), while CART and GTBoost had the lowest performance. Omission errors were reduced below 10% in most models when using both sensors, but commission errors remained above 15%, especially for patches in which rice fields represent less than 10% of area. These findings highlight the effectiveness of our proposed feature selection and classification pipeline for improving the generalization of irrigated rice mapping in large and diverse regions. Full article
Show Figures

Figure 1

30 pages, 6422 KiB  
Article
A Method for Estimating Soybean Sowing, Beginning Seed, and Harvesting Dates in Brazil Using NDVI-MODIS Data
by Cleverton Tiago Carneiro de Santana, Ieda Del’Arco Sanches, Marcellus Marques Caldas and Marcos Adami
Remote Sens. 2024, 16(14), 2520; https://doi.org/10.3390/rs16142520 - 9 Jul 2024
Cited by 4 | Viewed by 3242
Abstract
Brazil, as a global player in soybean production, contributes about 35% to the world’s supply and over half of its agricultural exports. Therefore, reliable information about its development becomes imperative to those who follow the market. Thus, this study estimates three phenological stages [...] Read more.
Brazil, as a global player in soybean production, contributes about 35% to the world’s supply and over half of its agricultural exports. Therefore, reliable information about its development becomes imperative to those who follow the market. Thus, this study estimates three phenological stages of soybean crops (sowing, beginning seed, and harvesting dates), identifying spatial–temporal patterns of soybean phenology using phenological metric extraction techniques from Normalized Difference Vegetation Index (NDVI) time-series data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Focused on the state of Paraná, this study validates the methodology using reference data from the Department of Rural Economics (DERAL). Subsequently, the model was applied to the major Brazilian soybean area cultivation. The results demonstrate strong agreement between the phenological estimates and reference data, showcasing the reliability of phenological metrics in capturing the stages of the soybean cycle. This study represents the first attempt, to the best of our knowledge, to correlate the vegetative peak of soybeans with the beginning seed stage at a large scale within Brazilian territory. Amidst the urgent need for the accurate estimation of agricultural crop phenological stages, particularly considering extreme weather events threatening global food security, this research emphasizes the continual importance of advancing techniques for soybean monitoring. Full article
(This article belongs to the Special Issue Cropland Phenology Monitoring Based on Cloud-Computing Platforms)
Show Figures

Figure 1

27 pages, 5276 KiB  
Review
Sugarcane Yield Estimation Using Satellite Remote Sensing Data in Empirical or Mechanistic Modeling: A Systematic Review
by Nildson Rodrigues de França e Silva, Michel Eustáquio Dantas Chaves, Ana Cláudia dos Santos Luciano, Ieda Del’Arco Sanches, Cláudia Maria de Almeida and Marcos Adami
Remote Sens. 2024, 16(5), 863; https://doi.org/10.3390/rs16050863 - 29 Feb 2024
Cited by 12 | Viewed by 7518
Abstract
The sugarcane crop has great socioeconomic relevance because of its use in the production of sugar, bioelectricity, and ethanol. Mainly cultivated in tropical and subtropical countries, such as Brazil, India, and China, this crop presented a global harvested area of 17.4 million hectares [...] Read more.
The sugarcane crop has great socioeconomic relevance because of its use in the production of sugar, bioelectricity, and ethanol. Mainly cultivated in tropical and subtropical countries, such as Brazil, India, and China, this crop presented a global harvested area of 17.4 million hectares (Mha) in 2021. Thus, decision making in this activity needs reliable information. Obtaining accurate sugarcane yield estimates is challenging, and in this sense, it is important to reduce uncertainties. Currently, it can be estimated by empirical or mechanistic approaches. However, the model’s peculiarities vary according to the availability of data and the spatial scale. Here, we present a systematic review to discuss state-of-the-art sugarcane yield estimation approaches using remote sensing and crop simulation models. We consulted 1398 papers, and we focused on 72 of them, published between January 2017 and June 2023 in the main scientific databases (e.g., AGORA-FAO, Google Scholar, Nature, MDPI, among others), using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology. We observed how the models vary in space and time, presenting the potential, challenges, limitations, and outlooks for enhancing decision making in the sugarcane crop supply chain. We concluded that remote sensing data assimilation both in mechanistic and empirical models is promising and will be enhanced in the coming years, due to the increasing availability of free Earth observation data. Full article
(This article belongs to the Special Issue Remote Sensing for Agrometeorology)
Show Figures

Figure 1

18 pages, 9537 KiB  
Article
Estimating Crop Sowing and Harvesting Dates Using Satellite Vegetation Index: A Comparative Analysis
by Grazieli Rodigheri, Ieda Del’Arco Sanches, Jonathan Richetti, Rodrigo Yoiti Tsukahara, Roger Lawes, Hugo do Nascimento Bendini and Marcos Adami
Remote Sens. 2023, 15(22), 5366; https://doi.org/10.3390/rs15225366 - 15 Nov 2023
Cited by 11 | Viewed by 5188
Abstract
In the last decades, several methodologies for estimating crop phenology based on remote sensing data have been developed and used to create different algorithms. Although many studies have been conducted to evaluate the different methodologies, a comprehensive understanding of the potential of the [...] Read more.
In the last decades, several methodologies for estimating crop phenology based on remote sensing data have been developed and used to create different algorithms. Although many studies have been conducted to evaluate the different methodologies, a comprehensive understanding of the potential of the different current algorithms to detect changes in the growing season is still lacking, especially in large regions and with more than one crop per season. Therefore, this work aimed to evaluate different phenological metrics extraction methodologies. Using data from over 1500 fields distributed across Brazil’s central area, six algorithms, including CropPhenology, Digital Earth Australia tools package (DEA), greenbrown, phenex, phenofit, and TIMESAT, to extract soybean crop phenology were applied. To understand how robust the algorithms are to different input sources, the NDVI and EVI2 time series derived from MODIS products (MOD13Q1 and MOD09Q1) and from Sentinel-2 satellites were used to estimate the sowing date (SD) and harvest date (HD) in each field. The algorithms produced significantly different phenological date estimates, with Spearman’s R ranging between 0.26 and 0.82 when comparing sowing and harvesting dates. The best estimates were obtained using TIMESAT and phenex for SD and HD, respectively, with R greater than 0.7 and RMSE of 16–17 days. The DEA tools and greenbrown packages showed higher sensitivity when using different data sources. Double cropping is an added challenge, with no method adequately identifying it. Full article
(This article belongs to the Special Issue Within-Season Agricultural Monitoring from Remotely Sensed Data)
Show Figures

Graphical abstract

21 pages, 7123 KiB  
Article
Mapping Agricultural Intensification in the Brazilian Savanna: A Machine Learning Approach Using Harmonized Data from Landsat Sentinel-2
by Édson Luis Bolfe, Taya Cristo Parreiras, Lucas Augusto Pereira da Silva, Edson Eyji Sano, Giovana Maranhão Bettiol, Daniel de Castro Victoria, Ieda Del’Arco Sanches and Luiz Eduardo Vicente
ISPRS Int. J. Geo-Inf. 2023, 12(7), 263; https://doi.org/10.3390/ijgi12070263 - 2 Jul 2023
Cited by 14 | Viewed by 3790
Abstract
Agricultural intensification practices have been adopted in the Brazilian savanna (Cerrado), mainly in the transition between Cerrado and the Amazon Forest, to increase productivity while reducing pressure for new land clearing. Due to the growing demand for more sustainable practices, more accurate information [...] Read more.
Agricultural intensification practices have been adopted in the Brazilian savanna (Cerrado), mainly in the transition between Cerrado and the Amazon Forest, to increase productivity while reducing pressure for new land clearing. Due to the growing demand for more sustainable practices, more accurate information on geospatial monitoring is required. Remote sensing products and artificial intelligence models for pixel-by-pixel classification have great potential. Therefore, we developed a methodological framework with spectral indices (Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), and Soil-Adjusted Vegetation Index (SAVI)) derived from the Harmonized Landsat Sentinel-2 (HLS) and machine learning algorithms (Random Forest (RF), Artificial Neural Networks (ANNs), and Extreme Gradient Boosting (XGBoost)) to map agricultural intensification considering three hierarchical levels, i.e., temporary crops (level 1), the number of crop cycles (level 2), and the crop types from the second season in double-crop systems (level 3) in the 2021–2022 crop growing season in the municipality of Sorriso, Mato Grosso State, Brazil. All models were statistically similar, with an overall accuracy between 85 and 99%. The NDVI was the most suitable index for discriminating cultures at all hierarchical levels. The RF-NDVI combination mapped best at level 1, while at levels 2 and 3, the best model was XGBoost-NDVI. Our results indicate the great potential of combining HLS data and machine learning to provide accurate geospatial information for decision-makers in monitoring agricultural intensification, with an aim toward the sustainable development of agriculture. Full article
(This article belongs to the Topic Advances in Earth Observation and Geosciences)
Show Figures

Figure 1

22 pages, 3871 KiB  
Article
Hierarchical Classification of Soybean in the Brazilian Savanna Based on Harmonized Landsat Sentinel Data
by Taya Cristo Parreiras, Édson Luis Bolfe, Michel Eustáquio Dantas Chaves, Ieda Del’Arco Sanches, Edson Eyji Sano, Daniel de Castro Victoria, Giovana Maranhão Bettiol and Luiz Eduardo Vicente
Remote Sens. 2022, 14(15), 3736; https://doi.org/10.3390/rs14153736 - 4 Aug 2022
Cited by 11 | Viewed by 4522
Abstract
The Brazilian Savanna presents a complex agricultural dynamic and cloud cover issues; therefore, there is a need for new strategies for more detailed agricultural monitoring. Using a hierarchical classification system, we explored the Harmonized Landsat Sentinel-2 (HLS) dataset to detect soybean in western [...] Read more.
The Brazilian Savanna presents a complex agricultural dynamic and cloud cover issues; therefore, there is a need for new strategies for more detailed agricultural monitoring. Using a hierarchical classification system, we explored the Harmonized Landsat Sentinel-2 (HLS) dataset to detect soybean in western Bahia, Brazil. Multispectral bands (MS) and vegetation indices (VIs) from October 2021 to March 2022 were used as variables to feed Random Forest models, and the performances of the complete HLS time-series, HLSS30 (harmonized Sentinel), HLSL30 (harmonized Landsat), and Landsat 8 OLI (L8) were compared. At Level 1 (agricultural areas × native vegetation), HLS, HLSS30, and L8 produced identical models using MS + VIs, with 0.959 overall accuracies (OA) and Kappa of 0.917. At Level 2 (annual crops × perennial crops × pasturelands), HLS and L8 achieved an OA of 0.935 and Kappa > 0.89 using only VIs. At Level 3 (soybean × other annual crops), the HLS MS + VIs model achieved the best performance, with OA of 0.913 and Kappa of 0.808. Our results demonstrated the potential of the new HLS dataset for medium-resolution mapping initiatives at the crop level, which can impact decision-making processes involving large-scale soybean production and agricultural sustainability. Full article
(This article belongs to the Section Biogeosciences Remote Sensing)
Show Figures

Graphical abstract

16 pages, 2238 KiB  
Article
Precision and Digital Agriculture: Adoption of Technologies and Perception of Brazilian Farmers
by Édson Luis Bolfe, Lúcio André de Castro Jorge, Ieda Del’Arco Sanches, Ariovaldo Luchiari Júnior, Cinthia Cabral da Costa, Daniel de Castro Victoria, Ricardo Yassushi Inamasu, Célia Regina Grego, Victor Rodrigues Ferreira and Andrea Restrepo Ramirez
Agriculture 2020, 10(12), 653; https://doi.org/10.3390/agriculture10120653 - 21 Dec 2020
Cited by 148 | Viewed by 21642
Abstract
The rapid population growth has driven the demand for more food, fiber, energy, and water, which is associated to an increase in the need to use natural resources in a more sustainable way. The use of precision agriculture machinery and equipment since the [...] Read more.
The rapid population growth has driven the demand for more food, fiber, energy, and water, which is associated to an increase in the need to use natural resources in a more sustainable way. The use of precision agriculture machinery and equipment since the 1990s has provided important productive gains and maximized the use of agricultural inputs. The growing connectivity in the rural environment, in addition to its greater integration with data from sensor systems, remote sensors, equipment, and smartphones have paved the way for new concepts from the so-called Agriculture 4.0 or Digital Agriculture. This article presents the results of a survey carried out with 504 Brazilian farmers about the digital technologies in use, as well as current and future applications, perceived benefits, and challenges. The questionnaire was prepared, organized, and made available to the public through the online platform LimeSurvey and was available from 17 April to 2 June 2020. The primary data obtained for each question previously defined were consolidated and analyzed statistically. The results indicate that 84% of the interviewed farmers use at least one digital technology in their production system that differs according to technological complexity level. The main perceived benefit refers to the perception of increased productivity and the main challenges are the acquisition costs of machines, equipment, software, and connectivity. It is also noteworthy that 95% of farmers would like to learn more about new technologies to strengthen the agricultural development in their properties. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

15 pages, 851 KiB  
Article
Impacts of Public and Private Sector Policies on Soybean and Pasture Expansion in Mato Grosso—Brazil from 2001 to 2017
by Michelle C. A. Picoli, Ana Rorato, Pedro Leitão, Gilberto Camara, Adeline Maciel, Patrick Hostert and Ieda Del’Arco Sanches
Land 2020, 9(1), 20; https://doi.org/10.3390/land9010020 - 13 Jan 2020
Cited by 29 | Viewed by 7309
Abstract
Demand for agricultural exports in Brazil has stimulated the expansion of crop production and cattle raising, which has caused environmental impacts. In response, Brazil developed public policies such as the new Forest Code (FC) and supply chain arrangements such the Soy and the [...] Read more.
Demand for agricultural exports in Brazil has stimulated the expansion of crop production and cattle raising, which has caused environmental impacts. In response, Brazil developed public policies such as the new Forest Code (FC) and supply chain arrangements such the Soy and the Cattle Moratoriums. This paper analyzes the effectiveness of these policies, considering the trajectories of agricultural expansion in the state of Mato Grosso in three years: 2005 (pre-moratorium and before the new FC), 2010 (post-moratorium and before the new FC) and 2017 (post-moratorium and post-new FC). Our analysis uses a detailed land use change data for both the Amazon and Cerrado biomes in Mato Grosso. In all the years considered, soybean expansion occurred in consolidated production areas and by conversion of pastures. Pasture expansion is influenced by existence of pastures nearby, by areas of secondary vegetation and deforestation. Our data and models show the effectiveness of public policies and private arrangements to reduce direct conversion from forests to crop production. However, our results also provide evidence that soybean expansion has caused indirect impacts by replacing pasture areas and causing pasture expansion elsewhere. Evidence from our work indicates that Brazil needs broader-ranging land use policies than what was done in the 2010s to be able to reach the land use goals stated in its Nationally Determined Contribution (NDC) to the Paris Agreement. Full article
Show Figures

Figure 1

27 pages, 3633 KiB  
Article
Combining Deep Learning and Prior Knowledge for Crop Mapping in Tropical Regions from Multitemporal SAR Image Sequences
by Laura Elena Cué La Rosa, Raul Queiroz Feitosa, Patrick Nigri Happ, Ieda Del’Arco Sanches and Gilson Alexandre Ostwald Pedro da Costa
Remote Sens. 2019, 11(17), 2029; https://doi.org/10.3390/rs11172029 - 29 Aug 2019
Cited by 32 | Viewed by 6584
Abstract
Accurate crop type identification and crop area estimation from remote sensing data in tropical regions are still considered challenging tasks. The more favorable weather conditions, in comparison to the characteristic conditions of temperate regions, permit higher flexibility in land use, planning, and management, [...] Read more.
Accurate crop type identification and crop area estimation from remote sensing data in tropical regions are still considered challenging tasks. The more favorable weather conditions, in comparison to the characteristic conditions of temperate regions, permit higher flexibility in land use, planning, and management, which implies complex crop dynamics. Moreover, the frequent cloud cover prevents the use of optical data during large periods of the year, making SAR data an attractive alternative for crop mapping in tropical regions. This paper evaluates the effectiveness of Deep Learning (DL) techniques for crop recognition from multi-date SAR images from tropical regions. Three DL strategies are investigated: autoencoders, convolutional neural networks, and fully-convolutional networks. The paper further proposes a post-classification technique to enforce prior knowledge about crop dynamics in the target area. Experiments conducted on a Sentinel-1 multitemporal sequence of a tropical region in Brazil reveal the pros and cons of the tested methods. In our experiments, the proposed crop dynamics model was able to correct up to 16.5% of classification errors and managed to improve the performance up to 3.2% and 8.7% in terms of overall accuracy and average F1-score, respectively. Full article
(This article belongs to the Special Issue Remote Sensing for Crop Mapping)
Show Figures

Graphical abstract

15 pages, 24026 KiB  
Article
Assessment of Texture Features for Bermudagrass (Cynodon dactylon) Detection in Sugarcane Plantations
by Cesare Di Girolamo-Neto, Ieda Del’Arco Sanches, Alana Kasahara Neves, Victor Hugo Rohden Prudente, Thales Sehn Körting, Michelle Cristina Araujo Picoli and Luiz Eduardo Oliveira e Cruz de Aragão
Drones 2019, 3(2), 36; https://doi.org/10.3390/drones3020036 - 13 Apr 2019
Cited by 16 | Viewed by 6004
Abstract
Sugarcane products contribute significantly to the Brazilian economy, generating U.S. $12.2 billion in revenue in 2018. Identifying and monitoring factors that induce yield reduction, such as weed occurrence, is thus imperative. The detection of Bermudagrass in sugarcane crops using remote sensing data, however, [...] Read more.
Sugarcane products contribute significantly to the Brazilian economy, generating U.S. $12.2 billion in revenue in 2018. Identifying and monitoring factors that induce yield reduction, such as weed occurrence, is thus imperative. The detection of Bermudagrass in sugarcane crops using remote sensing data, however, is a challenge considering their spectral similarity. To overcome this limitation, this paper aims to explore the potential of texture features derived from images acquired by an optical sensor onboard anunmanned aerial vehicle (UAV) to detect Bermudagrass in sugarcane. Aerial images with a spatial resolution of 2 cm were acquired from a sugarcane field in Brazil. The Green-Red Vegetation Index and several texture metrics derived from the gray-level co-occurrence matrix were calculated to perform an automatic classification using arandom forest algorithm. Adding texture metrics to the classification process improved the overall accuracy from 83.00% to 92.54%, and this improvement was greater considering larger window sizes, since they representeda texture transition between two targets. Production losses induced by Bermudagrass presence reached 12.1 tons × ha−1 in the study site. This study not only demonstrated the capacity of UAV images to overcome the well-known limitation of detecting Bermudagrass in sugarcane crops, but also highlighted the importance of texture for high-accuracy quantification of weed invasion in sugarcane crops. Full article
(This article belongs to the Special Issue UAV/Drones for Agriculture and Forestry)
Show Figures

Figure 1

14 pages, 3570 KiB  
Article
Cloud Cover Assessment for Operational Crop Monitoring Systems in Tropical Areas
by Isaque Daniel Rocha Eberhardt, Bruno Schultz, Rodrigo Rizzi, Ieda Del’Arco Sanches, Antonio Roberto Formaggio, Clement Atzberger, Marcio Pupin Mello, Markus Immitzer, Kleber Trabaquini, William Foschiera and Alfredo José Barreto Luiz
Remote Sens. 2016, 8(3), 219; https://doi.org/10.3390/rs8030219 - 8 Mar 2016
Cited by 48 | Viewed by 10174
Abstract
The potential of optical remote sensing data to identify, map and monitor croplands is well recognized. However, clouds strongly limit the usefulness of optical imagery for these applications. This paper aims at assessing cloud cover conditions over four states in the tropical and [...] Read more.
The potential of optical remote sensing data to identify, map and monitor croplands is well recognized. However, clouds strongly limit the usefulness of optical imagery for these applications. This paper aims at assessing cloud cover conditions over four states in the tropical and sub-tropical Center-South region of Brazil to guide the development of an appropriate agricultural monitoring system based on Landsat-like imagery. Cloudiness was assessed during overlapping four months periods to match the typical length of crop cycles in the study area. The percentage of clear sky occurrence was computed from the 1 km resolution MODIS Cloud Mask product (MOD35) considering 14 years of data between July 2000 and June 2014. Results showed high seasonality of cloud occurrence within the crop year with strong variations across the study area. The maximum seasonality was observed for the two states in the northern part of the study area (i.e., the ones closer to the Equator line), which also presented the lowest averaged values (15%) of clear sky occurrence during the main (summer) cropping period (November to February). In these locations, optical data faces severe constraints for mapping summer crops. On the other hand, relatively favorable conditions were found in the southern part of the study region. In the South, clear sky values of around 45% were found and no significant clear sky seasonality was observed. Results underpin the challenges to implement an operational crop monitoring system based solely on optical remote sensing imagery in tropical and sub-tropical regions, in particular if short-cycle crops have to be monitored during the cloudy summer months. To cope with cloudiness issues, we recommend the use of new systems with higher repetition rates such as Sentinel-2. For local studies, Unmanned Aircraft Vehicles (UAVs) might be used to augment the observing capability. Multi-sensor approaches combining optical and microwave data can be another option. In cases where wall-to-wall maps are not mandatory, statistical sampling approaches might also be a suitable alternative for obtaining useful crop area information. Full article
Show Figures

Graphical abstract

Back to TopTop