Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Authors = Hui-suk Yun

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 13507 KiB  
Article
Signal-Decay Based Approach for Visualization of Buried Defects in 3-D Printed Ceramic Components Imaged with Help of Optical Coherence Tomography
by Malgorzata Kopycinska-Müller, Luise Schreiber, Eric Schwarzer-Fischer, Anne Günther, Conner Phillips, Tassilo Moritz, Jörg Opitz, Yeong-Jin Choi and Hui-suk Yun
Materials 2023, 16(10), 3607; https://doi.org/10.3390/ma16103607 - 9 May 2023
Cited by 2 | Viewed by 2405
Abstract
We propose the use of Optical Coherence Tomography (OCT) as a tool for the quality control of 3-D-printed ceramics. Test samples with premeditated defects, namely single- and two-component samples of zirconia, titania, and titanium suboxides, were printed by stereolithography-based DLP (Digital Light Processing) [...] Read more.
We propose the use of Optical Coherence Tomography (OCT) as a tool for the quality control of 3-D-printed ceramics. Test samples with premeditated defects, namely single- and two-component samples of zirconia, titania, and titanium suboxides, were printed by stereolithography-based DLP (Digital Light Processing) processes. The OCT tomograms obtained on the green samples showed the capability of the method to visualize variations in the layered structure of the samples as well as the presence of cracks and inclusions at depths up to 130 µm, as validated by SEM images. The structural information was visible in cross-sectional images as well as in plan-view images. The optical signal measured from the printed zirconia oxide and titanium oxide samples showed strong attenuation with depth and could be fit with an exponential decay curve. The variations of the decay parameter correlated very well with the presence of defects and material variation. When used as an imaging quantity, the decay parameter projects the position of the defects into 2-D (X,Y) coordinates. This procedure can be used in real time, it reduces the data volume up to 1000 times, and allows for faster subsequent data analysis and transfer. Tomograms were also obtained on sintered samples. The results showed that the method can detect changes in the optical properties of the green ceramics caused by sintering. Specifically, the zirconium oxide samples became more transparent to the light used, whereas the titanium suboxide samples became entirely opaque. In addition, the optical response of the sintered zirconium oxide showed variations within the imaged volume, indicating material density variations. The results presented in this study show that OCT provides sufficient structural information on 3-D-printed ceramics and can be used as an in-line tool for quality control. Full article
(This article belongs to the Special Issue Recent Advances in Ceramic Manufacturing)
Show Figures

Figure 1

13 pages, 35314 KiB  
Article
Fabrication of Complex Three-Dimensional Structures of Mica through Digital Light Processing-Based Additive Manufacturing
by Sinuo Zhang, Imam Akbar Sutejo, Jeehwan Kim, Yeong-Jin Choi, Chang Woo Gal and Hui-suk Yun
Ceramics 2022, 5(3), 562-574; https://doi.org/10.3390/ceramics5030042 - 8 Sep 2022
Cited by 8 | Viewed by 3549
Abstract
Mica is a group of clay minerals that are frequently used to fabricate electrical and thermal insulators and as adsorbents for the treatment of cationic pollutants. However, conventional subtractive manufacturing has the drawback of poor three-dimensional (3D) shape control, which limits its application. [...] Read more.
Mica is a group of clay minerals that are frequently used to fabricate electrical and thermal insulators and as adsorbents for the treatment of cationic pollutants. However, conventional subtractive manufacturing has the drawback of poor three-dimensional (3D) shape control, which limits its application. In this study, we propose digital light processing (DLP)-based additive manufacturing (AM) as one of the most effective ways to address this drawback. Two major challenges for the ceramic DLP process are the production of a homogeneous and stable slurry with the required rheological properties and the maintenance of printing precision. The mica green body was fabricated using a 53 vol.% solid loading slurry through DLP, which exhibited good dimensional resolution under an exposure energy dose of 10 mJ/cm2. The precise, complex 3D structure was maintained without any defects after debinding and sintering at 1000 °C. The use of ceramic AM to overcome the shape-control limitations of mica demonstrated in this study offers great potential for expanding the applications of mica. Full article
(This article belongs to the Special Issue Advances in Ceramics)
Show Figures

Figure 1

12 pages, 547 KiB  
Article
Hyperglycemia and Hypoglycemia Are Associated with In-Hospital Mortality among Patients with Coronavirus Disease 2019 Supported with Extracorporeal Membrane Oxygenation
by Kuk Hui Son, Woong-Han Kim, Jae Gun Kwak, Chang-Hyu Choi, Seok In Lee, Ui Won Ko, Hyoung Soo Kim, Haeyoung Lee, Euy Suk Chung, Jae-Bum Kim, Woo Sung Jang, Jae Seung Jung, Jieon Kim, Young Kyung Yoon, Seunghwan Song, Minji Sung, Myung Hun Jang, Young Sam Kim, In-Seok Jeong, Do Wan Kim, Tae Yun Kim, Soon Jin Kim, Su Wan Kim, Joonhwa Hong, Hyungmi An and on behalf of The Korean Society for Thoracic and Cardiovascular Surgery COVID-19 ECMO Task Force Teamadd Show full author list remove Hide full author list
J. Clin. Med. 2022, 11(17), 5106; https://doi.org/10.3390/jcm11175106 - 30 Aug 2022
Cited by 4 | Viewed by 2311
Abstract
Metabolic abnormalities, such as preexisting diabetes or hyperglycemia or hypoglycemia during hospitalization aggravated the severity of COVID-19. We evaluated whether diabetes history, hyperglycemia before and during extracorporeal membrane oxygenation (ECMO) support, and hypoglycemia were risk factors for mortality in patients with COVID-19. This [...] Read more.
Metabolic abnormalities, such as preexisting diabetes or hyperglycemia or hypoglycemia during hospitalization aggravated the severity of COVID-19. We evaluated whether diabetes history, hyperglycemia before and during extracorporeal membrane oxygenation (ECMO) support, and hypoglycemia were risk factors for mortality in patients with COVID-19. This study included data on 195 patients with COVID-19, who were aged ≥19 years and were treated with ECMO. The proportion of patients with diabetes history among nonsurvivors was higher than that among survivors. Univariate Cox regression analysis showed that in-hospital mortality after ECMO support was associated with diabetes history, renal replacement therapy (RRT), and body mass index (BMI) < 18.5 kg/m2. Glucose at admission >200 mg/dL and glucose levels before ventilator >200 mg/dL were not associated with in-hospital mortality. However, glucose levels before ECMO >200 mg/dL and minimal glucose levels during hospitalization <70 mg/dL were associated with in-hospital mortality. Multivariable Cox regression analysis showed that glucose >200 mg/dL before ECMO and minimal glucose <70 mg/dL during hospitalization remained risk factors for in-hospital mortality after adjustment for age, BMI, and RRT. In conclusion, glucose >200 mg/dL before ECMO and minimal glucose level <70 mg/dL during hospitalization were risk factors for in-hospital mortality among COVID-19 patients who underwent ECMO. Full article
Show Figures

Figure 1

17 pages, 2271 KiB  
Article
Effects of Tillage System, Sowing Date, and Weather Course on Yield of Double-Crop Soybeans Cultivated in Drained Paddy Fields
by Soon-Suk Han, Hyun-Jin Park, Taehwan Shin, Jonghan Ko, Woo-Jung Choi, Yun-Ho Lee, Hui-Su Bae, Seung-Hyun Ahn, Jong-Tak Youn and Han-Yong Kim
Agronomy 2022, 12(8), 1901; https://doi.org/10.3390/agronomy12081901 - 13 Aug 2022
Cited by 5 | Viewed by 1914
Abstract
In temperate monsoon areas, major constraints of soybean production in drained paddy fields are excess soil water during monsoon seasons. To further understand how agronomic practices and weather course affect the yield of soybeans, we conducted field experiments at Gwangju, Korea (35°10′ N, [...] Read more.
In temperate monsoon areas, major constraints of soybean production in drained paddy fields are excess soil water during monsoon seasons. To further understand how agronomic practices and weather course affect the yield of soybeans, we conducted field experiments at Gwangju, Korea (35°10′ N, 126°53′ E) over three years (2018–2020). Double-crop soybeans were grown at two tillage systems (TS) [rotary tillage (RT), deep plowing followed by rotary tillage (DPRT)] and three sowing dates (SD) (June 10–15, June 25–30, and July 10–15) in drained paddy fields. Flowering phenology (R2) was accelerated by 5 days with each 15-day delay in SD. This resulted in a significant reduction in vegetative growth up to R2, with subsequent reductions in CGR and NAR through R2–R5 (beginning of grain filling). With a 30-day delay in SD, yield was significantly reduced by 27.0%. The better performance of RT over DPRT was demonstrated by greater yields (13.7%). In addition, yield was greatly varied with weather volatility among years, ranging from 123.8 to 552.0 g m−2. Weather volatility was the greatest contributor to yield variability (30.4%), followed by SD (17.0%) and TS (10.3%). Our results suggest that the yield might be mainly determined by how much growth has already been achieved before flowering and through R2–R5. Full article
Show Figures

Figure 1

16 pages, 4060 KiB  
Article
Oncolytic Vaccinia Virus Augments T Cell Factor 1-Positive Stem-like CD8+ T Cells, Which Underlies the Efficacy of Anti-PD-1 Combination Immunotherapy
by Yun-Hui Jeon, Namhee Lee, Jiyoon Yoo, Solchan Won, Suk-kyung Shin, Kyu-Hwan Kim, Jun-Gyu Park, Min-Gang Kim, Hang-Rae Kim, Keunhee Oh and Dong-Sup Lee
Biomedicines 2022, 10(4), 805; https://doi.org/10.3390/biomedicines10040805 - 30 Mar 2022
Cited by 9 | Viewed by 3468
Abstract
Oncolytic virotherapy has garnered attention as an antigen-agnostic therapeutic cancer vaccine that induces cancer-specific T cell responses without additional antigen loading. As anticancer immune responses are compromised by a lack of antigenicity and chronic immunosuppressive microenvironments, an effective immuno-oncology modality that converts cold [...] Read more.
Oncolytic virotherapy has garnered attention as an antigen-agnostic therapeutic cancer vaccine that induces cancer-specific T cell responses without additional antigen loading. As anticancer immune responses are compromised by a lack of antigenicity and chronic immunosuppressive microenvironments, an effective immuno-oncology modality that converts cold tumors into hot tumors is crucial. To evaluate the immune-activating characteristics of oncolytic vaccinia virus (VACV; JX-594, pexastimogene devacirepvec), diverse murine syngeneic cancer models with different tissue types and immune microenvironments were used. Intratumorally administered mJX-594, a murine variant of JX-594, potently increased CD8+ T cells, including antigen-specific cancer CD8+ T cells, and decreased immunosuppressive cells irrespective of tissue type or therapeutic efficacy. Remodeling of tumors into inflamed ones by mJX-594 led to a response to combined anti-PD-1 treatment, but not to mJX-594 or anti-PD-1 monotherapy. mJX-594 treatment increased T cell factor 1-positive stem-like T cells among cancer-specific CD8+ T cells, and anti-PD-1 combination treatment further increased proliferation of these cells, which was important for therapeutic efficacy. The presence of functional cancer-specific CD8+ T cells in the spleen and bone marrow for an extended period, which proliferated upon encountering cancer antigen-loaded splenic dendritic cells, further indicated that long-term durable anticancer immunity was elicited by oncolytic VACV. Full article
(This article belongs to the Special Issue Oncolytic Viruses as a Novel Form of Immunotherapy for Cancer III)
Show Figures

Figure 1

9 pages, 2584 KiB  
Communication
Selective Detection of an Infection Biomarker by an Osteo-Friend Scaffold: Development of a Multifunctional Artificial Bone Substitute
by Hye-In Kim, Naren Raja, Youngjun Choi, Jueun Kim, Aram Sung, Yeong-Jin Choi, Hui-suk Yun and Honghyun Park
Biosensors 2021, 11(12), 473; https://doi.org/10.3390/bios11120473 - 24 Nov 2021
Cited by 2 | Viewed by 2318
Abstract
Developments in three-dimensional (3D) printing technologies have led to many potential applications in various biomedical fields, especially artificial bone substitutes (ABSs). However, due to the characteristics of artificial materials, biocompatibility and infection remain issues. Here, multifunctional ABSs have been designed to overcome these [...] Read more.
Developments in three-dimensional (3D) printing technologies have led to many potential applications in various biomedical fields, especially artificial bone substitutes (ABSs). However, due to the characteristics of artificial materials, biocompatibility and infection remain issues. Here, multifunctional ABSs have been designed to overcome these issues by the inclusion of a biochemical modality that allows simultaneous detection of an infection biomarker by osteo-friend 3D scaffolds. The developed multifunctional scaffolds consist of calcium-deficient hydroxyapatite (CDHA), which has a similar geometric structure and chemical composition to human bone, and gold nanoparticles (Au NPs), which assists osteogenesis and modulates the fluorescence of labels in their microenvironment. The Au NPs were subsequently conjugated with fluorescent dye-labeled probe DNA, which allowed selective interaction with a specific target biomarker, and the fluorescent signal of the dye was temporally quenched by the Au NP-derived Förster resonance energy transfer (FRET). When the probe DNA unfolded to bind to the target biomarker, the fluorescence signal was recovered due to the increased distance between the dye and Au NPs. To demonstrate this sensing mechanism, a microbial oligonucleotide was selected as a target biomarker. Consequently, the multifunctional scaffold simultaneously facilitated osteogenic proliferation and the detection of the infection biomarker. Full article
(This article belongs to the Special Issue 3D Printing for Point-of-Care In Vitro Diagnostic Devices)
Show Figures

Figure 1

11 pages, 3352 KiB  
Article
Superior Alignment of Human iPSC-Osteoblasts Associated with Focal Adhesion Formation Stimulated by Oriented Collagen Scaffold
by Ryosuke Ozasa, Aira Matsugaki, Tadaaki Matsuzaka, Takuya Ishimoto, Hui-Suk Yun and Takayoshi Nakano
Int. J. Mol. Sci. 2021, 22(12), 6232; https://doi.org/10.3390/ijms22126232 - 9 Jun 2021
Cited by 7 | Viewed by 3491
Abstract
Human-induced pluripotent stem cells (hiPSCs) can be applied in patient-specific cell therapy to regenerate lost tissue or organ function. Anisotropic control of the structural organization in the newly generated bone matrix is pivotal for functional reconstruction during bone tissue regeneration. Recently, we revealed [...] Read more.
Human-induced pluripotent stem cells (hiPSCs) can be applied in patient-specific cell therapy to regenerate lost tissue or organ function. Anisotropic control of the structural organization in the newly generated bone matrix is pivotal for functional reconstruction during bone tissue regeneration. Recently, we revealed that hiPSC-derived osteoblasts (hiPSC-Obs) exhibit preferential alignment and organize in highly ordered bone matrices along a bone-mimetic collagen scaffold, indicating their critical role in regulating the unidirectional cellular arrangement, as well as the structural organization of regenerated bone tissue. However, it remains unclear how hiPSCs exhibit the cell properties required for oriented tissue construction. The present study aimed to characterize the properties of hiPSCs-Obs and those of their focal adhesions (FAs), which mediate the structural relationship between cells and the matrix. Our in vitro anisotropic cell culture system revealed the superior adhesion behavior of hiPSC-Obs, which exhibited accelerated cell proliferation and better cell alignment along the collagen axis compared to normal human osteoblasts. Notably, the oriented collagen scaffold stimulated FA formation along the scaffold collagen orientation. This is the first report of the superior cell adhesion behavior of hiPSC-Obs associated with the promotion of FA assembly along an anisotropic scaffold. These findings suggest a promising role for hiPSCs in enabling anisotropic bone microstructural regeneration. Full article
(This article belongs to the Special Issue Pluripotent Stem Cells 2021)
Show Figures

Figure 1

18 pages, 1245 KiB  
Review
3D Bioprinting of In Vitro Models Using Hydrogel-Based Bioinks
by Yeong-Jin Choi, Honghyun Park, Dong-Heon Ha, Hui-Suk Yun, Hee-Gyeong Yi and Hyungseok Lee
Polymers 2021, 13(3), 366; https://doi.org/10.3390/polym13030366 - 24 Jan 2021
Cited by 61 | Viewed by 8541
Abstract
Coronavirus disease 2019 (COVID-19), which has recently emerged as a global pandemic, has caused a serious economic crisis due to the social disconnection and physical distancing in human society. To rapidly respond to the emergence of new diseases, a reliable in vitro model [...] Read more.
Coronavirus disease 2019 (COVID-19), which has recently emerged as a global pandemic, has caused a serious economic crisis due to the social disconnection and physical distancing in human society. To rapidly respond to the emergence of new diseases, a reliable in vitro model needs to be established expeditiously for the identification of appropriate therapeutic agents. Such models can be of great help in validating the pathological behavior of pathogens and therapeutic agents. Recently, in vitro models representing human organs and tissues and biological functions have been developed based on high-precision 3D bioprinting. In this paper, we delineate an in-depth assessment of the recently developed 3D bioprinting technology and bioinks. In particular, we discuss the latest achievements and future aspects of the use of 3D bioprinting for in vitro modeling. Full article
(This article belongs to the Special Issue Hydrogels for 3D Bioprinting and Tissue Engineering)
Show Figures

Figure 1

14 pages, 5198 KiB  
Article
Evaluation of Mesenchymal Stem Cell Sheets Overexpressing BMP-7 in Canine Critical-Sized Bone Defects
by Yongsun Kim, Byung-Jae Kang, Wan Hee Kim, Hui-suk Yun and Oh-kyeong Kweon
Int. J. Mol. Sci. 2018, 19(7), 2073; https://doi.org/10.3390/ijms19072073 - 17 Jul 2018
Cited by 34 | Viewed by 4489
Abstract
The aim of this study was to investigate the in vitro osteogenic capacity of bone morphogenetic protein 7 (BMP-7) overexpressing adipose-derived (Ad-) mesenchymal stem cells (MSCs) sheets (BMP-7-CS). In addition, BMP-7-CS were transplanted into critical-sized bone defects and osteogenesis was assessed. BMP-7 gene [...] Read more.
The aim of this study was to investigate the in vitro osteogenic capacity of bone morphogenetic protein 7 (BMP-7) overexpressing adipose-derived (Ad-) mesenchymal stem cells (MSCs) sheets (BMP-7-CS). In addition, BMP-7-CS were transplanted into critical-sized bone defects and osteogenesis was assessed. BMP-7 gene expressing lentivirus particles were transduced into Ad-MSCs. BMP-7, at the mRNA and protein level, was up-regulated in BMP-7-MSCs compared to expression in Ad-MSCs. Osteogenic and vascular-related gene expressions were up-regulated in BMP-7-CS compared to Ad-MSCs and Ad-MSC sheets. In a segmental bone-defect model, newly formed bone and neovascularization were enhanced with BMP-7-CS, or with a combination of BMP-7-CS and demineralized bone matrix (DBM), compared to those in control groups. These results demonstrate that lentiviral-mediated gene transfer of BMP-7 into Ad-MSCs allows for stable BMP-7 production. BMP-7-CS displayed higher osteogenic capacity than Ad-MSCs and Ad-MSC sheets. In addition, BMP-7-CS combined with demineralized bone matrix (DBM) stimulated new bone and blood vessel formation in a canine critical-sized bone defect. The BMP-7-CS not only provides BMP-7 producing MSCs but also produce osteogenic and vascular trophic factors. Thus, BMP-7-CS and DBM have therapeutic potential for the treatment of critical-sized bone defects and could be used to further enhance clinical outcomes during bone-defect treatment. Full article
(This article belongs to the Special Issue Biological Basis of Musculoskeletal Regeneration)
Show Figures

Graphical abstract

Back to TopTop