Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Authors = Henoch Juli Christanto ORCID = 0000-0003-0276-295X

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2331 KiB  
Article
Enhancing Weather Scene Identification Using Vision Transformer
by Christine Dewi, Muhammad Asad Arshed, Henoch Juli Christanto, Hafiz Abdul Rehman, Amgad Muneer and Shahzad Mumtaz
World Electr. Veh. J. 2024, 15(8), 373; https://doi.org/10.3390/wevj15080373 - 16 Aug 2024
Viewed by 2477
Abstract
The accuracy of weather scene recognition is critical in a world where weather affects every aspect of our everyday lives, particularly in areas like intelligent transportation networks, autonomous vehicles, and outdoor vision systems. The importance of weather in many aspects of our life [...] Read more.
The accuracy of weather scene recognition is critical in a world where weather affects every aspect of our everyday lives, particularly in areas like intelligent transportation networks, autonomous vehicles, and outdoor vision systems. The importance of weather in many aspects of our life highlights the vital necessity for accurate information. Precise weather detection is especially crucial for industries like intelligent transportation, outside vision systems, and driverless cars. The outdated, unreliable, and time-consuming manual identification techniques are no longer adequate. Unmatched accuracy is required for local weather scene forecasting in real time. This work utilizes the capabilities of computer vision to address these important issues. Specifically, we employ the advanced Vision Transformer model to distinguish between 11 different weather scenarios. The development of this model results in a remarkable performance, achieving an accuracy rate of 93.54%, surpassing industry standards such as MobileNetV2 and VGG19. These findings advance computer vision techniques into new domains and pave the way for reliable weather scene recognition systems, promising extensive real-world applications across various industries. Full article
Show Figures

Figure 1

14 pages, 2761 KiB  
Article
A 16 × 16 Patch-Based Deep Learning Model for the Early Prognosis of Monkeypox from Skin Color Images
by Muhammad Asad Arshed, Hafiz Abdul Rehman, Saeed Ahmed, Christine Dewi and Henoch Juli Christanto
Computation 2024, 12(2), 33; https://doi.org/10.3390/computation12020033 - 10 Feb 2024
Cited by 7 | Viewed by 2917
Abstract
The DNA virus responsible for monkeypox, transmitted from animals to humans, exhibits two distinct genetic lineages in central and eastern Africa. Beyond the zoonotic transmission involving direct contact with the infected animals’ bodily fluids and blood, the spread of monkeypox can also occur [...] Read more.
The DNA virus responsible for monkeypox, transmitted from animals to humans, exhibits two distinct genetic lineages in central and eastern Africa. Beyond the zoonotic transmission involving direct contact with the infected animals’ bodily fluids and blood, the spread of monkeypox can also occur through skin lesions and respiratory secretions among humans. Both monkeypox and chickenpox involve skin lesions and can also be transmitted through respiratory secretions, but they are caused by different viruses. The key difference is that monkeypox is caused by an orthopox-virus, while chickenpox is caused by the varicella-zoster virus. In this study, the utilization of a patch-based vision transformer (ViT) model for the identification of monkeypox and chickenpox disease from human skin color images marks a significant advancement in medical diagnostics. Employing a transfer learning approach, the research investigates the ViT model’s capability to discern subtle patterns which are indicative of monkeypox and chickenpox. The dataset was enriched through carefully selected image augmentation techniques, enhancing the model’s ability to generalize across diverse scenarios. During the evaluation phase, the patch-based ViT model demonstrated substantial proficiency, achieving an accuracy, precision, recall, and F1 rating of 93%. This positive outcome underscores the practicality of employing sophisticated deep learning architectures, specifically vision transformers, in the realm of medical image analysis. Through the integration of transfer learning and image augmentation, not only is the model’s responsiveness to monkeypox- and chickenpox-related features enhanced, but concerns regarding data scarcity are also effectively addressed. The model outperformed the state-of-the-art studies and the CNN-based pre-trained models in terms of accuracy. Full article
(This article belongs to the Special Issue Deep Learning Applications in Medical Imaging)
Show Figures

Figure 1

21 pages, 4536 KiB  
Protocol
A Subjective Logical Framework-Based Trust Model for Wormhole Attack Detection and Mitigation in Low-Power and Lossy (RPL) IoT-Networks
by Sarmad Javed, Ahthasham Sajid, Tayybah Kiren, Inam Ullah Khan, Christine Dewi, Francesco Cauteruccio and Henoch Juli Christanto
Information 2023, 14(9), 478; https://doi.org/10.3390/info14090478 - 29 Aug 2023
Cited by 5 | Viewed by 3028
Abstract
The increasing use of wireless communication and IoT devices has raised concerns about security, particularly with regard to attacks on the Routing Protocol for Low-Power and Lossy Networks (RPL), such as the wormhole attack. In this study, the authors have used the trust [...] Read more.
The increasing use of wireless communication and IoT devices has raised concerns about security, particularly with regard to attacks on the Routing Protocol for Low-Power and Lossy Networks (RPL), such as the wormhole attack. In this study, the authors have used the trust concept called PCC-RPL (Parental Change Control RPL) over communicating nodes on IoT networks which prevents unsolicited parent changes by utilizing the trust concept. The aim of this study is to make the RPL protocol more secure by using a Subjective Logic Framework-based trust model to detect and mitigate a wormhole attack. The study evaluates the trust-based designed framework known as SLF-RPL (Subjective Logical Framework-Routing Protocol for Low-Power and Lossy Networks) over various key parameters, i.e., low energy consumption, packet loss ratio and attack detection rate. The achieved results were conducted using a Contiki OS-based Cooja Network simulator with 30, 60, and 90 nodes with respect to a 1:10 malicious node ratio and compared with the existing PCC-RPL protocol. The results show that the proposed SLF-RPL framework demonstrates higher efficiency (0.0504 J to 0.0728 J out of 1 J) than PCC-RPL (0.065 J to 0.0963 J out of 1 J) in terms of energy consumption at the node level, a decreased packet loss ratio of 16% at the node level, and an increased attack detection rate at network level from 0.42 to 0.55 in comparison with PCC-RPL. Full article
Show Figures

Figure 1

20 pages, 6486 KiB  
Article
Recognizing Similar Musical Instruments with YOLO Models
by Christine Dewi, Abbott Po Shun Chen and Henoch Juli Christanto
Big Data Cogn. Comput. 2023, 7(2), 94; https://doi.org/10.3390/bdcc7020094 - 10 May 2023
Cited by 15 | Viewed by 4732
Abstract
Researchers in the fields of machine learning and artificial intelligence have recently begun to focus their attention on object recognition. One of the biggest obstacles in image recognition through computer vision is the detection and identification of similar items. Identifying similar musical instruments [...] Read more.
Researchers in the fields of machine learning and artificial intelligence have recently begun to focus their attention on object recognition. One of the biggest obstacles in image recognition through computer vision is the detection and identification of similar items. Identifying similar musical instruments can be approached as a classification problem, where the goal is to train a machine learning model to classify instruments based on their features and shape. Cellos, clarinets, erhus, guitars, saxophones, trumpets, French horns, harps, recorders, bassoons, and violins were all classified in this investigation. There are many different musical instruments that have the same size, shape, and sound. In addition, we were amazed by the simplicity with which humans can identify items that are very similar to one another, but this is a challenging task for computers. For this study, we used YOLOv7 to identify pairs of musical instruments that are most like one another. Next, we compared and evaluated the results from YOLOv7 with those from YOLOv5. Furthermore, the results of our tests allowed us to enhance the performance in terms of detecting similar musical instruments. Moreover, with an average accuracy of 86.7%, YOLOv7 outperformed previous approaches and other research results. Full article
(This article belongs to the Special Issue Computational Collective Intelligence with Big Data–AI Society)
Show Figures

Figure 1

16 pages, 4964 KiB  
Article
Deep Learning for Highly Accurate Hand Recognition Based on Yolov7 Model
by Christine Dewi, Abbott Po Shun Chen and Henoch Juli Christanto
Big Data Cogn. Comput. 2023, 7(1), 53; https://doi.org/10.3390/bdcc7010053 - 22 Mar 2023
Cited by 32 | Viewed by 7607
Abstract
Hand detection is a key step in the pre-processing stage of many computer vision tasks because human hands are involved in the activity. Some examples of such tasks are hand posture estimation, hand gesture recognition, human activity analysis, and other tasks such as [...] Read more.
Hand detection is a key step in the pre-processing stage of many computer vision tasks because human hands are involved in the activity. Some examples of such tasks are hand posture estimation, hand gesture recognition, human activity analysis, and other tasks such as these. Human hands have a wide range of motion and change their appearance in a lot of different ways. This makes it hard to identify some hands in a crowded place, and some hands can move in a lot of different ways. In this investigation, we provide a concise analysis of CNN-based object recognition algorithms, more specifically, the Yolov7 and Yolov7x models with 100 and 200 epochs. This study explores a vast array of object detectors, some of which are used to locate hand recognition applications. Further, we train and test our proposed method on the Oxford Hand Dataset with the Yolov7 and Yolov7x models. Important statistics, such as the quantity of GFLOPS, the mean average precision (mAP), and the detection time, are tracked and monitored via performance metrics. The results of our research indicate that Yolov7x with 200 epochs during the training stage is the most stable approach when compared to other methods. It achieved 84.7% precision, 79.9% recall, and 86.1% mAP when it was being trained. In addition, Yolov7x accomplished the highest possible average mAP score, which was 86.3%, during the testing stage. Full article
Show Figures

Figure 1

16 pages, 4442 KiB  
Article
Yolov5 Series Algorithm for Road Marking Sign Identification
by Christine Dewi, Rung-Ching Chen, Yong-Cun Zhuang and Henoch Juli Christanto
Big Data Cogn. Comput. 2022, 6(4), 149; https://doi.org/10.3390/bdcc6040149 - 7 Dec 2022
Cited by 23 | Viewed by 7406
Abstract
Road markings and signs provide vehicles and pedestrians with essential information that assists them to follow the traffic regulations. Road surface markings include pedestrian crossings, directional arrows, zebra crossings, speed limit signs, other similar signs and text, and so on, which are usually [...] Read more.
Road markings and signs provide vehicles and pedestrians with essential information that assists them to follow the traffic regulations. Road surface markings include pedestrian crossings, directional arrows, zebra crossings, speed limit signs, other similar signs and text, and so on, which are usually painted directly onto the road surface. Road markings fulfill a variety of important functions, such as alerting drivers to the potentially hazardous road section, directing traffic, prohibiting certain actions, and slowing down. This research paper provides a summary of the Yolov5 algorithm series for road marking sign identification, which includes Yolov5s, Yolov5m, Yolov5n, Yolov5l, and Yolov5x. This study explores a wide range of contemporary object detectors, such as the ones that are used to determine the location of road marking signs. Performance metrics monitor important data, including the quantity of BFLOPS, the mean average precision (mAP), and the detection time (IoU). Our findings shows that Yolov5m is the most stable method compared to other methods with 76% precision, 86% recall, and 83% mAP during the training stage. Moreover, Yolov5m and Yolov5l achieve the highest score, mAP 87% on average in the testing stage. In addition, we have created a new dataset for road marking signs in Taiwan, called TRMSD. Full article
(This article belongs to the Special Issue Computational Collective Intelligence with Big Data–AI Society)
Show Figures

Figure 1

19 pages, 38420 KiB  
Article
Combination of Deep Cross-Stage Partial Network and Spatial Pyramid Pooling for Automatic Hand Detection
by Christine Dewi and Henoch Juli Christanto
Big Data Cogn. Comput. 2022, 6(3), 85; https://doi.org/10.3390/bdcc6030085 - 9 Aug 2022
Cited by 15 | Viewed by 4922
Abstract
The human hand is involved in many computer vision tasks, such as hand posture estimation, hand movement identification, human activity analysis, and other similar tasks, in which hand detection is an important preprocessing step. It is still difficult to correctly recognize some hands [...] Read more.
The human hand is involved in many computer vision tasks, such as hand posture estimation, hand movement identification, human activity analysis, and other similar tasks, in which hand detection is an important preprocessing step. It is still difficult to correctly recognize some hands in a cluttered environment because of the complex display variations of agile human hands and the fact that they have a wide range of motion. In this study, we provide a brief assessment of CNN-based object identification algorithms, specifically Densenet Yolo V2, Densenet Yolo V2 CSP, Densenet Yolo V2 CSP SPP, Resnet 50 Yolo V2, Resnet 50 CSP, Resnet 50 CSP SPP, Yolo V4 SPP, Yolo V4 CSP SPP, and Yolo V5. The advantages of CSP and SPP are thoroughly examined and described in detail in each algorithm. We show in our experiments that Yolo V4 CSP SPP provides the best level of precision available. The experimental results show that the CSP and SPP layers help improve the accuracy of CNN model testing performance. Our model leverages the advantages of CSP and SPP. Our proposed method Yolo V4 CSP SPP outperformed previous research results by an average of 8.88%, with an improvement from 87.6% to 96.48%. Full article
(This article belongs to the Topic Machine and Deep Learning)
Show Figures

Figure 1

Back to TopTop