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Abstract: The human hand is involved in many computer vision tasks, such as hand posture esti-
mation, hand movement identification, human activity analysis, and other similar tasks, in which
hand detection is an important preprocessing step. It is still difficult to correctly recognize some
hands in a cluttered environment because of the complex display variations of agile human hands
and the fact that they have a wide range of motion. In this study, we provide a brief assessment of
CNN-based object identification algorithms, specifically Densenet Yolo V2, Densenet Yolo V2 CSP,
Densenet Yolo V2 CSP SPP, Resnet 50 Yolo V2, Resnet 50 CSP, Resnet 50 CSP SPP, Yolo V4 SPP, Yolo
V4 CSP SPP, and Yolo V5. The advantages of CSP and SPP are thoroughly examined and described in
detail in each algorithm. We show in our experiments that Yolo V4 CSP SPP provides the best level of
precision available. The experimental results show that the CSP and SPP layers help improve the
accuracy of CNN model testing performance. Our model leverages the advantages of CSP and SPP.
Our proposed method Yolo V4 CSP SPP outperformed previous research results by an average of
8.88%, with an improvement from 87.6% to 96.48%.

Keywords: hand detection; Yolo V4; CSP; SPP; Densenet; Resnet; convolutional neural network;
object detection

1. Introduction

The human hand is extremely crucial when individuals communicate with one another
and with their surroundings in ordinary living. To recognize hand movements and human
activities, the location and direction of the human hand must be carefully observed and
recorded [1]. The ability to accurately identify hands in images and videos can support a
wide range of visual processing tasks, including gesture and scene understanding. Unfor-
tunately, due to the enormous variance in hands in images, it is harder to identify hands
in uncontrolled environments [2]. Various orientations, shapes, and sizes are available
to the hand in a very clear way. The increased variation in hand appearance is further
accentuated by occlusion and motion blur [3]. In many computer vision applications, such
as human–computer interaction, sign language recognition [4], and hand action analy-
sis [5], comprehensive hand gesture recognition in cluttered environments is a critical task
to accomplish.

Given the great variety in drawing hands in realistic scenarios, hand recognition
is a very difficult task. This is a challenge that has not yet been resolved in the field
of machine learning and artificial intelligence. Many approaches to dealing with this
problem have been proposed by researchers, some of which were inspired by the recently
developed deep learning approach for object detection and recognition [6,7]. However,
despite significant progress, these challenges persist, even with current deep learning
approaches [8,9]. Conventionally, hand region detection techniques have relied on low-
level image features including skin color [10] and shape [11] to identify the hand region.

To convey meaningful information, a static hand gesture requires only one image,
whereas a dynamic hand movement requires a sequence of frames to perform a single
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movement. In specifically, the purpose of this effort is to overcome the challenge of
detecting and recognizing static hand gestures, including postures executed with bare
hands to indicate specified interpretations. Throughout this study, we attempt to address
the problem of localization and recognition of static hand movements in two stages. The
first stage of our proposed approach deals with the accurate location of the hand and
extraction of the hand from the rendered image through the use of bounding boxes, which
are generated in the second stage. It is necessary to have sufficient data for this step to
build a reliable model. For this reason, we compile an extensive hand detection dataset
covering hands in a variety of complex environments.

Yolo is a CNN approach that is extremely efficient and works exceptionally well for
real-time object detection [12,13]. In addition to assisting with feature extraction, neural
networks may also assist in understanding the significance of motion, as well as recognizing
the target object [14,15]. Hand detection models combining convolutional neural networks
(CNNs) with cross-stage partial (CSP) networks and spatial pyramid pooling (SPP) are
summarized and examined in this paper for hand recognition. We fine-tuned it using the
Oxford hand dataset, which is a well-known and advanced hand dataset. Some of the CNN
models include Densenet, Yolo V2, Resnet 50, Yolo V4, and Yolo V5.

The primary objectives of this research were as follows: (1) to present a brief survey of
object detection algorithms based on CNN, specifically Densenet Yolo V2, Densenet Yolo
V2 CSP, Densenet Yolo V2 CSP SPP, Resnet 50 Yolo V2, Resnet 50 CSP, Resnet 50 CSP SPP,
Yolo V4 SPP, Yolo V4 CSP SPP, and Yolo V5; (2) to analyze and discuss in detail the benefits
of CSP and SPP in each algorithm; (3) to perform experiments showing that Yolo V4 CSP
SPP produces the best accuracy through the addition of CSP and SPP layers, which can
improve the performance of all models.

The remainder of this work is organized in the following manner: Section 2 provides a
brief overview of some related work in the field of hand identification; Section 3 describes
an overview of the proposed architecture as well as an explanation of the functions of all
of its modules; Section 4 discusses and compares our experimental results with previous
research results; Section 5 concludes by presenting the findings of this study, as well as
recommendations for further research.

2. Related Work

Section 2 offers a comprehensive assessment of pertinent research in the field of hand
detection and recognition techniques, including systems that rely on typically constructed
features, in addition to those that employ deep learning.

2.1. Hand Detection and Recognition

Many hand recognition algorithms in the past depended on skin color segmentation to
distinguish and extract hands from the backdrop of images, which was inefficient. In their
papers [16,17], Dardas et al. suggested a thresholding technique for fragmenting hands
in the hue, saturation, and value (HSV) color space after extracting other skin regions,
such as the face, from the source image. Girondel and colleagues [18] experimented with
a variety of color spaces and discovered that the Cb and Cr channels in the YCbCr color
space performed well in the skin detection task. Sigal et al. [10] proposed the Gaussian
mixture model, which performed admirably under a variety of lighting conditions. In order
to precisely detect the presence of the hand, Mittal et al. [19] developed a method based
on a mixture of deformable parts. According to Karlinsky et al. [20] a method for locating
hands that relies on sensing the relative locations of the hand and other human body parts
in order to locate them was proposed.

The most recent breakthroughs in emerging color-depth camera-based detection sys-
tems, such as the Microsoft KinectTM, have made significant contributions to hand gesture
recognition, such as hand extraction utilizing depth data, and other applications. With its
excellent computer vision and speech models, smart AI sensors, and a variety of strong
SDKs, Microsoft’s Azure Kinect provides a cutting-edge development kit for spatial com-
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puting applications. Sensor SDK and Body Tracking SDK are the major SDK modules. The
Body Tracking SDK is built on a complicated deep learning model that allows body seg-
mentation, human skeleton reconstruction, human body instance detection, and real-time
body tracking. A power drill chunk pose can be best estimated by looking at the n.8 (left
hand) and n.15 (right hand) kinect hand joints, according to [21]. As a result of multiple
testing, these joints were ruled out due of their poor orientation predictions. When it came
to the actual power drill in the scenario, however, the model interpreted it as a part of the
operator’s hand most of the time.

On the other hand, the You Only Look Once (Yolo) framework takes a different
approach to object recognition. The bounding boxes and class probabilities for these boxes
are predicted for the entire image in a single instance. Yolo’s tremendous speed is its
most significant advantage. Yolo has a processing speed of 45 frames per second, which is
impressive. Comparing Yolo to Microsoft Kinect, we may say that Yolo better understands
object representations in general. Single-stage detection means that all the components
of the object identification pipeline are unified into a single neural network, making Yolo
appropriate for real-time detection. The Kinect sensor has limited practical range and is
difficult to implement, while Yolo is easy to use and extend.

To classify images, Keskin et al. [22] employed depth images to obtain scale-invariant
form characteristics, which they then input into a per-pixel random forest (RDF) classifier.
In response to the recent success of convolutional neural networks (CNNs), researchers
have suggested a slew of object detection and recognition methods that are based on CNNs.
Utilizing CNN, it is possible to effectively address the multiscale and various rotations
problems for hand identification. Le et al. [23] introduced that multiscale feature maps
can be effectively combined for detection and classification to prevent small hand loss.
Similarly, Qing et al. [24] presented a feature map smelting SSD that employs deconvolution
to merge deep levels with shallow layers for hand identification. A compressed spatial
pyramid pooling (SPP) CNN framework for recognizing gestures or finger-spelling from
movies was developed by Ashiquzzaman et al. [25]. They named their model the SPP
CNN model.

2.2. CNN for Object Detection

Compared to traditional networks, Densenet has more layers and a faster convergence
rate [26,27]. Densenet should carefully consider extra functionality channels, including
mono characteristics or cross-level dimensions, in order to minimize the demand for
functional duplication in the network structure and increase the retrieval of features [28].

Additionally, Densenet provides several benefits. It makes it easier to reuse features
and alleviates the problem of fading gradients in graphics. As a result, there are some
clearly defined limitations. In the first place, each layer merely contains a combination
of the feature maps that were formed by combining the procedure from the layers that
occurred before it. Without taking into account the interdependencies between distinct
channels [29], the operation can be carried out. Furthermore, the Densenet is built mostly
of three components: the dense block, the transition layer, and the growth rate [30,31].

Resnet [32] is a deep convolutional network with residual layers whose primary idea
is to skip blocks of convolutional layers by employing shortcut connections. Furthermore,
Resnet is distinguished by having an extremely deep network that contains between 34 and
152 layers [33,34]. The Resnet model is characterized by the implementation of a residual
network topology. Batch normalization is at the heart of ResNet’s operation. The batch
normalization process makes adjustments to the input layer in order to improve the overall
performance of the network. The problem of covariate shift is reduced to a minimum.
ResNet employs the identity connection, which aids in the prevention of the network from
being affected by the disappearing gradient problem. In order to avoid overfitting, this
model additionally makes use of the batch normalization technique [35].

Yolo V4 is the most recent version of the Yolo series algorithm, which was released
by [36] in 2020. The Yolo V4 structure is composed of three parts: (1) the backbone
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(CSPDarknet53 [37]), (2) the neck (SPP [38] and PAN [39]), and (3) the head (Yolo V3) [40].
Yolo V4 makes use of a Mish [41] activation function in the backbone of the program. Wang
and colleagues [42] redesigned the Yolo V4 to obtain the Yolo V4-tiny in order to achieve the
optimal speed/accuracy tradeoff. A cross-stage partial network (CSPNet) was constructed
in order to attribute the problem to the presence of duplicate gradient information within
the context of network optimization. Using network optimization, it is possible to reduce
the complexity of the optimization while preserving accuracy [43,44]. The Focus module,
the CBL module, the CSP module, the SPP module, the Concat module, and the Upsample
module are the major components of the Yolo V5 network. Furthermore, there are four
different network models available with Yolo V5, which are Yolo V5S, Yolo V5M, Yolo
V5L, and Yolo V5X. CSP and SPP were used in conjunction with Densenet, Resnet 50, and
Yolo algorithms in our research. In total, we evaluated nine distinct model combinations
through the experiment.

2.3. Cross-Stage Partial (CSP) Network and Spatial Pyramid Pooling (SPP)

Yolo V4, an object detection system based on CSP [42], was offered as a new approach
to object detection. We present a network scaling strategy that alters not only the depth,
width, and resolution of the network, but also the network’s structure, resulting in the
construction of Scaled-Yolo V4 in this research. Yolo V4 is a real-time object detection
system that runs on a general-purpose GPU. Wang et.al [42] redesigned Yolo V4 to obtain
Yolo V4-CSP for the best speed/accuracy tradeoff. CSP is the Yolo-V4 backbone network
used to improve the learning capacities of CNN while simultaneously reducing the com-
puting bottleneck and memory cost. It is also lightweight, allowing it to be deployed
anywhere [45,46]. CSP blocks were applied in this paper to the DarkNet53 network, and a
CSP model with Densenet, Resnet, and Yolo was constructed.

SPP [38] has multiple advantages. Firstly, SPP is able to provide an adequate fixed-
length output independent of the input dimensions [47,48]. Additionally, SPP makes use
of multilevel spatial bins, whereas sliding window pooling only makes use of a single
window size, in contrast to SPP’s usage of several window sizes [49]. For the purposes
of this experiment, an SPP block layer was added to the configuration files for Densenet,
Resnet 50, Yolo V4, and Yolo V5. Using the same SPP block layers in the configuration
file, we could also create spatial models using them. The spatial model takes advantage of
downsampling in convolutional layers to get the required properties in the max-pooling
layers, which are subsequently used to construct the model. Three different sizes of the
max pool were applied for each image using [route]. Different layers (−2, −4, −1, −3, −5,
and −6) in conv5 were used in each [route]. Figure 1 illustrates the SPP architecture.

In our work, we also experimented with the latest version of Yolo V5, which is signifi-
cantly different from the previous version. PyTorch is utilized in place of Darknet. This
typically features the use of CSPDarknet53 as a backbone for its operations. When used
in big backbones, it solves the problem of repeated gradient information and integrates
gradient change into the feature map, which increases inference speed while simultane-
ously increasing accuracy and shrinking the model size by minimizing the number of
parameters used. It makes use of the path aggregation network (PANet) as a bottleneck
to increase the flow of information. Our experiment cloned the repo and install require-
ments.txt form github (https://github.com/ultralytics/yolov5) (accessed on 13 January
2022) in a Python ≥3.7.0 environment, including PyTorch ≥1.7. Some of the libraries
based on the requirement files included matplotlib ≥3.2.2, numpy ≥1.18.5, opencv-python
≥4.1.1, Pillow ≥7.1.2, PyYAML ≥5.3.1, requests ≥2.23.0, scipy ≥1.4.1, torch ≥1.7.0, and
torchvision ≥0.8.1.

Comparing the Yolo V5 algorithm to the Yolo V1 algorithm, the Yolo V5 approach is
an improvement because it does not necessitate the usage of the entire connection layers
that are required by the Yolo V1 algorithm. The depth feature of the target image is
extracted using Darknet-19, which is built in C++. On the basis of this information, anchor
coordinates are inserted in order to anticipate the region of interest [50].

https://github.com/ultralytics/yolov5
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Figure 1. Spatial pyramid pooling (SPP) architecture.

3. Methodology

Our proposed approach and experimental setup are discussed in greater detail in this
section. Figure 2 describes the system architecture of Yolo V4 CSP SPP. In order to create a
bounding box for all hand objects, the BBox mark tool [51] was implemented. An image
may have numerous marks on it because each category is labeled separately in the program.
Only one detector model was utilized for detection, and each label matched to a single
training model in the initial part of the experiment.

The Yolo labeling format is supported by most annotation platforms, resulting in
a single annotation text file per image. Each text file contains a bounding box (BBox)
annotation for each of the objects in the image, with one annotation per object in the
image. They are normalized to the image size in the range of 0 to 1, depending on the size
of the image. Each is represented in the following manner: <object-class-ID> <X center>
<Y center> <Box width> <Box height>. Equations (1)–(6) serve as the foundation for the
adjustment procedure.

dw =
1

W
, (1)

x =
(x1 + x2)

2
× dw, (2)

dh =
1
H

, (3)

y =
(y1 + y2)

2
× dh, (4)

w = (x2 − x1)× dw, (5)

h = (y2 − y1)× dh, (6)

where mage height is represented by h, while image absolute height is represented by dh;
W denotes the image width, and dw denotes the image absolute width.
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Figure 2. System architecture of Yolo V4 CSP SPP.

An explanation of the procedure for introducing Yolo V4 CSP SPP is provided in
Algorithm 1.

Algorithm 1. Yolo V4 CSP SPP hand detection process.

1. Divide the input image data into (M ×M) grids.
2. For each grid, create a total of K bounding boxes with an estimate of the anchor boxes in each.
3. Using CNN, extract all of the object characteristics from the image.
4. Predict the b =

[
bx, by, bw, bh, bc

]T and the class = [H1, H2, H3 ]T .
5. Choose the optimum confidence IoUtruth

pred of the K bounding boxes with the threshold IoUthres.
6. If IoUtruth

pred , it means that the bounding box includes the object. Otherwise, the bounding box
does not contain the object.

7. Choose the category that has the highest estimated likelihood of being correct.
8. Non-maximum suppression (NMS) is used in conjunction with a maximum local search in

order to eliminate redundant boxes and output.
9. Display the output of the object detection result.

Figure 3 illustrates the flow diagram of hand detection. Moreover, the hand detection
process uses images from the Oxford hand dataset which includes classes H1, H2, and H3
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as input data. The algorithm goes through the following phases: (1) The bounding box is
used to define the boundaries of the detected targets. (2) The objects in the drawing class
are linked together. In each image, the same target receives the same marks. (3) The same
image results in the same consistent label for the target. (4) Non-maximum suppression
(NMS) is a technique for performing a local maximum search to compress the duplicated
boxes and results, and then displaying the results of the object detection process. The NMS
is set up in the following way: to start, predictions are set according to their accuracy. If we
examine the same class forecast and find that the IoU with the current prediction is more
than 0.5, we should start with the top score and ignore the current forecast. (5) The final
stage produces a categorized image labeled with the appropriate class designation.

Figure 3. Flow diagram of hand detection.

Table 1 describes our experimental setup. Our work combined CSP and SPP with
Densenet, Resnet 50, and Yolo algorithms. In total, we experimented with nine different
model combinations. For Yolo V5, we simply applied the default configuration.

Table 1. Experimental setup.

Model CSP SPP

Densenet Yolo V2
Densenet Yolo V2 CSP X

Densenet Yolo V2 CSP SPP X X
Resnet 50 Yolo V2

Resnet 50 Yolo V2 CSP X
Resnet 50 Yolo V2 CSP SPP X X

Yolo V4 SPP X
Yolo V4 CSP SPP X X

Yolo V5 X X

3.1. Oxford Hand Dataset

The Oxford hand dataset [19] is a comprehensive image dataset of hands compiled
from a variety of different public image dataset sources, and it is available for free download.
Each image has annotations for all of the hand instances that can be viewed clearly by
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humans in that image. There are 13,050 hand instances in total over the entire dataset. Each
hand instance in the training set has 11,019 data points, whereas the testing set contains
2031 data points per hand instance. During the data collection process, no restrictions
were placed on the subject’s attitude or visibility, nor were any restrictions placed on the
surrounding environment. Each image contains annotations for all the hands that can be
clearly seen by humans in the image. The annotations need to be oriented with respect to
the wrist, but the bounding rectangles do not have to be aligned along any axes. A standard
MATLAB “. mat” format is used to store the annotations for the four end points of the hand
bounding box, which are represented by the files in the “annotations” folder. Boxes make
up the structure, with hand-boxes representing the various indices of the cell array. We
preprocess the data in this dataset to obtain the Yolo format. The dataset is divided into
two parts: 70% for training and 30% for testing; it contains images of a variety of different
hand objects.

Figure 4 shows a sample image of Oxford hand dataset. Furthermore, Figure 5 de-
scribes the label and correlogram of the Oxford hand dataset. Yolo V5 generates correlogram
plots to display the features of the supplied image and bounding box. As we can see in
Figure 5a, our experiment only has one class: “hand”. Furthermore, the hand images
contain nearly 6000 instances, with x, y varying from 0.0 to 1.0, and height, weight varying
from 0.0 to 0.8, as can be seen in Figure 5b.

3.2. Training Result

Figure 6 describes the training performance of all models in our work. The training
process involving the Densenet Yolo V2 CSP SPP model is depicted in Figure 6a. A network
size width of 416 and height of 416 are specified in the training configuration file. The
training is processed for 9000 batches, with the max batches set to 45,000, and the policy set
to steps. The weight is updated after 1000 iterations, and the learning speed is controlled
by a hyperparameter that determines how much the model should change in response to
the estimated error. The training process remained stable with a final average loss of 0.1337.
Figure 6b shows the persistence of the training process using Resnet Yolo V2 CSP SPP. The
training stage remained stable after 7000 epochs. This model used max_batches = 45,000
and mask_scale = 1, with the training loss value reaching 0.1256. In addition, Yolo V4 CSP
SPP used width = 512, height = 512, channels = 3, momentum = 0.949, decay = 0.0005,
angle = 0, max_batches = 6000, steps = 4800, and 5400 iterations, fluctuating with a loss
value of 1.3146 (Figure 6c).

Figure 4. Oxford hand dataset sample images.
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Figure 5. Oxford hand dataset: (a) labels and (b) correlogram.



Big Data Cogn. Comput. 2022, 6, 85 10 of 19

Figure 6. Training performance: (a) Densenet Yolo V2 CSP SPP; (b) Resnet Yolo V2 CSP SPP; (c) Yolo
V4 CSP SPP.
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Moreover, Figure 7 exhibits the training and validation performance with Yolo V5. In our ex-
periment, we trained Yolo V5 with 30 epochs that were completed in 6615 h. Some hyperparame-
ters in the Yolo V5 configuration file were as follows: iou_t = 0.2, anchor_t = 4.0, fl_gamma = 0.0,
hsv_h = 0.015, hsv_s = 0.7, hsv_v = 0.4, degrees = 0.0, translate = 0.1, scale = 0.5, shear = 0.0,
perspective = 0.0, flipud = 0.0, fliplr = 0.5, mosaic = 1.0, mixup = 0.0, copy_paste = 0.0, lr0 = 0.01,
lrf = 0.01, momentum = 0.937, weight_decay = 0.0005, warmup_epochs = 3.0,
warmup_momentum = 0.8, warmup_bias_lr = 0.1, box = 0.05, cls = 0.5, cls_pw = 1.0, obj = 1.0,
and obj_pw = 1.0. The Yolo loss function is expressed below [52,53].

Figure 7. Training and validation performance with Yolo V5.

Yololoss =
s2

∑
i−0

coordError + iouError + classError, (7)

BC(a, â) = −[a log â + (1− a) log(1− â)], (8)

ST(w, h) = 2− w× h, (9)

iouError =
s2

∑
i−0

B

∑
j−0

Iobj
ij [BC(ci, ĉi)] + λnoobj

s2

∑
i−0

B

∑
j−0
{Inoobj

ij [BC(ci, ĉi)], (10)

classError =
s2

∑
i−0

Iobj
ij ∑

cεclasses
BC(pi(c), p̂i(c)), (11)

coordError =
s2

∑
i−0

B
∑

j−0
{Iobj

ij × ST
(
wij, hij

)
× [BC(xi, x̂i) + BC(yi, ŷi)]

+λcoord
s2

∑
i−0

B
∑

j−0
{Iobj

ij × ST(wij, hij)× [(wi, ŵi)
2 + BC(hi, ĥi)]},

(12)

where
(

x̂, ŷ, ŵ, ĥ, ĉ, p̂
)

are the central coordinates, width, height, confidence, and cate-
gory probability of the predicted bounding box, and symbols without the cusp are real
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labels. B symbolizes that any grid is divided into B bounding boxes, Inoobj
ij represents that

the object drops within the j-th bounding box of the i-th grids, and Inoobj
ij exhibits that there

are no targets in the bounding box.
In addition, IouError is the IoU problem that was encountered. The weights of the

grids that contain the object and the grids that do not contain the object are different. As a
result, the parameter λnoobj = 0.5 is included to reduce the influence of a high number of
grids without objects on the loss estimate. ClassError is the classification error that occurred.
Cross-entropy is used to calculate losses, and it is only effective on a grid that contains a
target. Furthermore, the coordinate mistake is denoted by CoordError.

In order to compute the coordinates in the core point, the cross-entropy loss is applied,
and the variance loss is applied for the width and height parameters. Our experiment used
a value of 0.5 for λcoord, which means that the errors in width and height in the calculation
were less significant. When the grid predicts the presence of an object, the computation for
a coordinate error is performed [54].

Precision (P) and recall (R) [55] are represented in Equations (13) and (14) [56,57]. An
outcome that is referred to as a true positive (TP) outcome occurs when the model correctly
predicts the positive class. When the model accurately predicts the negative class, this is
referred to as a true negative (TN). A true positive (TP) is an outcome in which the model
properly predicts the positive class, but the outcome is false positive (FP). FN is an outcome
in which the model forecasts the negative class erroneously, resulting in a false negative.
Another evaluation index, F1 [58–60], is shown in Equation (15). The integral over the
precision p(o) is the average mean average precision (mAP), as shown in Equation (16). The
mean average precision (mAP) of an object detection model is a metric used to evaluate
the model.

P =
TP

TP + FP
, (13)

R =
TP

TP + FN
, (14)

F1 =
2× Precision× Recall

Precision + Recall
, (15)

mAP =
∫ 1

0
p(o)do, (16)

where p(o) is the precision of the object detection. A well-known statistic for measuring how
much overlap occurs among multiple bounding boxes or masks is the intersection over
union (IoU). IoU computes the overlap ratio between the boundary box of the prediction
(pred) and ground truth (gt) [61].

IoU =
Areapred ∩ Areagt

Areapred ∪ Areagt
. (17)

Table 2 shows the training performance of all models in the experiment. Yolo V4 CSP
SPP obtained the maximum mAP, around 82.13%, with an IoU of 61.36%, followed by Yolo
V5 at 82.7% with an IoU of 64.85%, and Yolo V4 at 81.5% with an IoU of 62.11%. According
to Table 2, it can be concluded that the CSP and SPP layers could improve the results of
Densenet, Resnet, and YoloV4 training. Our model could leverage CSP and SPP to improve
mAP during the training process. For example, Yolo V4 achieved 81.5% mAP with only the
SPP layer; when we combined the CSP and SPP layers, Yolo V4 CSP SPP achieved 82.13%
mAP. The Densenet model achieved 65.65% mAP, which increased to 66.82% when the CSP
layer was included. Furthermore, by integrating the CSP and SPP layers, the accuracy of
the Densenet model was increased to 67.19%.
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Table 2. Performance of all models during training according to precision, recall, F1-score, IoU,
and mAP.

Model Precision Recall F1-Score IoU (%) mAP@0.50 (%)

Densenet Yolo V2 0.68 0.68 0.68 49.16 65.65
Densenet Yolo V2 CSP 0.71 0.68 0.69 50.98 66.82
Densenet Yolo V2 CSP SPP 0.7 0.68 0.69 49.96 67.19
Resnet 50 Yolo V2 0.68 0.57 0.62 46.62 54.4
Resnet 50 Yolo V2 CSP 0.68 0.58 0.63 47.22 56.51
Resnet 50 Yolo V2 CSP SPP 0.67 0.63 0.65 47.19 60.99
Yolo V4 0.83 0.78 0.81 62.11 81.5
Yolo V4 CSP SPP 0.82 0.76 0.79 61.36 82.13
Yolo V4 Tiny 0.82 0.46 0.59 59.2 56.71
Yolo V5 0.84 0.74 0.79 64.85 82.7

Similarly, the Resnet 50 Yolo V2 model achieved 54.4% mAP with the base layer. When
adding a CSP layer, the mAP increased to 56.51%. The accuracy of the Resnet 50 model was
increased to 60.99% as a result of the integration of the CSP and SPP layers. Yolo V5 makes
extensive use of cross-stage partial network (CSP) layers, which serve as the foundation for
extracting highly useful characteristics from an input image. In our experiment, Yolo V5
obtained 82.7% mAP with an IoU of 64.85%.

4. Results and Discussion

Table 3 presents information about the testing accuracy using the Oxford hand dataset
during the experiments. Overall, Yolo V4 CSP SPP was more accurate than the other
CNN models. Yolo V4 CSP SPP had the highest average accuracy at 96.48%, followed
by Yolo V4 with 92.99% average accuracy, and Densenet Yolo V2 CSP SPP with 91.27%
average accuracy. Furthermore, in the Resnet 50 model series, Resnet 50 Yolo V2 CSP SPP
achieved the highest average accuracy of 86.53%. According to the experimental results in
Table 3, it can be concluded that the CSP and SPP layers increased the accuracy of the test
performance of all CNN models. In addition, Yolo V4 Tiny achieved the minimum average
precision accuracy of 70.17%.

Table 3. Testing performance using Oxford hand dataset.

Model Precision Recall F1-Score IoU (%) AP@0.50 (%)

Densenet Yolo V2 0.9 0.91 0.91 70.91 90.19
Densenet Yolo V2 CSP 0.9 0.9 0.9 69.44 90.45
Densenet Yolo V2 CSP SPP 0.91 0.91 0.91 70.86 91.27
Resnet 50 Yolo V2 0.84 0.82 0.83 59.96 82.25
Resnet 50 Yolo V2 CSP 0.83 0.82 0.83 59.64 83.01
Resnet 50 Yolo V2 CSP SPP 0.84 0.86 0.85 62.49 86.53
Yolo V4 0.9 0.92 0.91 69.8 92.99
Yolo V4 CSP SPP 0.92 0.95 0.94 72.34 96.48
Yolo V4 Tiny 0.89 0.57 0.7 66.14 70.17
Yolo V5 0.83 0.77 0.80 66.51 84.4

Figure 8 shows the detection result using the Oxford hand dataset when employing
the Yolo V4 CSP SPP. Our proposed method could recognize all hands accurately. The
CSP network is meant to attribute the problem to the redundant gradient information
within network optimization, allowing for a significant reduction in complexity while
preserving accuracy. Pooling pyramids are also resistant to deformation caused by objects.
Because of these advantages, SPP-net should be able to improve the performance of all
CNN-based image classification algorithms in general. Our model utilized CSP and SPP,
which allowed all tested models to obtain the highest accuracy results. Even though our
model was capable of accurately detecting hands, there were still occasional false positives
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and missing detections. For example, in Figure 9, our proposed method could not detect
all hand objects in the image because of some reasons: (1) when two hands were near one
another, they could be mistakenly identified as a single hand; (2) in situations where the
human hand was substantially obscured, the scale was too small, or the appearance was
too dark, it is possible that detection was missed.

Average precision (AP) was used to assess overall performance. The overlap of the
hand detection with the basic truth bounding box determines whether the detection is real
or false. If the overlapping score of a box is greater than 0.5, the box is considered positive.
When the bounding rectangle around the ground truth and hand bounding box is not paral-
lel to the axis, the overlap ratio between the bounding rectangles is calculated. In our work,
the proposed approach was compared to approaches described in [1,2,19,23,61,62]. We
emploed the evaluation metric described in [62], which uses the normal average precision
when the threshold of IoU is 0.5. (AP50). We compared the findings of our methodol-
ogy with those obtained using state-of-the-art methodologies on the Oxford hand dataset.
Table 4 shows the AP50 of the state-of-the-art approaches on the Oxford hand dataset. Our
proposed approach, Yolo V4 CSP SPP, achieved an average precision of 96.48% when the
threshold of IoU was set to 0.5. This was the highest average precision compared to other
previous research result. Our proposed method Yolo V4 CSP SPP increased the average
precision compared to the state-of-the art method proposed in [1] by 8.88% (from 87.6% to
96.48%).

The BFLOPS, workspace size, and layer for each CNN model in this study are il-
lustrated in Figure 10, providing a comparison of the three variables. Yolo V4 CSP SPP
achieved an optimal BFLOPS of 76.2, whereas Yolo V4 Tiny presented the minimum of
6878 BFLOPS (Figure 10a). The Densenet model required the largest workspace size of
104.86 MB (Figure 10b). Furthermore, Yolo V5 required the smallest workspace size of
~14.3 MB, Resnet 50 required 26.22 MB, and Yolo V4 required 52.43 MB. The combination
of CSP and SPP layers increased the size of te original model. Densenet Yolo V2 CSP SPP
contained 321 layers, Resnet 50 Yolo V2 CSP SPP contained 84 layers, and Yolo V4 CSP SPP
contained 176 layers according to the weight file (Figure 10c).

Figure 8. The detection results of Yolo V4 CSP SPP on the Oxford hand dataset.
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Table 4. Comparison of the performance of various methods for Oxford hand dataset detection.

Author Model AP@0.50 (%)

Mittal et al. [19] Multi Proposal with NMS 48.2
Deng et al. [62] RPN and Rotation Estimation 58.1

Le et al. [23] MS-RFCN 75.1
Narasimhaswamy et al. [2] Hand-CNN 78.8

Yang et al. [61] SSD Hand 83.2
Xu et al. [1] Hybrid Detection with GAN 87.6
Our method Yolo V4 CSP SPP 96.48

Figure 9. Yolo V4 CSP SPP failure cases on Oxford hand dataset.

Figure 10. Cont.
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Figure 10. Comparison of (a) BFLOPS, (b) workspace size, and (c) number of layers.

5. Conclusions

This paper discussed a brief examination of CNN-based object identification algo-
rithms, specifically Densenet Yolo V2, Densenet Yolo V2 CSP, Densenet Yolo V2 CSP SPP,
Resnet 50 Yolo V2, Resnet 50 CSP, Resnet 50 CSP SPP, Yolo V4 SPP, Yolo V4 CSP SPP, and
Yolo V5. In each algorithm, we examined and described in detail the advantages of CSP and
SPP. Our experiments showed that Yolo V4 CSP SPP provided the highest level of precision.
The experimental results indicated that the CSP and SPP layers helped to increase the
accuracy of the CNN models’ test performance. Our model leveraged the advantages of
CSP and SPP. Compared to the proposed advanced approach in [1], our proposed method
Yolo V4 CSP SPP improved the average precision by 8.88% (from 87.6% to 96.48%). Yolo V4
CSP SPP achieved an optimal BFLOPS of 76.2 with a load of 176 layers from the weight file.

In the Yolo framework, object recognition is handled differently. In each prediction, the
bounding box of the image and the class probabilities are predicted. Yolo’s greatest asset is
its incredible speed. An astonishing 45 frames per second can be achieved by Yolo. We can
say that Yolo achieves object representation better than other approaches. All components
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of the item identification pipeline are combined into a single neural network, which makes
Yolo suitable for real-time detection, easy to use, and expandable.

However, our proposed method cannot differentiate between right and left hands.
Therefore, it is very important to address this issue in the future. Furthermore, we will
combine hand detection with explainable artificial intelligence in future research.
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