Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Authors = Ghallab Alotaibi

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 6676 KiB  
Article
β-Caryophyllene-Loaded Microemulsion-Based Topical Hydrogel: A Promising Carrier to Enhance the Analgesic and Anti-Inflammatory Outcomes
by Sitah Alharthi, Zyta Maria Ziora, Gulam Mustafa, Pramila Chaubey, Ahmed Farag El Kirdasy and Ghallab Alotaibi
Gels 2023, 9(8), 634; https://doi.org/10.3390/gels9080634 - 7 Aug 2023
Cited by 3 | Viewed by 2118
Abstract
Musculoskeletal pain and inflammation can vary from localised pain like pain in the shoulders and neck to widespread pain like fibromyalgia, and as per estimates, around 90% of humans have experienced such pain. Oral non-steroidal anti-inflammatory drugs (NSAIDs) are frequently prescribed for such [...] Read more.
Musculoskeletal pain and inflammation can vary from localised pain like pain in the shoulders and neck to widespread pain like fibromyalgia, and as per estimates, around 90% of humans have experienced such pain. Oral non-steroidal anti-inflammatory drugs (NSAIDs) are frequently prescribed for such conditions but are associated with concerns like gastric irritation and bleeding. In the present study, a microemulsion-based gel comprising β-caryophyllene, isopropyl myristate, Tween 80, and normal saline was prepared as a topical option for managing topical pain and inflammation. The globules of the microemulsion were below 100 nm with a zetapotential of around −10 mV. The drug entrapment was >87% with a drug loading of >23%. The permeation studies established better skin permeation (20.11 ± 0.96 μg cm−2 h−1) and retention of the drug (4.96 ± 0.02%) from the developed system vis-à-vis the conventional product (9.73 ± 0.35 μg cm−2 h−1; 1.03 ± 0.01%). The dermatokinetic studies established the better pharmacokinetic profile of the bioactive in the epidermis and dermis layers of the skin. The anti-inflammatory potential in carrageenan-induced rat paw oedema was more pronounced than the conventional product (~91% vis-à-vis ~77%), indicating a better pharmacodynamic outcome from the developed system. The nanotechnology-based natural bioactive product with improved efficacy and drug loading can provide a better alternative for the management of musculoskeletal pain. Full article
Show Figures

Figure 1

12 pages, 1501 KiB  
Article
Phoenix dactylifera (Ajwa Dates) Alleviate LPS-Induced Sickness Behaviour in Rats by Attenuating Proinflammatory Cytokines and Oxidative Stress in the Brain
by Thippeswamy Boreddy Shivanandappa, Ghallab Alotaibi, Maheswari Chinnadhurai, Sudharshan Reddy Dachani, Mahmad Dabeer Ahmad and Khalid Abdullah Aldaajanii
Int. J. Mol. Sci. 2023, 24(13), 10413; https://doi.org/10.3390/ijms241310413 - 21 Jun 2023
Cited by 8 | Viewed by 3099
Abstract
Traditional medicine claims that various components of the Phoenix dactylifera (date plant) can be used to treat memory loss, fever, inflammation, loss of consciousness, and nerve disorders. The present study aims to evaluate the effectiveness of Phoenix dactylifera fruit extracts (PDF) against rat [...] Read more.
Traditional medicine claims that various components of the Phoenix dactylifera (date plant) can be used to treat memory loss, fever, inflammation, loss of consciousness, and nerve disorders. The present study aims to evaluate the effectiveness of Phoenix dactylifera fruit extracts (PDF) against rat sickness behaviour caused by lipopolysaccharide (LPS) by assessing behavioural and biochemical parameters. PDF was prepared by extracting dry fruits of P. dactylifera with a methanol:water (4:1, v/v) mixture. The PDF was evaluated for phenolic and flavonoid content and HPLC analysis of quercetin estimation. Adult Wistar rats were treated with LPS, PDF + LPS and dexamethasone + LPS. Water and food intake, behavioural tests such as locomotor activity, tail suspension and forced swim tests were conducted. Furthermore, alanine transaminase (ALT) and aspartate transaminase (AST) were estimated in plasma and malondialdehyde (MDA), reduced glutathione (GSH), nitrite, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), were estimated in the brain. PDF ameliorated LPS-induced sickness behaviour by reducing MDA, nitrite, IL-6, and TNF-α levels and improving GSH, behavioural alteration, water and food intake in the treated rats. In the plasma of the treated rats, PDF also decreased the levels of ALT and AST. The outcomes demonstrated the efficacy of PDF in reducing the sickness behaviour caused by LPS in rats. The authors believe that this study will provide the groundwork for future research to better understand the underlying mechanisms of action and therapeutic efficacy. Full article
Show Figures

Figure 1

20 pages, 5545 KiB  
Article
Glial Glutamate Transporter Modulation Prevents Development of Complete Freund’s Adjuvant-Induced Hyperalgesia and Allodynia in Mice
by Ghallab Alotaibi, Amna Khan, Patrick J. Ronan, Kabirullah Lutfy and Shafiqur Rahman
Brain Sci. 2023, 13(5), 807; https://doi.org/10.3390/brainsci13050807 - 16 May 2023
Cited by 5 | Viewed by 2279
Abstract
Glial glutamate transporter (GLT-1) modulation in the hippocampus and anterior cingulate cortex (ACC) is critically involved in nociceptive pain. The objective of the study was to investigate the effects of 3-[[(2-methylphenyl) methyl] thio]-6-(2-pyridinyl)-pyridazine (LDN-212320), a GLT-1 activator, against microglial activation induced by complete [...] Read more.
Glial glutamate transporter (GLT-1) modulation in the hippocampus and anterior cingulate cortex (ACC) is critically involved in nociceptive pain. The objective of the study was to investigate the effects of 3-[[(2-methylphenyl) methyl] thio]-6-(2-pyridinyl)-pyridazine (LDN-212320), a GLT-1 activator, against microglial activation induced by complete Freund’s adjuvant (CFA) in a mouse model of inflammatory pain. Furthermore, the effects of LDN-212320 on the protein expression of glial markers, such as ionized calcium-binding adaptor molecule 1 (Iba1), cluster of differentiation molecule 11b (CD11b), mitogen-activated protein kinases (p38), astroglial GLT-1, and connexin 43 (CX43), were measured in the hippocampus and ACC following CFA injection using the Western blot analysis and immunofluorescence assay. The effects of LDN-212320 on the pro-inflammatory cytokine interleukin-1β (IL-1β) in the hippocampus and ACC were also assessed using an enzyme-linked immunosorbent assay. Pretreatment with LDN-212320 (20 mg/kg) significantly reduced the CFA-induced tactile allodynia and thermal hyperalgesia. The anti-hyperalgesic and anti-allodynic effects of LDN-212320 were reversed by the GLT-1 antagonist DHK (10 mg/kg). Pretreatment with LDN-212320 significantly reduced CFA-induced microglial Iba1, CD11b, and p38 expression in the hippocampus and ACC. LDN-212320 markedly modulated astroglial GLT-1, CX43, and, IL-1β expression in the hippocampus and ACC. Overall, these results suggest that LDN-212320 prevents CFA-induced allodynia and hyperalgesia by upregulating astroglial GLT-1 and CX43 expression and decreasing microglial activation in the hippocampus and ACC. Therefore, LDN-212320 could be developed as a novel therapeutic drug candidate for chronic inflammatory pain. Full article
Show Figures

Figure 1

28 pages, 6792 KiB  
Article
Antidiabetic Activity of Potential Probiotics Limosilactobacillus spp., Levilactobacillus spp., and Lacticaseibacillus spp. Isolated from Fermented Sugarcane Juice: A Comprehensive In Vitro and In Silico Study
by Chandana Kumari V. B., Sujay S. Huligere, Ghallab Alotaibi, Abdulaziz K. Al Mouslem, Ammar Abdulraheem Bahauddin, Thippeswamy Boreddy Shivanandappa and Ramith Ramu
Nutrients 2023, 15(8), 1882; https://doi.org/10.3390/nu15081882 - 13 Apr 2023
Cited by 23 | Viewed by 4784
Abstract
Probiotics are regarded as a potential source of functional foods for improving the microbiota in human gut. When consumed, these bacteria can control the metabolism of biomolecules, which has numerous positive effects on health. Our objective was to identify a probiotic putative Lactobacillus [...] Read more.
Probiotics are regarded as a potential source of functional foods for improving the microbiota in human gut. When consumed, these bacteria can control the metabolism of biomolecules, which has numerous positive effects on health. Our objective was to identify a probiotic putative Lactobacillus spp. from fermented sugarcane juice that can prevent α-glucosidase and α-amylase from hydrolyzing carbohydrates. Isolates from fermented sugarcane juice were subjected to biochemical, molecular characterization (16S rRNA) and assessed for probiotic traits. Cell-free supernatant (CS) and extract (CE) and also intact cells (IC) were examined for the inhibitory effect on α-glucosidase and α-amylase. CS of the strain showed the highest inhibition and was subjected to a liquid chromatography–mass spectrometry (LCMS) analysis to determine the organic acid profile. The in silico approach was employed to assess organic acid stability and comprehend enzyme inhibitors’ impact. Nine isolates were retained for further investigation based on the preliminary biochemical evaluation. Limosilactobacillus spp., Levilactobacillus spp., and Lacticaseibacillus spp. were identified based on similarity > 95% in homology search (NCBI database). The strains had a higher survival rate (>98%) than gastric and intestinal fluids, also a high capacity for adhesion (hydrophobicity > 56%; aggregation > 80%; HT-29 cells > 54%; buccal epithelial cells > 54%). The hemolytic assay indicated that the isolates could be considered safe. The isolates’ derivatives inhibited enzymes to varying degrees, with α-glucosidase inhibition ranging from 21 to 85% and α-amylase inhibition from 18 to 75%, respectively. The CS of RAMULAB54 was profiled for organic acid that showed the abundance of hydroxycitric acid, citric acid, and lactic acid indicating their role in the observed inhibitory effects. The in silico approach has led us to understand that hydroxycitric acid has the ability to inhibit both the enzymes (α-glucosidase and α-amylase) effectively. Inhibiting these enzymes helps moderate postprandial hyperglycemia and regulates blood glucose levels. Due to their promising antidiabetic potential, these isolates can be used to enhance intestinal health. Full article
(This article belongs to the Special Issue The Probiotics and Prebiotics and Their Benefits for Health)
Show Figures

Figure 1

20 pages, 2506 KiB  
Review
Nano-Gels: Recent Advancement in Fabrication Methods for Mitigation of Skin Cancer
by Ghallab Alotaibi, Sitah Alharthi, Biswajit Basu, Dipanjana Ash, Swarnali Dutta, Sudarshan Singh, Bhupendra G. Prajapati, Sankha Bhattacharya, Vijay R. Chidrawar and Havagiray Chitme
Gels 2023, 9(4), 331; https://doi.org/10.3390/gels9040331 - 13 Apr 2023
Cited by 20 | Viewed by 4458
Abstract
In the 21st century, melanoma and non-melanoma skin cancers have become an epidemic outbreak worldwide. Therefore, the exploration of all potential preventative and therapeutic measures based on either physical or bio-chemical mechanisms is essential via understanding precise pathophysiological pathways (Mitogen-activated protein kinase, Phosphatidylinositol [...] Read more.
In the 21st century, melanoma and non-melanoma skin cancers have become an epidemic outbreak worldwide. Therefore, the exploration of all potential preventative and therapeutic measures based on either physical or bio-chemical mechanisms is essential via understanding precise pathophysiological pathways (Mitogen-activated protein kinase, Phosphatidylinositol 3-kinase Pathway, and Notch signaling pathway) and other aspects of such skin malignancies. Nano-gel, a three-dimensional polymeric cross-linked porous hydrogel having a diameter of 20–200 nm, possesses dual properties of both hydrogel and nanoparticle. The capacity of high drug entrapment efficiency with greater thermodynamic stability, remarkable solubilization potential, and swelling behavior of nano-gel becomes a promising candidate as a targeted drug delivery system in the treatment of skin cancer. Nano-gel can be either synthetically or architectonically modified for responding to either internal or external stimuli, including radiation, ultrasound, enzyme, magnetic, pH, temperature, and oxidation-reduction to achieve controlled release of pharmaceuticals and several bio-active molecules such as proteins, peptides, genes via amplifying drug aggregation in the active targeted tissue and reducing adverse pharmacological effects. Several drugs, such as anti-neoplastic biomolecules having short biological half-lives and prompt enzyme degradability capacity, must be appropriate for administration employing either chemically bridged or physically constructed nano-gel frameworks. The comprehensive review summarizes the advancement in the preparation and characterization methods of targeted nano-gel with enhanced pharmacological potential and preserved intracellular safety limits for the mitigation of skin malignancies with a special emphasize on skin cancer inducing pathophysiological pathways and prospective research opportunities for skin malignancy targeted nano-gels. Full article
(This article belongs to the Special Issue Engineering Advanced Hydrogels for Biomedical Applications)
Show Figures

Figure 1

35 pages, 5599 KiB  
Review
Phytochemistry, Pharmacology and Molecular Mechanisms of Herbal Bioactive Compounds for Sickness Behaviour
by Ghallab Hamoud Sinhat Alotaibi, Thippeswamy Boreddy Shivanandappa, Maheswari Chinnadhurai, Sudharshan Reddy Dachani, Mahmad Dabeer Ahmad and Khalid Abdullah Aldaajanii
Metabolites 2022, 12(12), 1215; https://doi.org/10.3390/metabo12121215 - 2 Dec 2022
Cited by 2 | Viewed by 3127
Abstract
The host’s response to acute infections or tissue injury is a sophisticated and coordinated adaptive modification called sickness behaviour. Many herbs have been studied for their ability to protect animals against experimentally induced sickness behaviour. However, there is a lack of knowledge and [...] Read more.
The host’s response to acute infections or tissue injury is a sophisticated and coordinated adaptive modification called sickness behaviour. Many herbs have been studied for their ability to protect animals against experimentally induced sickness behaviour. However, there is a lack of knowledge and experimental evidence on the use of herbal bioactive compounds (HBACs) in the management of sick behaviour. The goal of this review is to provide a concise summary of the protective benefits and putative mechanisms of action of phytochemicals on the reduction of lipopolysaccharide (LPS)-induced sickness behaviour. Relevant studies were gathered from the search engines Scopus, ScienceDirect, PubMed, Google Scholar, and other scientific databases (between 2000 and to date). The keywords used for the search included “Lipopolysaccharide” OR “LPS” OR “Sickness behaviour” OR “Sickness” AND “Bioactive compounds” OR “Herbal medicine” OR “Herbal drug” OR “Natural products” OR “Isolated compounds”. A total of 41 published articles that represented data on the effect of HBACs in LPS-induced sickness behaviour were reviewed and summarised systemically. There were 33 studies that were conducted in mice and 8 studies in rats. A total of 34 HBACs have had their effects against LPS-induced changes in behaviour and biochemistry investigated. In this review, we examined 34 herbal bioactive components that have been tested in animal models to see if they can fight LPS-induced sickness behaviour. Future research should concentrate on the efficacy, safety, and dosage needed to protect against illness behaviour in humans, because there is a critical shortage of data in this area. Full article
Show Figures

Figure 1

16 pages, 2847 KiB  
Article
Investigation of the Chemical Composition, Antihyperglycemic and Antilipidemic Effects of Bassia eriophora and Its Derived Constituent, Umbelliferone on High-Fat Diet and Streptozotocin-Induced Diabetic Rats
by Abdulaziz K. Al Mouslem, Hany Ezzat Khalil, Promise Madu Emeka and Ghallab Alotaibi
Molecules 2022, 27(20), 6941; https://doi.org/10.3390/molecules27206941 - 16 Oct 2022
Cited by 2 | Viewed by 2611
Abstract
This study was designed to investigate the chemical profile, antihyperglycemic and antilipidemic effect of total methanolic extract (TME) of Bassia eriophora and isolated pure compound umbelliferone (UFN) in high-fat diet (HFD)- and streptozotocin (STZ)- induced diabetic rats. TME was subjected to various techniques [...] Read more.
This study was designed to investigate the chemical profile, antihyperglycemic and antilipidemic effect of total methanolic extract (TME) of Bassia eriophora and isolated pure compound umbelliferone (UFN) in high-fat diet (HFD)- and streptozotocin (STZ)- induced diabetic rats. TME was subjected to various techniques of chromatography to yield UFN. Diabetes was induced after eight weeks of HFD by administration of STZ (40 mg/kg) intraperitoneally, and experimental subjects were divided into five groups. The diabetic control showed an increase in levels of blood glucose throughout the experiment. Treatments were initiated in the other four groups with glibenclamide (GLB) (6 mg/kg), TME (200 mg/kg and 400 mg/kg) and isolated UFN (50 mg/kg) orally. The effect on blood glucose, lipid profile and histology of the pancreatic and adipose tissues was assessed. Both 200 and 400 mg/kg of TME produced a comparably significant decrease in blood glucose levels and an increase in insulin levels with GLB. UFN began to show a better blood sugar-lowering effect after 14 days of treatment, comparatively. However, both 400 mg/kg TME and UFN significantly returned blood glucose levels in diabetic rats compared to normal rats. Analysis of the lipid profile showed that while HFD + STZ increased all lipid profile parameters, TME administration produced a significant decrease in their levels. Histopathological examinations showed that treatment with TME and UFN revealed an improved cellular architecture, with the healthy islets of Langerhans and compact glandular cells for pancreatic cells distinct from damaged cells in non-treated groups. Conversely, the adipose tissue displayed apparently normal polygonal fat cells. Therefore, these results suggest that TME has the potential to ameliorate hyperglycemia conditions and control lipid profiles in HFD + STZ-induced diabetic rats. Full article
Show Figures

Figure 1

19 pages, 1875 KiB  
Article
How Curcumin Targets Inflammatory Mediators in Diabetes: Therapeutic Insights and Possible Solutions
by Yaseen Hussain, Haroon Khan, Ghallab Alotaibi, Fazlullah Khan, Waqas Alam, Michael Aschner, Philippe Jeandet and Luciano Saso
Molecules 2022, 27(13), 4058; https://doi.org/10.3390/molecules27134058 - 24 Jun 2022
Cited by 20 | Viewed by 8071
Abstract
Diabetes mellitus is a multifactorial chronic metabolic disorder, characterized by altered metabolism of macro-nutrients, such as fats, proteins, and carbohydrates. Diabetic retinopathy, diabetic cardiomyopathy, diabetic encephalopathy, diabetic periodontitis, and diabetic nephropathy are the prominent complications of diabetes. Inflammatory mediators are primarily responsible for [...] Read more.
Diabetes mellitus is a multifactorial chronic metabolic disorder, characterized by altered metabolism of macro-nutrients, such as fats, proteins, and carbohydrates. Diabetic retinopathy, diabetic cardiomyopathy, diabetic encephalopathy, diabetic periodontitis, and diabetic nephropathy are the prominent complications of diabetes. Inflammatory mediators are primarily responsible for these complications. Curcumin, a polyphenol derived from turmeric, is well known for its anti-oxidant, anti-inflammatory, and anti-apoptotic properties. The regulation of several signaling pathways effectively targets inflammatory mediators in diabetes. Curcumin’s anti-inflammatory and anti-oxidative activities against a wide range of molecular targets have been shown to have therapeutic potential for a variety of chronic inflammatory disorders, including diabetes. Curcumin’s biological examination has shown that it is a powerful anti-oxidant that stops cells from growing by releasing active free thiol groups at the target location. Curcumin is a powerful anti-inflammatory agent that targets inflammatory mediators in diabetes, and its resistant form leads to better therapeutic outcomes in diabetes complications. Moreover, Curcumin is an anti-oxidant and NF-B inhibitor that may be useful in treating diabetes. Curcumin has been shown to inhibit diabetes-related enzymes, such as a-glucosidase, aldose reductase and aldose reductase inhibitors. Through its anti-oxidant and anti-inflammatory effects, and its suppression of vascular endothelial development and nuclear transcription factors, curcumin has the ability to prevent, or reduce, the course of diabetic retinopathy. Curcumin improves insulin sensitivity by suppressing phosphorylation of ERK/JNK in HG-induced insulin-resistant cells and strengthening the PI3K-AKT-GSK3B signaling pathway. In the present article, we aimed to discuss the anti-inflammatory mechanisms of curcumin in diabetes regulated by various molecular signaling pathways. Full article
(This article belongs to the Special Issue Anti-Inflammatory Activity of Natural Products II)
Show Figures

Figure 1

29 pages, 3495 KiB  
Review
Progress Report: Antimicrobial Drug Discovery in the Resistance Era
by Pottathil Shinu, Abdulaziz K. Al Mouslem, Anroop B. Nair, Katharigatta N. Venugopala, Mahesh Attimarad, Varsha A. Singh, Sreeharsha Nagaraja, Ghallab Alotaibi and Pran Kishore Deb
Pharmaceuticals 2022, 15(4), 413; https://doi.org/10.3390/ph15040413 - 28 Mar 2022
Cited by 31 | Viewed by 6782
Abstract
Antibiotic resistance continues to be a most serious threat to public health. This situation demands that the scientific community increase their efforts for the discovery of alternative strategies to circumvent the problems associated with conventional small molecule therapeutics. The Global Antimicrobial Resistance and [...] Read more.
Antibiotic resistance continues to be a most serious threat to public health. This situation demands that the scientific community increase their efforts for the discovery of alternative strategies to circumvent the problems associated with conventional small molecule therapeutics. The Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report (published in June 2021) discloses the rapidly increasing number of bacterial infections that are mainly caused by antimicrobial-resistant bacteria. These concerns have initiated various government agencies and other organizations to educate the public regarding the appropriate use of antibiotics. This review discusses a brief highlight on the timeline of antimicrobial drug discovery with a special emphasis on the historical development of antimicrobial resistance. In addition, new antimicrobial targets and approaches, recent developments in drug screening, design, and delivery were covered. This review also discusses the emergence and roles of various antibiotic adjuvants and combination therapies while shedding light on current challenges and future perspectives. Overall, the emergence of resistant microbial strains has challenged drug discovery but their efforts to develop alternative technologies such as nanomaterials seem to be promising for the future. Full article
(This article belongs to the Special Issue Mechanisms of Antibiotic Action and Resistance)
Show Figures

Graphical abstract

14 pages, 1427 KiB  
Article
Ornamental Plant Efficiency for Heavy Metals Phytoextraction from Contaminated Soils Amended with Organic Materials
by Mahrous Awad, M. A. El-Desoky, A. Ghallab, Jan Kubes, S. E. Abdel-Mawly, Subhan Danish, Disna Ratnasekera, Mohammad Sohidul Islam, Milan Skalicky, Marian Brestic, Alaa Baazeem, Saqer S. Alotaibi, Talha Javed, Rubab Shabbir, Shah Fahad, Muhammad Habib ur Rahman and Ayman EL Sabagh
Molecules 2021, 26(11), 3360; https://doi.org/10.3390/molecules26113360 - 2 Jun 2021
Cited by 46 | Viewed by 5299
Abstract
Accumulation of heavy metals (HMs) by ornamental plants (OPs) from contaminated agriculture soils is a unique technique that can efficiently reduce the metal load in the food chain. Amaranthus tricolor L. has attractive characteristics acquiring a higher growth rate and large biomass when [...] Read more.
Accumulation of heavy metals (HMs) by ornamental plants (OPs) from contaminated agriculture soils is a unique technique that can efficiently reduce the metal load in the food chain. Amaranthus tricolor L. has attractive characteristics acquiring a higher growth rate and large biomass when grown at heavy metal contaminated soils. Site-specific detailed information is not available on the use of A. tricolor plant in metal phytoremediation from the polluted sites. The study aimed to enhance the uptake of HMs (Pb, Zn, and Cu) via amending poultry litter extract (PLE), vinasse sugarcane (VSC), and humic acid (HA) as natural mobilized organic materials compared to ethylene diamine tetraacetic acid (EDTA), as a common mobilized chemical agent by A. tricolor plant. The studied soils collected from Helwan, El-Gabal El-Asfar (Cairo Governorate), Arab El-Madabeg (Assiut Governorate), Egypt, and study have been conducted under pot condition. Our results revealed all organic materials in all studied soils, except EDTA in EL-Gabal El-Asfar soil, significantly increased the dry weight of the A. tricolor plant compared to the control treatment. The uptake of Pb and Zn significantly (p > 0.05) increased due to applying all organic materials to the studied soils. HA application caused the highest uptake as shown in Pb concentration by more than 5 times in Helwan soil and EDTA by 65% in El-Gabal El-Asfar soil while VSC increased it by 110% in El-Madabeg soil. Also, an increase in Zn concentration due to EDTA application was 58, 42, and 56% for Helwan, El-Gabal El-Asfar, and El-Madabeg soil, respectively. In all studied soils, the application of organic materials increased the remediation factor (RF) than the control. El-Madabeg soil treated with vinasse sugarcane gave the highest RF values; 6.40, 3.26, and 4.02% for Pb, Zn, and Cu, respectively, than the control. Thus, we identified A. tricolor as a successful ornamental candidate that, along with organic mobilization amendments, most efficiently develop soil health, reduce metal toxicity, and recommend remediation of heavy metal-contaminated soils. Additionally, long-term application of organic mobilization amendments and continued growth of A. tricolor under field conditions could be recommended for future directions to confirm the results. Full article
Show Figures

Figure 1

Back to TopTop