Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Authors = Francisco S. N. Lobo

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 556 KiB  
Review
Evolving Wormholes in a Cosmological Background
by Mahdi Kord Zangeneh and Francisco S. N. Lobo
Universe 2025, 11(7), 236; https://doi.org/10.3390/universe11070236 - 19 Jul 2025
Viewed by 158
Abstract
Wormholes are non-trivial topological structures that arise as exact solutions to Einstein’s field equations, theoretically connecting distinct regions of spacetime via a throat-like geometry. While static traversable wormholes necessarily require exotic matter that violates the classical energy conditions, subsequent studies have sought to [...] Read more.
Wormholes are non-trivial topological structures that arise as exact solutions to Einstein’s field equations, theoretically connecting distinct regions of spacetime via a throat-like geometry. While static traversable wormholes necessarily require exotic matter that violates the classical energy conditions, subsequent studies have sought to minimize such violations by introducing time-dependent geometries embedded within cosmological backgrounds. This review provides a comprehensive survey of evolving wormhole solutions, emphasizing their formulation within both general relativity and alternative theories of gravity. We explore key developments in the construction of non-static wormhole spacetimes, including those conformally related to static solutions, as well as dynamically evolving geometries influenced by scalar fields. Particular attention is given to the wormholes embedded into Friedmann–Lemaître–Robertson–Walker (FLRW) universes and de Sitter backgrounds, where the interplay between the cosmic expansion and wormhole dynamics is analyzed. We also examine the role of modified gravity theories, especially in hybrid metric–Palatini gravity, which enable the realization of traversable wormholes supported by effective stress–energy tensors that do not violate the null or weak energy conditions. By systematically analyzing a wide range of time-dependent wormhole solutions, this review identifies the specific geometric and physical conditions under which wormholes can evolve consistently with null and weak energy conditions. These findings clarify how such configurations can be naturally integrated into cosmological models governed by general relativity or modified gravity, thereby contributing to a deeper theoretical understanding of localized spacetime structures in an expanding universe. Full article
(This article belongs to the Special Issue Experimental and Observational Constraints on Wormhole Models)
Show Figures

Figure 1

50 pages, 620 KiB  
Review
Thermodynamics of the Primordial Universe
by David Silva Pereira, João Ferraz, Francisco S. N. Lobo and José Pedro Mimoso
Entropy 2024, 26(11), 947; https://doi.org/10.3390/e26110947 - 5 Nov 2024
Viewed by 2127
Abstract
This review delves into the pivotal primordial stage of the universe, a period that holds the key to understanding its current state. To fully grasp this epoch, it is essential to consider three fundamental domains of physics: gravity, particle physics, and thermodynamics. The [...] Read more.
This review delves into the pivotal primordial stage of the universe, a period that holds the key to understanding its current state. To fully grasp this epoch, it is essential to consider three fundamental domains of physics: gravity, particle physics, and thermodynamics. The thermal history of the universe recreates the extreme high-energy conditions that are critical for exploring the unification of the fundamental forces, making it a natural laboratory for high-energy physics. This thermal history also offers valuable insights into how the laws of thermodynamics have governed the evolution of the universe’s constituents, shaping them into the forms we observe today. Focusing on the Standard Cosmological Model (SCM) and the Standard Model of Particles (SM), this paper provides an in-depth analysis of thermodynamics in the primordial universe. The structure of the study includes an introduction to the SCM and its strong ties to thermodynamic principles. It then explores equilibrium thermodynamics in the context of the expanding universe, followed by a detailed analysis of out-of-equilibrium phenomena that were pivotal in shaping key events during the early stages of the universe’s evolution. Full article
(This article belongs to the Section Astrophysics, Cosmology, and Black Holes)
40 pages, 796 KiB  
Review
Energy-Momentum Squared Gravity: A Brief Overview
by Ricardo A. C. Cipriano, Nailya Ganiyeva, Tiberiu Harko, Francisco S. N. Lobo, Miguel A. S. Pinto and João Luís Rosa
Universe 2024, 10(9), 339; https://doi.org/10.3390/universe10090339 - 23 Aug 2024
Cited by 6 | Viewed by 1466
Abstract
In this work, we present a review of Energy-Momentum Squared Gravity (EMSG)—more specifically, f(R,TμνTμν) gravity, where R represents the Ricci scalar and Tμν denotes the energy-momentum tensor. The inclusion of quadratic [...] Read more.
In this work, we present a review of Energy-Momentum Squared Gravity (EMSG)—more specifically, f(R,TμνTμν) gravity, where R represents the Ricci scalar and Tμν denotes the energy-momentum tensor. The inclusion of quadratic contributions from the energy-momentum components has intriguing cosmological implications, particularly during the Universe’s early epochs. These effects dominate under high-energy conditions, enabling EMSG to potentially address unresolved issues in General Relativity (GR), such as the initial singularity and aspects of big-bang nucleosynthesis in certain models. The theory’s explicit non-minimal coupling between matter and geometry leads to the non-conservation of the energy-momentum tensor, which prompts the investigation of cosmological scenarios through the framework of irreversible thermodynamics of open systems. By employing this formalism, we interpret the energy-balance equations within EMSG from a thermodynamic perspective, viewing them as descriptions of irreversible matter creation processes. Since EMSG converges to GR in a vacuum and differences emerge only in the presence of an energy-momentum distribution, these distinctions become significant in high-curvature regions. Therefore, deviations from GR are expected to be pronounced in the dense cores of compact objects. This review delves into these facets of EMSG, highlighting its potential to shed light on some of the fundamental questions in modern cosmology and gravitational theory. Full article
(This article belongs to the Collection Modified Theories of Gravity and Cosmological Applications)
Show Figures

Figure 1

16 pages, 303 KiB  
Article
Extension of Buchdahl’s Theorem on Reciprocal Solutions
by David S. Pereira, José Pedro Mimoso and Francisco S. N. Lobo
Symmetry 2024, 16(7), 881; https://doi.org/10.3390/sym16070881 - 11 Jul 2024
Cited by 1 | Viewed by 1480
Abstract
Since the development of Brans–Dicke gravity, it has become well-known that a conformal transformation of the metric can reformulate this theory, transferring the coupling of the scalar field from the Ricci scalar to the matter sector. Specifically, in this new frame, known as [...] Read more.
Since the development of Brans–Dicke gravity, it has become well-known that a conformal transformation of the metric can reformulate this theory, transferring the coupling of the scalar field from the Ricci scalar to the matter sector. Specifically, in this new frame, known as the Einstein frame, Brans–Dicke gravity is reformulated as General Relativity supplemented by an additional scalar field. In 1959, Hans Adolf Buchdahl utilized an elegant technique to derive a set of solutions for the vacuum field equations within this gravitational framework. In this paper, we extend Buchdahl’s method to incorporate the cosmological constant and to the scalar-tensor cases beyond the Brans–Dicke archetypal theory, thereby, with a conformal transformation of the metric, obtaining solutions for a version of Brans–Dicke theory that includes a quadratic potential. More specifically, we obtain synchronous solutions in the following contexts: in scalar-tensor gravity with massless scalar fields, Brans–Dicke theory with a quadratic potential, where we obtain specific synchronous metrics to the Schwarzschild–de Sitter metric, the Nariai solution, and a hyperbolically foliated solution. Full article
(This article belongs to the Special Issue Symmetry in Gravity Theories and Cosmology)
23 pages, 1383 KiB  
Article
Dynamical Analysis of the Redshift Drift in FLRW Universes
by Francisco S. N. Lobo, José Pedro Mimoso, Jessica Santiago and Matt Visser
Universe 2024, 10(4), 162; https://doi.org/10.3390/universe10040162 - 29 Mar 2024
Cited by 3 | Viewed by 1479
Abstract
Redshift drift is the phenomenon whereby the observed redshift between an emitter and observer comoving with the Hubble flow in an expanding FLRW universe will slowly evolve—on a timescale comparable to the Hubble time. In a previous article, three of the current authors [...] Read more.
Redshift drift is the phenomenon whereby the observed redshift between an emitter and observer comoving with the Hubble flow in an expanding FLRW universe will slowly evolve—on a timescale comparable to the Hubble time. In a previous article, three of the current authors performed a cosmographic analysis of the redshift drift in an FLRW universe, temporarily putting aside the issue of dynamics (the Friedmann equations). In the current article, we add dynamics while still remaining within the framework of an exact FLRW universe. We developed a suitable generic matter model and applied it to both standard FLRW and various dark energy models. Furthermore, we present an analysis of the utility of alternative cosmographic variables to describe the redshift drift data. Full article
(This article belongs to the Section Cosmology)
Show Figures

Figure 1

29 pages, 396 KiB  
Review
Baryogenesis: A Symmetry Breaking in the Primordial Universe Revisited
by David S. Pereira, João Ferraz, Francisco S. N. Lobo and José P. Mimoso
Symmetry 2024, 16(1), 13; https://doi.org/10.3390/sym16010013 - 21 Dec 2023
Cited by 4 | Viewed by 3709
Abstract
In this review article, we revisit the topic of baryogenesis, which is the physical process that generated the observed baryon asymmetry during the first stages of the primordial Universe. A viable theoretical explanation to understand and investigate the mechanisms underlying baryogenesis must always [...] Read more.
In this review article, we revisit the topic of baryogenesis, which is the physical process that generated the observed baryon asymmetry during the first stages of the primordial Universe. A viable theoretical explanation to understand and investigate the mechanisms underlying baryogenesis must always ensure that the Sakharov criteria are fulfilled. These essentially state the following: (i) baryon number violation; (ii) the violation of both C (charge conjugation symmetry) and CP (the composition of parity and C); (iii) and the departure from equilibrium. Throughout the years, various mechanisms have been proposed to address this issue, and here we review two of the most important, namely, electroweak baryogenesis (EWB) and Grand Unification Theories (GUTs) baryogenesis. Furthermore, we briefly explore how a change in the theory of gravity affects the EWB and GUT baryogenesis by considering Scalar–Tensor Theories (STT), where the inclusion of a scalar field mediates the gravitational interaction, in addition to the metric tensor field. We consider specific STT toy models and show that a modification of the underlying gravitational theory implies a change in the time–temperature relation of the evolving cosmological model, thus altering the conditions that govern the interplay between the rates of the interactions generating baryon asymmetry, and the expansion rate of the Universe. Therefore, the equilibrium of the former does not exactly occur as in the general relativistic standard model, and there are consequences for the baryogenesis mechanisms that have been devised. This is representative of the type of modifications of the baryogenesis processes that are to be found when considering extended theories of gravity. Full article
(This article belongs to the Special Issue Physics and Symmetry Section: Feature Papers 2023)
15 pages, 804 KiB  
Article
Closed Timelike Curves Induced by a Buchdahl-Inspired Vacuum Spacetime in R2 Gravity
by Hoang Ky Nguyen and Francisco S. N. Lobo
Universe 2023, 9(11), 467; https://doi.org/10.3390/universe9110467 - 30 Oct 2023
Cited by 6 | Viewed by 2723
Abstract
The recently obtained special Buchdahl-inspired metric Phys. Rev. D 107, 104008 (2023) describes asymptotically flat spacetimes in pure Ricci-squared gravity. The metric depends on a new (Buchdahl) parameter k˜ of higher-derivative characteristic, and reduces to the Schwarzschild metric, for [...] Read more.
The recently obtained special Buchdahl-inspired metric Phys. Rev. D 107, 104008 (2023) describes asymptotically flat spacetimes in pure Ricci-squared gravity. The metric depends on a new (Buchdahl) parameter k˜ of higher-derivative characteristic, and reduces to the Schwarzschild metric, for k˜=0. For the case k˜(1,0), it was shown that it describes a traversable Morris–Thorne–Buchdahl (MTB) wormhole Eur. Phys. J. C 83, 626 (2023), where the weak energy condition is formally violated. In this paper, we briefly review the special Buchdahl-inspired metric, with focuses on the construction of the Kruskal–Szekeres (KS) diagram and the situation for a wormhole to emerge. Interestingly, the MTB wormhole structure appears to permit the formation of closed timelike curves (CTCs). More specifically, a CTC straddles the throat, comprising of two segments positioned in opposite quadrants of the KS diagram. The closed timelike loop thus passes through the wormhole throat twice, causing two reversals in the time direction experienced by the (timelike) traveller on the CTC. The key to constructing a CTC lies in identifying any given pair of antipodal points (T,X) and (T,X) on the wormhole throat in the KS diagram as corresponding to the same spacetime event. It is interesting to note that the Campanelli–Lousto metric in Brans–Dicke gravity is known to support two-way traversable wormholes, and the formation of the CTCs presented herein is equally applicable to the Campanelli–Lousto solution. Full article
(This article belongs to the Special Issue The Physics of Time Travel)
Show Figures

Figure 1

17 pages, 338 KiB  
Review
Irreversible Geometrothermodynamics of Open Systems in Modified Gravity
by Miguel A. S. Pinto, Tiberiu Harko and Francisco S. N. Lobo
Entropy 2023, 25(6), 944; https://doi.org/10.3390/e25060944 - 15 Jun 2023
Cited by 6 | Viewed by 1519
Abstract
In this work, we explore the formalism of the irreversible thermodynamics of open systems and the possibility of gravitationally generated particle production in modified gravity. More specifically, we consider the scalar–tensor representation of f(R,T) gravity, in which the [...] Read more.
In this work, we explore the formalism of the irreversible thermodynamics of open systems and the possibility of gravitationally generated particle production in modified gravity. More specifically, we consider the scalar–tensor representation of f(R,T) gravity, in which the matter energy–momentum tensor is not conserved due to a nonminimal curvature–matter coupling. In the context of the irreversible thermodynamics of open systems, this non-conservation of the energy–momentum tensor can be interpreted as an irreversible flow of energy from the gravitational sector to the matter sector, which, in general, could result in particle creation. We obtain and discuss the expressions for the particle creation rate, the creation pressure, and the entropy and temperature evolutions. Applied together with the modified field equations of scalar–tensor f(R,T) gravity, the thermodynamics of open systems lead to a generalization of the ΛCDM cosmological paradigm, in which the particle creation rate and pressure are considered effectively as components of the cosmological fluid energy–momentum tensor. Thus, generally, modified theories of gravity in which these two quantities do not vanish provide a macroscopic phenomenological description of particle production in the cosmological fluid filling the Universe and also lead to the possibility of cosmological models that start from empty conditions and gradually build up matter and entropy. Full article
(This article belongs to the Special Issue Geometrothermodynamics and Its Applications)
18 pages, 685 KiB  
Article
Effective f(R) Actions for Modified Loop Quantum Cosmologies via Order Reduction
by Ana Rita Ribeiro, Daniele Vernieri and Francisco S. N. Lobo
Universe 2023, 9(4), 181; https://doi.org/10.3390/universe9040181 - 11 Apr 2023
Cited by 5 | Viewed by 1810
Abstract
General Relativity is an extremely successful theory, at least for weak gravitational fields; however, it breaks down at very high energies, such as in correspondence to the initial singularity. Quantum Gravity is expected to provide more physical insights in relation to this open [...] Read more.
General Relativity is an extremely successful theory, at least for weak gravitational fields; however, it breaks down at very high energies, such as in correspondence to the initial singularity. Quantum Gravity is expected to provide more physical insights in relation to this open question. Indeed, one alternative scenario to the Big Bang, that manages to completely avoid the singularity, is offered by Loop Quantum Cosmology (LQC), which predicts that the Universe undergoes a collapse to an expansion through a bounce. In this work, we use metric f(R) gravity to reproduce the modified Friedmann equations which have been obtained in the context of modified loop quantum cosmologies. To achieve this, we apply an order reduction method to the f(R) field equations, and obtain covariant effective actions that lead to a bounce, for specific models of modified LQC, considering a massless scalar field. Full article
(This article belongs to the Special Issue Universe: Feature Papers 2023—Cosmology)
Show Figures

Figure 1

18 pages, 869 KiB  
Article
Optical Features of AdS Black Holes in the Novel 4D Einstein-Gauss-Bonnet Gravity Coupled to Nonlinear Electrodynamics
by Khadije Jafarzade, Mahdi Kord Zangeneh and Francisco S. N. Lobo
Universe 2022, 8(3), 182; https://doi.org/10.3390/universe8030182 - 14 Mar 2022
Cited by 19 | Viewed by 2221
Abstract
An alternative theory of gravity that has attracted much attention recently is the novel four-dimensional Einstein-Gauss-Bonnet (4D EGB) gravity. The theory is rescaled by the Gauss-Bonnet (GB) coupling constant αα/(D4) in D dimensions and redefined [...] Read more.
An alternative theory of gravity that has attracted much attention recently is the novel four-dimensional Einstein-Gauss-Bonnet (4D EGB) gravity. The theory is rescaled by the Gauss-Bonnet (GB) coupling constant αα/(D4) in D dimensions and redefined as four-dimensional gravity in the limit D4. Thus, in this manner, the GB term yields a non-trivial contribution to the gravitational dynamics. In fact, regularized black hole solutions and applications in the novel 4D EGB gravity have also been extensively explored. In this work, motivated by recent astrophysical observations, we present an in-depth study of the optical features of AdS black holes in the novel 4D EGB gravity coupled to exponential nonlinear electrodynamics (NED), such as the shadow geometrical shape, the energy emission rate, the deflection angle and quasinormal modes. Taking into account these dynamic quantities, we investigate the effects on the black hole solution by varying the parameters of the models. More specifically, we show that the variation of the GB and NED parameters, and of the cosmological constant, imprints specific signatures on the optical features of AdS black holes in the novel 4D EGB gravity coupled to nonlinear electrodynamics, thus leading to the possibility of directly testing these black hole models by using astrophysical observations. Full article
(This article belongs to the Special Issue Higher-Derivative Theories of Gravity)
Show Figures

Figure 1

9 pages, 281 KiB  
Article
Bouncing Cosmology in Fourth-Order Gravity
by Marcello Miranda, Daniele Vernieri, Salvatore Capozziello and Francisco S. N. Lobo
Universe 2022, 8(3), 161; https://doi.org/10.3390/universe8030161 - 4 Mar 2022
Cited by 5 | Viewed by 1905
Abstract
The Big Bang initial singularity problem can be solved by means of bouncing solutions. In the context of extended theories of gravity, we will look for covariant effective actions whose field equations contain up to fourth-order derivatives of the metric tensor. In finding [...] Read more.
The Big Bang initial singularity problem can be solved by means of bouncing solutions. In the context of extended theories of gravity, we will look for covariant effective actions whose field equations contain up to fourth-order derivatives of the metric tensor. In finding such bouncing solutions, we will make use of an order reduction technique based on a perturbative approach. Reducing the order of the field equations to second-order, we are able to find solutions which are perturbatively close to General Relativity. We will build the covariant effective actions of the resulting order reduced theories. Full article
(This article belongs to the Special Issue Alternative Gravities and Fundamental Cosmology)
24 pages, 442 KiB  
Article
Gravitationally Induced Particle Production through a Nonminimal Torsion–Matter Coupling
by Tiberiu Harko, Francisco S. N. Lobo and Emmanuel N. Saridakis
Universe 2021, 7(7), 227; https://doi.org/10.3390/universe7070227 - 5 Jul 2021
Cited by 24 | Viewed by 2224
Abstract
We investigate the possibility of gravitationally generated particle production via the mechanism of nonminimal torsion–matter coupling. An intriguing feature of this theory is that the divergence of the matter energy–momentum tensor does not vanish identically. We explore the physical and cosmological implications of [...] Read more.
We investigate the possibility of gravitationally generated particle production via the mechanism of nonminimal torsion–matter coupling. An intriguing feature of this theory is that the divergence of the matter energy–momentum tensor does not vanish identically. We explore the physical and cosmological implications of the nonconservation of the energy–momentum tensor by using the formalism of irreversible thermodynamics of open systems in the presence of matter creation/annihilation. The particle creation rates, pressure, and the expression of the comoving entropy are obtained in a covariant formulation and discussed in detail. Applied together with the gravitational field equations, the thermodynamics of open systems lead to a generalization of the standard ΛCDM cosmological paradigm, in which the particle creation rates and pressures are effectively considered as components of the cosmological fluid energy–momentum tensor. We consider specific models, and we show that cosmology with a torsion–matter coupling can almost perfectly reproduce the ΛCDM scenario, while it additionally gives rise to particle creation rates, creation pressures, and entropy generation through gravitational matter production in both low and high redshift limits. Full article
(This article belongs to the Special Issue Teleparallel Gravity: Foundations and Observational Constraints)
Show Figures

Figure 1

31 pages, 463 KiB  
Review
Fundamental Symmetries and Spacetime Geometries in Gauge Theories of Gravity—Prospects for Unified Field Theories
by Francisco Cabral, Francisco S. N. Lobo and Diego Rubiera-Garcia
Universe 2020, 6(12), 238; https://doi.org/10.3390/universe6120238 - 11 Dec 2020
Cited by 34 | Viewed by 3648
Abstract
Gravity can be formulated as a gauge theory by combining symmetry principles and geometrical methods in a consistent mathematical framework. The gauge approach to gravity leads directly to non-Euclidean, post-Riemannian spacetime geometries, providing the adequate formalism for metric-affine theories of gravity with curvature, [...] Read more.
Gravity can be formulated as a gauge theory by combining symmetry principles and geometrical methods in a consistent mathematical framework. The gauge approach to gravity leads directly to non-Euclidean, post-Riemannian spacetime geometries, providing the adequate formalism for metric-affine theories of gravity with curvature, torsion and non-metricity. In this paper, we analyze the structure of gauge theories of gravity and consider the relation between fundamental geometrical objects and symmetry principles as well as different spacetime paradigms. Special attention is given to Poincaré gauge theories of gravity, their field equations and Noether conserved currents, which are the sources of gravity. We then discuss several topics of the gauge approach to gravitational phenomena, namely, quadratic Poincaré gauge models, the Einstein-Cartan-Sciama-Kibble theory, the teleparallel equivalent of general relativity, quadratic metric-affine Lagrangians, non-Lorentzian connections, and the breaking of Lorentz invariance in the presence of non-metricity. We also highlight the probing of post-Riemannian geometries with test matter. Finally, we briefly discuss some perspectives regarding the role of both geometrical methods and symmetry principles towards unified field theories and a new spacetime paradigm, motivated from the gauge approach to gravity. Full article
3 pages, 151 KiB  
Editorial
Post-Editorial of the Special Issue “Wormholes in Space-Time: Theory and Facts”
by Francisco S. N. Lobo, Gonzalo J. Olmo and Diego Rubiera-Garcia
Universe 2020, 6(12), 228; https://doi.org/10.3390/universe6120228 - 30 Nov 2020
Viewed by 2178
Abstract
Wormholes made their first appearance in gravitational physics as soon as in 1916 but, as with their black hole cousins, it took a long time and effort for their true nature to be properly understood [...] Full article
(This article belongs to the Special Issue Wormholes in Space-Time: Theory and Facts)
8 pages, 246 KiB  
Review
A Review on the Cosmology of the de Sitter Horndeski Models
by Nelson J. Nunes, Prado Martín-Moruno and Francisco S. N. Lobo
Universe 2017, 3(2), 33; https://doi.org/10.3390/universe3020033 - 31 Mar 2017
Cited by 7 | Viewed by 3223
Abstract
We review the most general scalar-tensor cosmological models with up to second-order derivatives in the field equations that have a fixed spatially flat de Sitter critical point independent of the material content or vacuum energy. This subclass of the Horndeski Lagrangian is capable [...] Read more.
We review the most general scalar-tensor cosmological models with up to second-order derivatives in the field equations that have a fixed spatially flat de Sitter critical point independent of the material content or vacuum energy. This subclass of the Horndeski Lagrangian is capable of dynamically adjusting any value of the vacuum energy of the matter fields at the critical point. We present the cosmological evolution of the linear models and the non-linear models with shift symmetry. We come to the conclusion that the shift symmetric non-linear models can deliver a viable background compatible with current observations. Full article
(This article belongs to the Special Issue Varying Constants and Fundamental Cosmology)
Show Figures

Figure 1

Back to TopTop