Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Authors = Forrest R. Stevens ORCID = 0000-0002-9328-3753

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3512 KiB  
Article
Using Very-High-Resolution Multispectral Classification to Estimate Savanna Fractional Vegetation Components
by Andrea E. Gaughan, Nicholas E. Kolarik, Forrest R. Stevens, Narcisa G. Pricope, Lin Cassidy, Jonathan Salerno, Karen M. Bailey, Michael Drake, Kyle Woodward and Joel Hartter
Remote Sens. 2022, 14(3), 551; https://doi.org/10.3390/rs14030551 - 24 Jan 2022
Cited by 5 | Viewed by 5390
Abstract
Characterizing compositional and structural aspects of vegetation is critical to effectively assessing land function. When priorities are placed on ecological integrity, remotely sensed estimates of fractional vegetation components (FVCs) are useful for measuring landscape-level habitat structure and function. In this study, we address [...] Read more.
Characterizing compositional and structural aspects of vegetation is critical to effectively assessing land function. When priorities are placed on ecological integrity, remotely sensed estimates of fractional vegetation components (FVCs) are useful for measuring landscape-level habitat structure and function. In this study, we address whether FVC estimates, stratified by dominant vegetation type, vary with different classification approaches applied to very-high-resolution small unoccupied aerial system (UAS)-derived imagery. Using Parrot Sequoia imagery, flown on a DJI Mavic Pro micro-quadcopter, we compare pixel- and segment-based random forest classifiers alongside a vegetation height-threshold model for characterizing the FVC in a southern African dryland savanna. Results show differences in agreement between each classification method, with the most disagreement in shrub-dominated sites. When compared to vegetation classes chosen by visual identification, the pixel-based random forest classifier had the highest overall agreement and was the only classifier not to differ significantly from the hand-delineated FVC estimation. However, when separating out woody biomass components of tree and shrub, the vegetation height-threshold performed better than both random-forest approaches. These findings underscore the utility and challenges represented by very-high-resolution multispectral UAS-derived data (~10 cm ground resolution) and their uses to estimate FVC. Semi-automated approaches statistically differ from by-hand estimation in most cases; however, we present insights for approaches that are applicable across varying vegetation types and structural conditions. Importantly, characterization of savanna land function cannot rely only on a “greenness” measure but also requires a structural vegetation component. Underscoring these insights is that the spatial heterogeneity of vegetation structure on the landscape broadly informs land management, from land allocation, wildlife habitat use, natural resource collection, and as an indicator of overall ecosystem function. Full article
(This article belongs to the Section Ecological Remote Sensing)
Show Figures

Figure 1

32 pages, 24723 KiB  
Article
Evaluating the Accuracy of Gridded Population Estimates in Slums: A Case Study in Nigeria and Kenya
by Dana R. Thomson, Andrea E. Gaughan, Forrest R. Stevens, Gregory Yetman, Peter Elias and Robert Chen
Urban Sci. 2021, 5(2), 48; https://doi.org/10.3390/urbansci5020048 - 20 Jun 2021
Cited by 37 | Viewed by 8248
Abstract
Low- and middle-income country cities face unprecedented urbanization and growth in slums. Gridded population data (e.g., ~100 × 100 m) derived from demographic and spatial data are a promising source of population estimates, but face limitations in slums due to the dynamic nature [...] Read more.
Low- and middle-income country cities face unprecedented urbanization and growth in slums. Gridded population data (e.g., ~100 × 100 m) derived from demographic and spatial data are a promising source of population estimates, but face limitations in slums due to the dynamic nature of this population as well as modelling assumptions. In this study, we compared field-referenced boundaries and population counts from Slum Dwellers International in Lagos (Nigeria), Port Harcourt (Nigeria), and Nairobi (Kenya) with nine gridded population datasets to assess their statistical accuracy in slums. We found that all gridded population estimates vastly underestimated population in slums (RMSE: 4958 to 14,422, Bias: −2853 to −7638), with the most accurate dataset (HRSL) estimating just 39 per cent of slum residents. Using a modelled map of all slums in Lagos to compare gridded population datasets in terms of SDG 11.1.1 (percent of population living in deprived areas), all gridded population datasets estimated this indicator at just 1–3 per cent compared to 56 per cent using UN-Habitat’s approach. We outline steps that might improve that accuracy of each gridded population dataset in deprived urban areas. While gridded population estimates are not yet sufficiently accurate to estimate SDG 11.1.1, we are optimistic that some could be used in the future following updates to their modelling approaches. Full article
Show Figures

Graphical abstract

16 pages, 3737 KiB  
Article
Geospatial Management and Analysis of Microstructural Data from San Andreas Fault Observatory at Depth (SAFOD) Core Samples
by Elliott M. Holmes, Andrea E. Gaughan, Donald J. Biddle, Forrest R. Stevens and Jafar Hadizadeh
ISPRS Int. J. Geo-Inf. 2021, 10(5), 332; https://doi.org/10.3390/ijgi10050332 - 14 May 2021
Cited by 1 | Viewed by 3688
Abstract
Core samples obtained from scientific drilling could provide large volumes of direct microstructural and compositional data, but generating results via the traditional treatment of such data is often time-consuming and inefficient. Unifying microstructural data within a spatially referenced Geographic Information System (GIS) environment [...] Read more.
Core samples obtained from scientific drilling could provide large volumes of direct microstructural and compositional data, but generating results via the traditional treatment of such data is often time-consuming and inefficient. Unifying microstructural data within a spatially referenced Geographic Information System (GIS) environment provides an opportunity to readily locate, visualize, correlate, and apply remote sensing techniques to the data. Using 26 core billet samples from the San Andreas Fault Observatory at Depth (SAFOD), this study developed GIS-based procedures for: 1. Spatially referenced visualization and storage of various microstructural data from core billets; 2. 3D modeling of billets and thin section positions within each billet, which serve as a digital record after irreversible fragmentation of the physical billets; and 3. Vector feature creation and unsupervised classification of a multi-generation calcite vein network from cathodluminescence (CL) imagery. Building on existing work which is predominantly limited to the 2D space of single thin sections, our results indicate that a GIS can facilitate spatial treatment of data even at centimeter to nanometer scales, but also revealed challenges involving intensive 3D representations and complex matrix transformations required to create geographically translated forms of the within-billet coordinate systems, which are suggested for consideration in future studies. Full article
(This article belongs to the Special Issue Application of Geology and GIS)
Show Figures

Figure 1

30 pages, 5770 KiB  
Article
Modeling Community-Scale Natural Resource Use in a Transboundary Southern African Landscape: Integrating Remote Sensing and Participatory Mapping
by Kyle D. Woodward, Narcisa G. Pricope, Forrest R. Stevens, Andrea E. Gaughan, Nicholas E. Kolarik, Michael D. Drake, Jonathan Salerno, Lin Cassidy, Joel Hartter, Karen M. Bailey and Henry Maseka Luwaya
Remote Sens. 2021, 13(4), 631; https://doi.org/10.3390/rs13040631 - 10 Feb 2021
Cited by 6 | Viewed by 4871
Abstract
Remote sensing analyses focused on non-timber forest product (NTFP) collection and grazing are current research priorities of land systems science. However, mapping these particular land use patterns in rural heterogeneous landscapes is challenging because their potential signatures on the landscape cannot be positively [...] Read more.
Remote sensing analyses focused on non-timber forest product (NTFP) collection and grazing are current research priorities of land systems science. However, mapping these particular land use patterns in rural heterogeneous landscapes is challenging because their potential signatures on the landscape cannot be positively identified without fine-scale land use data for validation. Using field-mapped resource areas and household survey data from participatory mapping research, we combined various Landsat-derived indices with ancillary data associated with human habitation to model the intensity of grazing and NTFP collection activities at 100-m spatial resolution. The study area is situated centrally within a transboundary southern African landscape that encompasses community-based organization (CBO) areas across three countries. We conducted four iterations of pixel-based random forest models, modifying the variable set to determine which of the covariates are most informative, using the best fit predictions to summarize and compare resource use intensity by resource type and across communities. Pixels within georeferenced, field-mapped resource areas were used as training data. All models had overall accuracies above 60% but those using proxies for human habitation were more robust, with overall accuracies above 90%. The contribution of Landsat data as utilized in our modeling framework was negligible, and further research must be conducted to extract greater value from Landsat or other optical remote sensing platforms to map these land use patterns at moderate resolution. We conclude that similar population proxy covariates should be included in future studies attempting to characterize communal resource use when traditional spectral signatures do not adequately capture resource use intensity alone. This study provides insights into modeling resource use activity when leveraging both remotely sensed data and proxies for human habitation in heterogeneous, spectrally mixed rural land areas. Full article
Show Figures

Graphical abstract

26 pages, 8355 KiB  
Article
Predicting Near-Future Built-Settlement Expansion Using Relative Changes in Small Area Populations
by Jeremiah J. Nieves, Maksym Bondarenko, Alessandro Sorichetta, Jessica E. Steele, David Kerr, Alessandra Carioli, Forrest R. Stevens, Andrea E. Gaughan and Andrew J. Tatem
Remote Sens. 2020, 12(10), 1545; https://doi.org/10.3390/rs12101545 - 12 May 2020
Cited by 7 | Viewed by 4837
Abstract
Advances in the availability of multi-temporal, remote sensing-derived global built-/human-settlements datasets can now provide globally consistent definitions of “human-settlement” at unprecedented spatial fineness. Yet, these data only provide a time-series of past extents and urban growth/expansion models have not had parallel advances at [...] Read more.
Advances in the availability of multi-temporal, remote sensing-derived global built-/human-settlements datasets can now provide globally consistent definitions of “human-settlement” at unprecedented spatial fineness. Yet, these data only provide a time-series of past extents and urban growth/expansion models have not had parallel advances at high-spatial resolution. Here our goal was to present a globally applicable predictive modelling framework, as informed by a short, preceding time-series of built-settlement extents, capable of producing annual, near-future built-settlement extents. To do so, we integrated a random forest, dasymetric redistribution, and autoregressive temporal models with open and globally available subnational data, estimates of built-settlement population, and environmental covariates. Using this approach, we trained the model on a 11 year time-series (2000–2010) of European Space Agency (ESA) Climate Change Initiative (CCI) Land Cover “Urban Areas” class and predicted annual, 100m resolution, binary settlement extents five years beyond the last observations (2011–2015) within varying environmental, urban morphological, and data quality contexts. We found that our model framework performed consistently across all sampled countries and, when compared to time-specific imagery, demonstrated the capacity to capture human-settlement missed by the input time-series and the withheld validation settlement extents. When comparing manually delineated building footprints of small settlements to the modelled extents, we saw that the modelling framework had a 12 percent increase in accuracy compared to withheld validation settlement extents. However, how this framework performs when using different input definitions of “urban” or settlement remains unknown. While this model framework is predictive and not explanatory in nature, it shows that globally available “off-the-shelf” datasets and relative changes in subnational population can be sufficient for accurate prediction of future settlement expansion. Further, this framework shows promise for predicting near-future settlement extents and provides a foundation for forecasts further into the future. Full article
Show Figures

Figure 1

11 pages, 1981 KiB  
Data Descriptor
Gridded Population Maps Informed by Different Built Settlement Products
by Fennis J. Reed, Andrea E. Gaughan, Forrest R. Stevens, Greg Yetman, Alessandro Sorichetta and Andrew J. Tatem
Data 2018, 3(3), 33; https://doi.org/10.3390/data3030033 - 4 Sep 2018
Cited by 59 | Viewed by 9560
Abstract
The spatial distribution of humans on the earth is critical knowledge that informs many disciplines and is available in a spatially explicit manner through gridded population techniques. While many approaches exist to produce specialized gridded population maps, little has been done to explore [...] Read more.
The spatial distribution of humans on the earth is critical knowledge that informs many disciplines and is available in a spatially explicit manner through gridded population techniques. While many approaches exist to produce specialized gridded population maps, little has been done to explore how remotely sensed, built-area datasets might be used to dasymetrically constrain these estimates. This study presents the effectiveness of three different high-resolution built area datasets for producing gridded population estimates through the dasymetric disaggregation of census counts in Haiti, Malawi, Madagascar, Nepal, Rwanda, and Thailand. Modeling techniques include a binary dasymetric redistribution, a random forest with a dasymetric component, and a hybrid of the previous two. The relative merits of these approaches and the data are discussed with regards to studying human populations and related spatially explicit phenomena. Results showed that the accuracy of random forest and hybrid models was comparable in five of six countries. Full article
Show Figures

Figure 1

Back to TopTop