Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Authors = Bechara Taouk ORCID = 0000-0002-9279-5116

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 714 KiB  
Article
Thermodynamic Analysis of Biomass Pyrolysis in an Auger Reactor Coupled with a Fluidized-Bed Reactor for Catalytic Deoxygenation
by Balkydia Campusano, Michael Jabbour, Lokmane Abdelouahed and Bechara Taouk
Processes 2025, 13(8), 2496; https://doi.org/10.3390/pr13082496 (registering DOI) - 7 Aug 2025
Abstract
This research contributes to advance the sustainable production of biofuels and provides insights into the energy and exergy assessment of bio-oil, which is essential for developing environmentally friendly energy production solutions. Energy and exergy analyses were performed to evaluate the pyrolysis of beech [...] Read more.
This research contributes to advance the sustainable production of biofuels and provides insights into the energy and exergy assessment of bio-oil, which is essential for developing environmentally friendly energy production solutions. Energy and exergy analyses were performed to evaluate the pyrolysis of beech wood biomass at 500 °C in an Auger reactor. To improve the quality of the obtained bio-oil, its catalytic deoxygenation was performed within an in-line fluidized catalytic bed reactor using a catalyst based on HZSM5 zeolite modified with 5 wt.% Iron (5%FeHZSM-5). A thermodynamic analysis of the catalytic and non-catalytic pyrolysis system was carried out, as well as a comparative study of the calculation methods for the energy and exergy evaluation for bio-oil. The required heat for pyrolysis was found to be 1.2 MJ/kgbiomass in the case of non-catalytic treatment and 3.46 MJ/kgbiomass in the presence of the zeolite-based catalyst. The exergy efficiency in the Auger reactor was 90.3%. Using the catalytic system coupled to the Auger reactor, this efficiency increased to 91.6%, leading to less energy degradation. Calculating the total energy and total exergy of the bio-oil using two different methods showed a difference of 6%. In the first method, only the energy contributions of the model compounds, corresponding to the major compounds of each chemical family of bio-oil, were considered. In contrast, in the second method, all molecules identified in the bio-oil were considered for the calculation. The second method proved to be more suitable for thermodynamic analysis. The novelties of this work concern the thermodynamic analysis of a coupled system of an Auger biomass pyrolysis reactor and a fluidized bed catalytic deoxygenation reactor on the one hand, and the use of all the molecules identified in the oily phase for the evaluation of energy and exergy on the other hand. Full article
(This article belongs to the Section Chemical Processes and Systems)
27 pages, 5715 KiB  
Article
The Development of a Kinetic Model for Biochar Gasification with CO2: Comparison Between a Thermogravimetric Analyzer and a Fluidized Bed Reactor
by Luis Reyes, Michael Jabbour, Lokmane Abdelouahed and Bechara Taouk
Fuels 2025, 6(2), 34; https://doi.org/10.3390/fuels6020034 - 3 May 2025
Viewed by 1611
Abstract
This study presents the development of a kinetic model for the gasification of biochar with carbon dioxide and compares the results obtained using a thermogravimetric analyzer (TGA) and a fluidized bed reactor (FBR). The kinetic experiments investigated the effects of the CO2 [...] Read more.
This study presents the development of a kinetic model for the gasification of biochar with carbon dioxide and compares the results obtained using a thermogravimetric analyzer (TGA) and a fluidized bed reactor (FBR). The kinetic experiments investigated the effects of the CO2 partial pressure (0.33–1 atm), temperature (800–1000 °C), and CO2/C ratio (3.5–10.5). Three structural models, the shrinking core model (SCM), volumetric model (VM), and power-law model (PLM), were evaluated for their ability to predict experimental results. The results demonstrated that increasing the temperature, CO2 partial pressure, and CO2/C ratio enhanced the gasification rate, reducing the time required for complete biochar conversion. The apparent activation energy for both reactors was similar (156–159 MJ/kmol), with reaction orders of 0.4–0.49. However, the kinetic models varied significantly between setups. In the TGA, the PLM provided the best fit to experimental data, with standard deviations of 2.6–9%, while in the FBR, the SCM was most accurate, yielding an average deviation of 1.5%. The SCM effectively described the layer-by-layer char consumption, where gasification slowed at high conversion levels. Conversely, the PLM for the TGA revealed a unique mathematical function not aligned with traditional models, indicating localized reaction behaviors. This study highlights the inability to directly extrapolate TGA-derived kinetic models to FBR systems, underscoring the distinct mechanisms governing char consumption in each reactor type. These findings provide critical insights for optimizing biochar gasification across diverse reactor configurations. Full article
Show Figures

Figure 1

19 pages, 2805 KiB  
Article
Time-Dependent Analysis of Catalytic Biomass Pyrolysis in a Continuous Drop Tube Reactor: Evaluating HZSM-5 Stability and Product Evolution
by Chetna Mohabeer, Zineb Boutamine, Lokmane Abdelouahed, Antoinette Maarawi and Bechara Taouk
Biomass 2024, 4(4), 1238-1256; https://doi.org/10.3390/biomass4040069 - 6 Dec 2024
Viewed by 1493
Abstract
This study investigates a continuous deoxygenation of bio-oil vapor in a catalytic fixed-bed reactor coupled to a continuous drop tube reactor (DTR) for biomass pyrolysis. Beech wood pyrolysis was initially examined without catalysts at various temperatures (500–600 °C). The products were characterised using [...] Read more.
This study investigates a continuous deoxygenation of bio-oil vapor in a catalytic fixed-bed reactor coupled to a continuous drop tube reactor (DTR) for biomass pyrolysis. Beech wood pyrolysis was initially examined without catalysts at various temperatures (500–600 °C). The products were characterised using GC-MS, Karl Fischer titration, GC-FID/TCD, and thermogravimetric analysis. The highest bio-oil yield (58.8 wt.%) was achieved at 500 °C with a 500 mL/min N2 flow rate. Subsequently, ex situ catalytic pyrolysis was performed using an HZSM-5 catalyst in a fixed-bed reactor at a DTR outlet, operating at 425 °C, 450 °C, and 500 °C. The HZSM-5 catalyst exhibited declining deoxygenation efficiency over time, which was evidenced by decreasing conversion rates of chemical families. Principal component analysis was employed to interpret the complex dataset, facilitating a visualisation of the relationships between the experimental conditions and product compositions. This study highlights the challenges of continuous operation as experimental durations were limited to 120 min due to clogging issues. This research contributes to understanding continuous biomass pyrolysis coupled with catalytic deoxygenation, providing insights into the reactor configuration, process parameters, and catalyst performance crucial for developing efficient and sustainable biofuel production processes. Full article
Show Figures

Figure 1

23 pages, 4537 KiB  
Article
Improvement of Properties of Bio-Oil from Biomass Pyrolysis in Auger Reactor Coupled to Fluidized Catalytic Bed Reactor
by Balkydia Campusano, Michael Jabbour, Lokmane Abdelouahed, Mélanie Mignot, Christine Devouge-Boyer and Bechara Taouk
Processes 2024, 12(11), 2368; https://doi.org/10.3390/pr12112368 - 28 Oct 2024
Viewed by 2065
Abstract
The goal of this research work was to investigate the improvement of bio-oil issued from beechwood biomass through catalytic de-oxygenation. Pyrolysis was conducted in an auger reactor and the catalytic treatment was performed in a fluidized catalytic bed reactor. Lab-synthesized Fe-HZSM-5 catalysts with [...] Read more.
The goal of this research work was to investigate the improvement of bio-oil issued from beechwood biomass through catalytic de-oxygenation. Pyrolysis was conducted in an auger reactor and the catalytic treatment was performed in a fluidized catalytic bed reactor. Lab-synthesized Fe-HZSM-5 catalysts with different iron concentrations were tested. BET specific surface area, BJH pore size distribution, and FT-IR technologies were used to characterize the catalysts. Thermogravimetric analysis was used to measure the amount of coke deposited on the catalysts after use. Gas chromatography coupled to mass spectrometry (GC-MS), flame ionization detection (GC-FID), and thermal conductivity detection (GC-TCD) were used to identify and quantify the liquid and gaseous products. The pyrolysis temperature proved to be the most influential factor on the final products. It was observed that a pyrolysis temperature of 500 °C, vapor residence time of 18 s, and solid residence time of 2 min resulted in a maximum bio-oil yield of 53 wt.%. A high percentage of oxygenated compounds, such as phenolic compounds, guaiacols, and the carboxylic acid group, was present in this bio-oil. Catalytic treatment with the Fe-HZSM-5 catalysts promoted gas production at the expense of the bio-oil yield, however, the composition of the bio-oil was strongly modified. These properties of the treated bio-oil changed as a function of the Fe loading on the catalyst, with 5%Fe-HZSM-5 giving the best performance. A higher iron loading of 5%Fe-HZSM-5 could have a negative impact on the catalyst performance due to increased coke formation. Full article
Show Figures

Figure 1

42 pages, 11308 KiB  
Review
Upgrading of Pyrolysis Bio-Oil by Catalytic Hydrodeoxygenation, a Review Focused on Catalysts, Model Molecules, Deactivation, and Reaction Routes
by Alejandra Carrasco Díaz, Lokmane Abdelouahed, Nicolas Brodu, Vicente Montes-Jiménez and Bechara Taouk
Molecules 2024, 29(18), 4325; https://doi.org/10.3390/molecules29184325 - 12 Sep 2024
Cited by 7 | Viewed by 4770
Abstract
Biomass can be converted into energy/fuel by different techniques, such as pyrolysis, gasification, and others. In the case of pyrolysis, biomass can be converted into a crude bio-oil around 50–75% yield. However, the direct use of this crude bio-oil is impractical due to [...] Read more.
Biomass can be converted into energy/fuel by different techniques, such as pyrolysis, gasification, and others. In the case of pyrolysis, biomass can be converted into a crude bio-oil around 50–75% yield. However, the direct use of this crude bio-oil is impractical due to its high content of oxygenated compounds, which provide inferior properties compared to those of fossil-derived bio-oil, such as petroleum. Consequently, bio-oil needs to be upgraded by physical processes (filtration, emulsification, among others) and/or chemical processes (esterification, cracking, hydrodeoxygenation, among others). In contrast, hydrodeoxygenation (HDO) can effectively increase the calorific value and improve the acidity and viscosity of bio-oils through reaction pathways such as cracking, decarbonylation, decarboxylation, hydrocracking, hydrodeoxygenation, and hydrogenation, where catalysts play a crucial role. This article first focuses on the general aspects of biomass, subsequent bio-oil production, its properties, and the various methods of upgrading pyrolytic bio-oil to improve its calorific value, pH, viscosity, degree of deoxygenation (DOD), and other attributes. Secondly, particular emphasis is placed on the process of converting model molecules and bio-oil via HDO using catalysts based on nickel and nickel combined with other active elements. Through these phases, readers can gain a deeper understanding of the HDO process and the reaction mechanisms involved. Finally, the different equipment used to obtain an improved HDO product from bio-oil is discussed, providing valuable insights for the practical application of this reaction in pyrolysis bio-oil production. Full article
(This article belongs to the Topic Biomass for Energy, Chemicals and Materials)
Show Figures

Figure 1

32 pages, 2049 KiB  
Review
Comparative and Descriptive Study of Biomass Gasification Simulations Using Aspen Plus
by Minda Loweski Feliz, Lokmane Abdelouahed and Bechara Taouk
Energies 2024, 17(17), 4443; https://doi.org/10.3390/en17174443 - 4 Sep 2024
Cited by 3 | Viewed by 3115
Abstract
Biomass gasification has emerged as a promising method for producing renewable energy, addressing both energy and environmental challenges. This review examines recent research on gasification simulations, covering a range of topics from process modeling to syngas cleanup. Key areas explored include techniques for [...] Read more.
Biomass gasification has emerged as a promising method for producing renewable energy, addressing both energy and environmental challenges. This review examines recent research on gasification simulations, covering a range of topics from process modeling to syngas cleanup. Key areas explored include techniques for syngas cleaning, addressing tar formation, and CO2 capture methods. The aim of this review is to provide an overview of the current state of gasification simulation and identify potential areas for future research and development. This work serves as an invaluable resource for researchers, engineers, and industry professionals involved in biomass gasification modeling. By providing a comprehensive guide to biomass gasification simulation using Aspen Plus software and comparing various modeling approaches, it assists users in selecting the most effective tool for optimizing the design and operation of gasification systems. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

25 pages, 1639 KiB  
Review
Biochar Production and Its Potential Application for Biocomposite Materials: A Comprehensive Review
by Guillermina Feliz Florian, Mohamed Ragoubi, Nathalie Leblanc, Bechara Taouk and Lokmane Abdelouahed
J. Compos. Sci. 2024, 8(6), 220; https://doi.org/10.3390/jcs8060220 - 9 Jun 2024
Cited by 9 | Viewed by 6371
Abstract
Biochar, an organic, porous, and carbon-rich material originating from biomass via pyrolysis, showcases compelling attributes and intrinsic performances. Its appeal as a reinforcement material for biocomposites, as well as its auspicious electrical properties, has gained more attention, and makes biochar a versatile candidate [...] Read more.
Biochar, an organic, porous, and carbon-rich material originating from biomass via pyrolysis, showcases compelling attributes and intrinsic performances. Its appeal as a reinforcement material for biocomposites, as well as its auspicious electrical properties, has gained more attention, and makes biochar a versatile candidate for applications ranging from energy storage to catalytic devices. This scientific review undertakes a comprehensive exploration of biochar, spanning production methodologies, physicochemical intricacies, and critical process parameters. The focus of this paper extends to optimization strategies for biochar properties tailored to specific applications, with a dedicated inquiry into diverse production methods and activation strategies. This review’s second phase delves into a meticulous analysis of key properties within biochar-based composites, emphasizing limitations and unique performance characteristics crucial for diverse applications. By synthesizing a substantial body of research, this review aims to catalyze future investigations by pinpointing areas that demand attention in upcoming experiments, ultimately emphasizing the profound potential of biochar-based materials across technical and scientific domains. Full article
(This article belongs to the Special Issue Sustainable Biocomposites, Volume II)
Show Figures

Figure 1

21 pages, 3852 KiB  
Article
Upgrading Pyrolytic Oil via Catalytic Co-Pyrolysis of Beechwood and Polystyrene
by Yehya Jaafar, Gian Carlos Arias Ramirez, Lokmane Abdelouahed, Antoine El Samrani, Roland El Hage and Bechara Taouk
Molecules 2023, 28(15), 5758; https://doi.org/10.3390/molecules28155758 - 30 Jul 2023
Cited by 5 | Viewed by 1934
Abstract
This study aims to investigate the catalytic co-pyrolysis of beech wood with polystyrene as a synergic and catalytic effect on liquid oil production. For this purpose, a tubular semi-continuous reactor under an inert nitrogen atmosphere was used. Several zeolite catalysts were modified via [...] Read more.
This study aims to investigate the catalytic co-pyrolysis of beech wood with polystyrene as a synergic and catalytic effect on liquid oil production. For this purpose, a tubular semi-continuous reactor under an inert nitrogen atmosphere was used. Several zeolite catalysts were modified via incipient wetness impregnation using iron and/or nickel. The liquid oil recovered was analyzed using GC-MS for the identification of the liquid products, and GC-FID was used for their quantification. The effects of catalyst type, beechwood-to-polystyrene ratio, and operating temperature were investigated. The results showed that the Fe/Ni-ZSM-5 catalyst had the best deoxygenation capability. The derived oil was mainly constituted of aromatics of about 92 wt.% for the 1:1 mixture of beechwood and polystyrene, with a remarkably high heating value of around 39 MJ/kg compared to 18 MJ/kg for beechwood-based bio-oil. The liquid oil experienced a great reduction in oxygen content of about 92% for the polystyrene–beechwood 50-50 mixture in comparison to beechwood alone. The catalytic and synergetic effects were more realized for high beechwood percentages as a 75-25 beechwood–polystyrene mix. Regarding the temperature variation between 450 and 600 °C, the catalyst seemed to deactivate faster at higher temperatures, thus constituting a quality reduction in the pyrolytic oil in high-temperature ranges. Full article
(This article belongs to the Topic Advances in Chemistry and Chemical Engineering)
Show Figures

Figure 1

19 pages, 4756 KiB  
Article
Synthesis and Characterization of Epoxidized Beechwood Pyrolysis Bio-Oil as a Curing Agent of Bio-Based Novolac Resin
by Jie Xu, Nicolas Brodu, Lokmane Abdelouahed, Chetna Mohabeer and Bechara Taouk
Fuels 2023, 4(2), 186-204; https://doi.org/10.3390/fuels4020012 - 15 May 2023
Cited by 1 | Viewed by 2596
Abstract
A bio-oil-based epoxy (BOE) resin was synthesized using phenolic compounds from beechwood pyrolysis oil. These compounds were separated from crude pyrolysis oil by coupling two methods: fractional condensation and water extraction. The chemical structure of the BOE resin was characterized by NMR and [...] Read more.
A bio-oil-based epoxy (BOE) resin was synthesized using phenolic compounds from beechwood pyrolysis oil. These compounds were separated from crude pyrolysis oil by coupling two methods: fractional condensation and water extraction. The chemical structure of the BOE resin was characterized by NMR and FTIR analyses. BOE resin was used as a curing agent of bio-oil glyoxal novolac (BOG) resin to gradually replace bisphenol A diglycidyl ether (DGEBA). The thermal properties of cured resins and kinetic parameters of the curing reaction using differential scanning calorimetry (DSC) were discussed. Incorporating the BOE resin resulted in a lower curing temperature and activation energy compared to using DGEBA. These results indicate that the water-insoluble fraction of pyrolysis oil condensate can potentially be used to synthesize high-thermal performance and sustainable epoxidized pyrolysis bio-oil resins and also demonstrate its application as a curing agent of bio-oil glyoxal novolac (BOG) resin. Full article
(This article belongs to the Special Issue Emerging Sustainable Technologies in Biofuel Production)
Show Figures

Figure 1

13 pages, 1322 KiB  
Article
Modelling of an Anaerobic Digester: Identification of the Main Parameters Influencing the Production of Methane Using the Sobol Method
by Andres Martinez, Lamiae Vernieres-Hassimi, Lokmane Abdelouahed, Bechara Taouk, Chetna Mohabeer and Lionel Estel
Fuels 2022, 3(3), 436-448; https://doi.org/10.3390/fuels3030027 - 16 Jul 2022
Cited by 4 | Viewed by 2593
Abstract
Anaerobic digestion is a promising method of organic waste valorisation, particularly for fish farm waste, which has experienced a high growth rate in recent years. The literature contains predictive mathematical models that have been developed by various authors, allowing the prediction of the [...] Read more.
Anaerobic digestion is a promising method of organic waste valorisation, particularly for fish farm waste, which has experienced a high growth rate in recent years. The literature contains predictive mathematical models that have been developed by various authors, allowing the prediction of the composition of bio-gas production from organic waste. In general, Monod’s kinetic expression is the basis for describing the enzymatic reaction rates for anaerobic digestion. In this work, several parameters are taken into account, such as temperature, cell growth inhibition, and other operating parameters, and systems of differential equations coupling the kinetics and stoichiometry for bio-reactions are applied to better describe the dynamics. Because of the high number of initial parameters that need to be defined for the anaerobic digester, the use of this model requires significant resources and a long calculation time. For this reason, a global sensitivity analysis (GSA) is applied to this predictive model based on the Sobol index method, in order to identify the most influential key parameters and the interactions between them. For the digestion of fish waste, it is observed that the key parameters influencing methane production are the lipid concentration of the waste, temperature, and hydraulic retention time (HRT). Full article
Show Figures

Figure 1

16 pages, 3033 KiB  
Article
Combustion of Flax Shives, Beech Wood, Pure Woody Pseudo-Components and Their Chars: A Thermal and Kinetic Study
by Nourelhouda Boukaous, Lokmane Abdelouahed, Mustapha Chikhi, Abdeslam-Hassen Meniai, Chetna Mohabeer and Taouk Bechara
Energies 2018, 11(8), 2146; https://doi.org/10.3390/en11082146 - 17 Aug 2018
Cited by 25 | Viewed by 3680
Abstract
Thermogravimetric analysis was employed to investigate the combustion characteristics of flax shives, beech wood, hemicellulose, cellulose, lignin, and their chars. The chars were prepared from raw materials in a fixed-bed reactor at 850 °C. In this study, the thermal behavior based on characteristic [...] Read more.
Thermogravimetric analysis was employed to investigate the combustion characteristics of flax shives, beech wood, hemicellulose, cellulose, lignin, and their chars. The chars were prepared from raw materials in a fixed-bed reactor at 850 °C. In this study, the thermal behavior based on characteristic temperatures (ignition, maximum, and final temperatures), burnout time and maximum rate was investigated. The kinetic parameters for the combustion of different materials were determined based on the Coats-Redfern approach. The results of our study revealed that the combustion of pure pseudo-components behaved differently from that of biomass. Indeed, principal component analysis showed that the thermal behavior of both biomasses was generally similar to that of pure hemicellulose. However, pure cellulose and lignin showed different behaviors compared to flax shives, beech wood, and hemicellulose. Hemicellulose and cellulose chars had almost the same behaviors, while being different from biomass and lignin chars. Despite the difference between flax shives and beech wood, they showed almost the same thermal characteristics and apparent activation energies. Also, the combustion of the hemicellulose and cellulose chars showed that they have almost the same structure. Their overall thermal and kinetic behavior remained between that of biomass and lignin. Full article
(This article belongs to the Special Issue Biomass Chars: Elaboration, Characterization and Applications Ⅱ)
Show Figures

Figure 1

Back to TopTop