Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Authors = Balázs Győrffy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2407 KiB  
Article
Identification of Deregulated Proteins in Mutated BRCA1/2 Breast and Ovarian Cancers for Vectorized Biologics
by Adrián Sanvicente, Cristina Nieto-Jiménez, Esther Cabañas Morafraile, Cristina Díaz-Tejeiro, Vanesa García Barberán, Pedro Pérez Segura, Győrffy Balázs and Alberto Ocaña
Cancers 2025, 17(13), 2208; https://doi.org/10.3390/cancers17132208 - 1 Jul 2025
Viewed by 432
Abstract
Background: Administration of PARP inhibitors against breast and ovarian cancers with BRCA1 and BRCA2 mutations has shown clinical benefits in patients. However, these agents are also toxic and have a narrow therapeutic index. Objectives: In this work, we aimed to identify membrane proteins [...] Read more.
Background: Administration of PARP inhibitors against breast and ovarian cancers with BRCA1 and BRCA2 mutations has shown clinical benefits in patients. However, these agents are also toxic and have a narrow therapeutic index. Objectives: In this work, we aimed to identify membrane proteins that are specifically upregulated in these cancers. Methods: We interrogated public datasets to analyze genes upregulated or downregulated when these mutations were present, compared with wild-type cancers. Surface protein expression and functional annotation analyses were also performed. Results: In breast cancer, we identified 11 upregulated and 44 downregulated transcripts in BRCA1-mut, while 10 upregulated and 57 downregulated transcripts were identified in BRCA2-mut cancers. In ovarian cancer, 79 transcripts were upregulated and 123 were downregulated in BRCA1-mut cancers, while five were upregulated and seven were downregulated in BRCA2-mut tumors. Regarding the biological function related to these genes, in BRCA1-mutated ovarian cancers, the main functions of upregulated genes included MHC assembly or regulation of the interferon gamma pathway; in BRCA2-mut ovarian cancers, regulation of phosphorylation and signaling; in BRCA1-mut breast cancers, cell damage repair and angiogenesis; and finally, in BRCA2-mut breast cancers, cytokine production and T-cell migration. Genes expressed in the surface membrane or extracellular matrix and related to patient outcomes included B3GNT7 and CTSV in BRCA2-mut breast cancers, exhibiting detrimental prognoses. CD6, CXCL9, and CXCL13 were associated with favorable outcomes in BRCA1-mutant ovarian cancers. The last three genes were also correlated with the infiltration of effector T cells and dendritic cells in ovarian tumors. Conclusions: In summary, we identified deregulated candidate genes that could be used as therapeutic targets. Full article
(This article belongs to the Section Tumor Microenvironment)
Show Figures

Graphical abstract

23 pages, 3841 KiB  
Article
The Prognostic Value of the Hedgehog Signaling Pathway in Ovarian Cancer
by Noor D. Salman, Lars C. Hanker, Balázs Győrffy, Áron Bartha, Louisa Proppe and Martin Götte
Int. J. Mol. Sci. 2025, 26(12), 5888; https://doi.org/10.3390/ijms26125888 - 19 Jun 2025
Viewed by 537
Abstract
The hedgehog pathway is a major regulator of cell growth and differentiation during embryogenesis and early development. The literature suggests that variations in this pathway’s genes play a role in tumor progression and response to therapy. This study aimed to assess the correlation [...] Read more.
The hedgehog pathway is a major regulator of cell growth and differentiation during embryogenesis and early development. The literature suggests that variations in this pathway’s genes play a role in tumor progression and response to therapy. This study aimed to assess the correlation between the expression levels of selected genes of this pathway and the progression-free and overall survival of ovarian cancer patients. Using the database Kaplan–Meier plotter, which includes the gene expression and survival data of 1565 ovarian cancer patients, higher expression levels of the genes SHH, PTCH1, PTCH2, and GLI1 displayed better survival correlations, while GLI, GLI3, and SUFU correlated with adverse outcomes. Further dissection revealed a differential impact of the genes in specific clinical-histopathological categories. Notably, higher expression levels of SUFU were associated with a negative impact on ovarian cancer patients under many clinical–histopathological aspects. These results shed new light on the role of these genes in the chemoresponsiveness of ovarian cancer, especially SUFU, which could be considered a novel indicator for poor prognosis in epithelial ovarian cancer. Full article
(This article belongs to the Special Issue Gynecological Oncology: From Molecular Basis to Therapy)
Show Figures

Figure 1

31 pages, 5466 KiB  
Article
Truncated DAPK Variants Restore Tumor Suppressor Activity and Synergize with Standard Therapies in High-Grade Serous Ovarian Cancer
by Monika Raab, Khayal Gasimli, Balázs Győrffy, Samuel Peña-Llopis, Sven Becker, Mourad Sanhaji and Klaus Strebhardt
Cancers 2025, 17(12), 1910; https://doi.org/10.3390/cancers17121910 - 8 Jun 2025
Viewed by 926
Abstract
Background/Objectives: Death-associated protein kinase 1 (DAPK1) is a serine/threonine kinase that plays a crucial role in cancer by regulating apoptosis through interactions with TP53. Aberrant expression of DAPK1 was shown in certain types of human cancer contributing to tumor progression and chemoresistance. This [...] Read more.
Background/Objectives: Death-associated protein kinase 1 (DAPK1) is a serine/threonine kinase that plays a crucial role in cancer by regulating apoptosis through interactions with TP53. Aberrant expression of DAPK1 was shown in certain types of human cancer contributing to tumor progression and chemoresistance. This study aimed to investigate the role of DAPK1 in high-grade serous ovarian cancer (HGSOC) and to evaluate the therapeutic potential of restoring its kinase activity, including the use of truncated DAPK1 variants, to overcome chemoresistance and enhance tumor suppression. Methods: Gene expression analysis was performed on ovarian cancer tissues compared to benign controls to assess DAPK1 downregulation and its epigenetic regulation. Prognostic relevance was evaluated in a cohort of 1436 HGSOC patient samples. Functional restoration of DAPK1 was conducted in HGSOC cell lines and patient-derived primary tumor cells using vector-based expression or in vitro-transcribed (IVT) DAPK1 mRNA, including the application of truncated DAPK1 (ΔDAPK1) forms. To assess apoptosis, Caspase activation assays, 2D-colony formation assays, and cell survival assays were performed. To analyze the reactivation of DAPK1 downstream signaling, phosphorylation of p53 at Ser20 and the expression of p53 target proteins were examined. Chemosensitivity to Paclitaxel and Cisplatin was quantified by changes in IC50 values. Results: DAPK1 expression was significantly downregulated in ovarian cancer compared to benign tissue, correlating with epigenetic silencing, and showed prognostic value in early-stage HGSOC. Restoration of DAPK1 activity, including ΔDAPK1 variants, led to phosphorylation of p53 Ser20, increased expression of p53 target proteins, and Caspase-dependent apoptosis. Reactivation of DAPK1 sensitized both established HGSOC cell lines and patient-derived ascites cells to Paclitaxel and Cisplatin. These effects occurred through both p53-dependent and p53-independent pathways, enabling robust tumor suppression even in p53-mutant contexts. Conclusions: Reactivation of DAPK1, particularly through truncated variants, represents a promising therapeutic strategy to overcome chemoresistance in HGSOC. The dual mechanisms of tumor suppression provide a strong rationale for developing DAPK1-based therapies to enhance the efficacy of standard chemotherapy, especially in patients with chemoresistant or p53-deficient tumors. Future work should focus on optimizing delivery approaches for DAPK1 variants and assessing their synergistic potential with emerging targeted treatments in clinical settings. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

18 pages, 3076 KiB  
Review
Inflammation and Colorectal Cancer: A Meta-Analysis of the Prognostic Significance of the Systemic Immune–Inflammation Index (SII) and the Systemic Inflammation Response Index (SIRI)
by Otilia Menyhart, János Tibor Fekete and Balázs Győrffy
Int. J. Mol. Sci. 2024, 25(15), 8441; https://doi.org/10.3390/ijms25158441 - 2 Aug 2024
Cited by 32 | Viewed by 3096
Abstract
The overall prognosis for colorectal cancer (CRC) remains challenging as the survival time varies widely, even in patients with the same stage of disease. Recent studies suggest prognostic relevance of the novel markers of systemic inflammation, the systemic immune–inflammation index (SII), and the [...] Read more.
The overall prognosis for colorectal cancer (CRC) remains challenging as the survival time varies widely, even in patients with the same stage of disease. Recent studies suggest prognostic relevance of the novel markers of systemic inflammation, the systemic immune–inflammation index (SII), and the systemic inflammation response index (SIRI). We conducted a comprehensive meta-analysis to assess the prognostic significance of the SII and the SIRI in CRC. We searched the relevant literature for observational studies, and random effects models were employed to conduct a statistical analysis using the metaanalysisonline.com platform. Pooled effect sizes were reported with hazard ratios (HRs) and corresponding 95% confidence intervals (CI). Data from 29 studies published between 2016 and 2024, comprising 10,091 participants, were included in our meta-analysis on SII. CRC patients with high SII levels had worse disease outcomes, which were associated with poor OS (HR: 1.75; 95% CI: 1.4–2.19) and poor PFS/DFS/RFS (HR: 1.25; 95% CI: 1.18–1.33). This increased risk of worse OS was present irrespective of the treatment strategy, sample size (<220 and ≥220), and cutoff used to define high and low SII (<550 and ≥550) groups. Based on data from five studies comprising 2362 participants, we found a strong association between the high SIRI and worse OS (HR: 2.65; 95% CI: 1.6–4.38) and DFS/RFS (HR: 2.04; 95% CI: 1.42–2.93). According to our results, both the SII and SIRI hold great promise as prognostic markers in CRC. Further validations are needed for their age- and stage-specific utility in the clinical routine. Full article
Show Figures

Figure 1

11 pages, 4881 KiB  
Article
Clinical and Immunologic Characteristics of Colorectal Cancer Tumors Expressing LY6G6D
by Adrián Sanvicente García, Manuel Pedregal, Lucía Paniagua-Herranz, Cristina Díaz-Tejeiro, Cristina Nieto-Jiménez, Pedro Pérez Segura, Gyöngyi Munkácsy, Balázs Győrffy, Emiliano Calvo, Víctor Moreno and Alberto Ocaña
Int. J. Mol. Sci. 2024, 25(10), 5345; https://doi.org/10.3390/ijms25105345 - 14 May 2024
Viewed by 2861
Abstract
The identification of targets that are expressed on the cell membrane is a main goal in cancer research. The Lymphocyte Antigen 6 Family Member G6D (LY6G6D) gene codes for a protein that is mainly present on the surface of colorectal cancer [...] Read more.
The identification of targets that are expressed on the cell membrane is a main goal in cancer research. The Lymphocyte Antigen 6 Family Member G6D (LY6G6D) gene codes for a protein that is mainly present on the surface of colorectal cancer (CRC) cells. Therapeutic strategies against this protein like the development of T cell engagers (TCE) are currently in the early clinical stage. In the present work, we interrogated public genomic datasets including TCGA to evaluate the genomic and immunologic cell profile present in tumors with high expression of LY6G6D. We used data from TCGA, among others, and the Tumor Immune Estimation Resource (TIMER2.0) platform for immune cell estimations and Spearman correlation tests. LY6G6D expression was exclusively present in CRC, particularly in the microsatellite stable (MSS) subtype, and was associated with left-side tumors and the canonical genomic subgroup. Tumors with mutations of APC and p53 expressed elevated levels of LY6G6D. This protein was expressed in tumors with an inert immune microenvironment with an absence of immune cells and co-inhibitory molecules. In conclusion, we described clinical, genomic and immune-pathologic characteristics that can be used to optimize the clinical development of agents against this target. Future studies should be performed to confirm these findings and potentially explore the suggested clinical development options. Full article
(This article belongs to the Special Issue Therapeutic Strategies to Target Cancer Neoantigens)
Show Figures

Figure 1

13 pages, 3990 KiB  
Article
In Silico Transcriptomic Expression of MSR1 in Solid Tumors Is Associated with Responses to Anti-PD1 and Anti-CTLA4 Therapies
by Adrián Sanvicente, Cristina Díaz-Tejeiro, Cristina Nieto-Jiménez, Lucia Paniagua-Herranz, Igor López Cade, Győrffy Balázs, Víctor Moreno, Pedro Pérez-Segura, Emiliano Calvo and Alberto Ocaña
Int. J. Mol. Sci. 2024, 25(7), 3987; https://doi.org/10.3390/ijms25073987 - 3 Apr 2024
Viewed by 1779
Abstract
Immuno-oncology has gained momentum with the approval of antibodies with clinical activities in different indications. Unfortunately, for anti-PD (L)1 agents in monotherapy, only half of the treated population achieves a clinical response. For other agents, such as anti-CTLA4 antibodies, no biomarkers exist, and [...] Read more.
Immuno-oncology has gained momentum with the approval of antibodies with clinical activities in different indications. Unfortunately, for anti-PD (L)1 agents in monotherapy, only half of the treated population achieves a clinical response. For other agents, such as anti-CTLA4 antibodies, no biomarkers exist, and tolerability can limit administration. In this study, using publicly available genomic datasets, we evaluated the expression of the macrophage scavenger receptor-A (SR-A) (MSR1) and its association with a response to check-point inhibitors (CPI). MSR1 was associated with the presence of macrophages, dendritic cells (DCs) and neutrophils in most of the studied indications. The presence of MSR1 was associated with macrophages with a pro-tumoral phenotype and correlated with TIM3 expression. MSR1 predicted favorable overall survival in patients treated with anti-PD1 (HR: 0.56, FDR: 1%, p = 2.6 × 10−5), anti PD-L1 (HR: 0.66, FDR: 20%, p = 0.00098) and anti-CTLA4 (HR: 0.37, FDR: 1%, p = 4.8 × 10−5). When specifically studying skin cutaneous melanoma (SKCM), we observed similar effects for anti-PD1 (HR: 0.65, FDR: 50%, p = 0.0072) and anti-CTLA4 (HR: 0.35, FDR: 1%, p = 4.1 × 10−5). In a different dataset of SKCM patients, the expression of MSR1 predicted a clinical response to anti-CTLA4 (AUC: 0.61, p = 2.9 × 10−2). Here, we describe the expression of MSR1 in some solid tumors and its association with innate cells and M2 phenotype macrophages. Of note, the presence of MSR1 predicted a response to CPI and, particularly, anti-CTLA4 therapies in different cohorts of patients. Future studies should prospectively explore the association of MSR1 expression and the response to anti-CTLA4 strategies in solid tumors. Full article
Show Figures

Figure 1

15 pages, 5891 KiB  
Article
Resistance to Combined Anthracycline–Taxane Chemotherapy Is Associated with Altered Metabolism and Inflammation in Breast Carcinomas
by Otília Menyhárt, János Tibor Fekete and Balázs Győrffy
Int. J. Mol. Sci. 2024, 25(2), 1063; https://doi.org/10.3390/ijms25021063 - 15 Jan 2024
Cited by 4 | Viewed by 2654
Abstract
Approximately 30% of early-stage breast cancer (BC) patients experience recurrence after systemic chemotherapy; thus, understanding therapy resistance is crucial in developing more successful treatments. Here, we investigated the mechanisms underlying resistance to combined anthracycline–taxane treatment by comparing gene expression patterns with subsequent therapeutic [...] Read more.
Approximately 30% of early-stage breast cancer (BC) patients experience recurrence after systemic chemotherapy; thus, understanding therapy resistance is crucial in developing more successful treatments. Here, we investigated the mechanisms underlying resistance to combined anthracycline–taxane treatment by comparing gene expression patterns with subsequent therapeutic responses. We established a cohort of 634 anthracycline–taxane-treated patients with pathological complete response (PCR) and a separate cohort of 187 patients with relapse-free survival (RFS) data, each having transcriptome-level expression data of 10,017 unique genes. Patients were categorized as responders and non-responders based on their PCR and RFS status, and the expression for each gene was compared between the two groups using a Mann–Whitney U-test. Statistical significance was set at p < 0.05, with fold change (FC) > 1.44. Altogether, 224 overexpressed genes were identified in the tumor samples derived from the patients without PCR; among these, the gene sets associated with xenobiotic metabolism (e.g., CYP3A4, CYP2A6) exhibited significant enrichment. The genes ORAI3 and BCAM differentiated non-responders from responders with the highest AUC values (AUC > 0.75, p < 0.0001). We identified 51 upregulated genes in the tumor samples derived from the patients with relapse within 60 months, participating primarily in inflammation and innate immune responses (e.g., LYN, LY96, ANXA1). Furthermore, the amino acid transporter SLC7A5, distinguishing non-responders from responders, had significantly higher expression in tumors and metastases than in normal tissues (Kruskal–Wallis p = 8.2 × 10−20). The identified biomarkers underscore the significance of tumor metabolism and microenvironment in treatment resistance and can serve as a foundation for preclinical validation studies. Full article
(This article belongs to the Special Issue Advances and Mechanisms in Breast Cancer)
Show Figures

Figure 1

22 pages, 2662 KiB  
Article
miRNAs in the Box: Potential Diagnostic Role for Extracellular Vesicle-Packaged miRNA-27a and miRNA-128 in Breast Cancer
by Cinzia Giordano, Felice Maria Accattatis, Luca Gelsomino, Piercarlo Del Console, Balázs Győrffy, Mario Giuliano, Bianca Maria Veneziani, Grazia Arpino, Carmine De Angelis, Pietro De Placido, Erica Pietroluongo, Francesco Zinno, Daniela Bonofiglio, Sebastiano Andò, Ines Barone and Stefania Catalano
Int. J. Mol. Sci. 2023, 24(21), 15695; https://doi.org/10.3390/ijms242115695 - 28 Oct 2023
Cited by 10 | Viewed by 3386
Abstract
Circulating extracellular vesicle (EV)-derived microRNAs (miRNAs) are now considered the next generation of cancer “theranostic” tools, with strong clinical relevance. Although their potential in breast cancer diagnosis has been widely reported, further studies are still required to address this challenging issue. The present [...] Read more.
Circulating extracellular vesicle (EV)-derived microRNAs (miRNAs) are now considered the next generation of cancer “theranostic” tools, with strong clinical relevance. Although their potential in breast cancer diagnosis has been widely reported, further studies are still required to address this challenging issue. The present study examined the expression profiles of EV-packaged miRNAs to identify novel miRNA signatures in breast cancer and verified their diagnostic accuracy. Circulating EVs were isolated from healthy controls and breast cancer patients and characterized following the MISEV 2018 guidelines. RNA-sequencing and real-time PCR showed that miRNA-27a and miRNA-128 were significantly down-regulated in patient-derived EVs compared to controls in screening and validation cohorts. Bioinformatics analyses of miRNA-target genes indicated several enriched biological processes/pathways related to breast cancer. Receiver operating characteristic (ROC) curves highlighted the ability of these EV-miRNAs to distinguish breast cancer patients from non-cancer controls. According to other reports, the levels of EV-miRNA-27a and EV-miRNA-128 are not associated with their circulating ones. Finally, evidence from the studies included in our systematic review underscores how the expression of these miRNAs in biofluids is still underinvestigated. Our findings unraveled the role of serum EV-derived miRNA-27a and miRNA-128 in breast cancer, encouraging further investigation of these two miRNAs within EVs towards improved breast cancer detection. Full article
Show Figures

Figure 1

21 pages, 3069 KiB  
Review
Therapeutic Potential of Tumor Metabolic Reprogramming in Triple-Negative Breast Cancer
by Gyöngyi Munkácsy, Libero Santarpia and Balázs Győrffy
Int. J. Mol. Sci. 2023, 24(8), 6945; https://doi.org/10.3390/ijms24086945 - 8 Apr 2023
Cited by 20 | Viewed by 5264
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, with clinical features of high metastatic potential, susceptibility to relapse, and poor prognosis. TNBC lacks the expression of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor [...] Read more.
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, with clinical features of high metastatic potential, susceptibility to relapse, and poor prognosis. TNBC lacks the expression of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). It is characterized by genomic and transcriptional heterogeneity and a tumor microenvironment (TME) with the presence of high levels of stromal tumor-infiltrating lymphocytes (TILs), immunogenicity, and an important immunosuppressive landscape. Recent evidence suggests that metabolic changes in the TME play a key role in molding tumor development by impacting the stromal and immune cell fractions, TME composition, and activation. Hence, a complex inter-talk between metabolic and TME signaling in TNBC exists, highlighting the possibility of uncovering and investigating novel therapeutic targets. A better understanding of the interaction between the TME and tumor cells, and the underlying molecular mechanisms of cell–cell communication signaling, may uncover additional targets for better therapeutic strategies in TNBC treatment. In this review, we aim to discuss the mechanisms in tumor metabolic reprogramming, linking these changes to potential targetable molecular mechanisms to generate new, physical science-inspired clinical translational insights for the cure of TNBC. Full article
Show Figures

Figure 1

14 pages, 2949 KiB  
Article
Proteotranscriptomic Discrimination of Tumor and Normal Tissues in Renal Cell Carcinoma
by Áron Bartha, Zsuzsanna Darula, Gyöngyi Munkácsy, Éva Klement, Péter Nyirády and Balázs Győrffy
Int. J. Mol. Sci. 2023, 24(5), 4488; https://doi.org/10.3390/ijms24054488 - 24 Feb 2023
Cited by 2 | Viewed by 2885
Abstract
Clear cell renal carcinoma is the most frequent type of kidney cancer, with an increasing incidence rate worldwide. In this research, we used a proteotranscriptomic approach to differentiate normal and tumor tissues in clear cell renal cell carcinoma (ccRCC). Using transcriptomic data of [...] Read more.
Clear cell renal carcinoma is the most frequent type of kidney cancer, with an increasing incidence rate worldwide. In this research, we used a proteotranscriptomic approach to differentiate normal and tumor tissues in clear cell renal cell carcinoma (ccRCC). Using transcriptomic data of patients with malignant and paired normal tissue samples from gene array cohorts, we identified the top genes over-expressed in ccRCC. We collected surgically resected ccRCC specimens to further investigate the transcriptomic results on the proteome level. The differential protein abundance was evaluated using targeted mass spectrometry (MS). We assembled a database of 558 renal tissue samples from NCBI GEO and used these to uncover the top genes with higher expression in ccRCC. For protein level analysis 162 malignant and normal kidney tissue samples were acquired. The most consistently upregulated genes were IGFBP3, PLIN2, PLOD2, PFKP, VEGFA, and CCND1 (p < 10−5 for each gene). Mass spectrometry further validated the differential protein abundance of these genes (IGFBP3, p = 7.53 × 10−18; PLIN2, p = 3.9 × 10−39; PLOD2, p = 6.51 × 10−36; PFKP, p = 1.01 × 10−47; VEGFA, p = 1.40 × 10−22; CCND1, p = 1.04 × 10−24). We also identified those proteins which correlate with overall survival. Finally, a support vector machine-based classification algorithm using the protein-level data was set up. We used transcriptomic and proteomic data to identify a minimal panel of proteins highly specific for clear cell renal carcinoma tissues. The introduced gene panel could be used as a promising tool in the clinical setting. Full article
(This article belongs to the Special Issue Biomarkers of Tumor Progression, Prognosis and Therapy)
Show Figures

Figure 1

13 pages, 14556 KiB  
Article
Mapping Immune Correlates and Surfaceome Genes in BRAF Mutated Colorectal Cancers
by Esther Cabañas Morafraile, Cristina Saiz-Ladera, Cristina Nieto-Jiménez, Balázs Győrffy, Adam Nagy, Guillermo Velasco, Pedro Pérez-Segura and Alberto Ocaña
Curr. Oncol. 2023, 30(3), 2569-2581; https://doi.org/10.3390/curroncol30030196 - 21 Feb 2023
Cited by 8 | Viewed by 3769
Abstract
Despite the impressive results obtained with immunotherapy in several cancer types, a significant fraction of patients remains unresponsive to these treatments. In colorectal cancer (CRC), B-RafV600 mutations have been identified in 8–15% of the patients. In this work we interrogated a public dataset [...] Read more.
Despite the impressive results obtained with immunotherapy in several cancer types, a significant fraction of patients remains unresponsive to these treatments. In colorectal cancer (CRC), B-RafV600 mutations have been identified in 8–15% of the patients. In this work we interrogated a public dataset to explore the surfaceome of these tumors and found that several genes, such as GP2, CLDN18, AQP5, TM4SF4, NTSR1, VNN1, and CD109, were upregulated. By performing gene set enrichment analysis, we also identified a striking upregulation of genes (CD74, LAG3, HLA-DQB1, HLA-DRB5, HLA-DMA, HLA-DMB, HLA-DPB1, HLA-DRA, HLA-DOA, FCGR2B, HLA-DQA1, HLA-DRB1, and HLA-DPA1) associated with antigen processing and presentation via MHC class II. Likewise, we found a strong correlation between PD1 and PD(L)1 expression and the presence of genes encoding for proteins involved in antigen presentation such as CD74, HLA-DPA1, and LAG3. Furthermore, a similar association was observed for the presence of dendritic cells and macrophages. Finally, a low but positive relationship was observed between tumor mutational burden and neoantigen load. Our findings support the idea that a therapeutic strategy based on the targeting of PD(L)1 together with other receptors also involved in immuno-modulation, such as LAG3, could help to improve current treatments against BRAF-mutated CRC tumors. Full article
Show Figures

Figure 1

12 pages, 9276 KiB  
Article
New Transcriptomic Biomarkers of 5-Fluorouracil Resistance
by János Tibor Fekete and Balázs Győrffy
Int. J. Mol. Sci. 2023, 24(2), 1508; https://doi.org/10.3390/ijms24021508 - 12 Jan 2023
Cited by 7 | Viewed by 3087
Abstract
The overall response rate to fluoropyrimidine monotherapy in colorectal cancer (CRC) is limited. Transcriptomic datasets of CRC patients treated with 5-fluorouracil (5FU) could assist in the identification of clinically useful biomarkers. In this research, we aimed to analyze transcriptomic cohorts of 5FU-treated cell [...] Read more.
The overall response rate to fluoropyrimidine monotherapy in colorectal cancer (CRC) is limited. Transcriptomic datasets of CRC patients treated with 5-fluorouracil (5FU) could assist in the identification of clinically useful biomarkers. In this research, we aimed to analyze transcriptomic cohorts of 5FU-treated cell lines to uncover new predictive biomarker candidates and to validate the strongest hits in 5FU-treated human colorectal cancer samples with available clinical response data. We utilized an in vitro dataset of cancer cell lines treated with 5FU and used the reported area under the dose–response curve values to determine the therapeutic response to 5FU treatment. Mann–Whitney and ROC analyses were performed to identify significant genes. The strongest genes were combined into a single signature using a random forest classifier. The compound 5-fluorouracil was tested in 592 cell lines (294 nonresponders and 298 responders). The validation cohort consisted of 157 patient samples with 5FU monotherapy from three datasets. The three strongest associations with treatment outcome were observed in SHISA4 (AUC = 0.745, p-value = 5.5 × 10−25), SLC38A6 (AUC = 0.725, p-value = 3.1 × 10−21), and LAPTM4A (AUC = 0.723, p-value = 6.4 × 10−21). A random forest model utilizing the top genes reached an AUC value of 0.74 for predicting therapeutic sensitivity. The model correctly identified 83% of the nonresponder and 73% of the responder patients. The cell line cohort is available and the entire human colorectal cohort have been added to the ROCPlot analysis platform. Here, by using in vitro and in vivo data, we present a framework enabling the ranking of future biomarker candidates of 5FU resistance. A future option is to conduct an independent validation of the established predictors of resistance. Full article
(This article belongs to the Special Issue Novel Chemical Tools for Targeted Cancer Therapy)
Show Figures

Figure 1

14 pages, 3978 KiB  
Article
Deconstructing Immune Cell Infiltration in Human Colorectal Cancer: A Systematic Spatiotemporal Evaluation
by Emese Irma Ágoston, Balazs Acs, Zoltan Herold, Krisztina Fekete, Janina Kulka, Akos Nagy, Dorottya Mühl, Reka Mohacsi, Magdolna Dank, Tamas Garay, Laszlo Harsanyi, Balazs Győrffy and Attila Marcell Szasz
Genes 2022, 13(4), 589; https://doi.org/10.3390/genes13040589 - 25 Mar 2022
Cited by 3 | Viewed by 3426
Abstract
Cancer-related immunity has been identified as playing a key role in the outcome of colorectal cancer (CRC); however, the exact mechanisms are only partially understood. In this study, we evaluated a total of 242 surgical specimen of CRC patients using tissue microarrays and [...] Read more.
Cancer-related immunity has been identified as playing a key role in the outcome of colorectal cancer (CRC); however, the exact mechanisms are only partially understood. In this study, we evaluated a total of 242 surgical specimen of CRC patients using tissue microarrays and immunohistochemistry to evaluate tumor infiltrating immune cells (CD3, CD4, CD8, CD20, CD23, CD45 and CD56) and immune checkpoint markers (CTLA-4, PD-L1, PD-1) in systematically selected tumor regions and their corresponding lymph nodes, as well as in liver metastases. Additionally, an immune panel gene expression assay was performed on 12 primary tumors and 12 consecutive liver metastases. A higher number of natural killer cells and more mature B cells along with PD-1+ expressing cells were observed in the main tumor area as compared to metastases. A higher number of metastatic lymph nodes were associated with significantly lower B cell counts. With more advanced lymph node metastatic status, higher leukocyte—particularly T cell numbers—were observed. Eleven differentially expressed immune-related genes were found between primary tumors and liver metastases. Also, alterations of the innate immune response and the tumor necrosis factor superfamily pathways had been identified. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

17 pages, 3960 KiB  
Article
The Prognostic Relevance of PMCA4 Expression in Melanoma: Gender Specificity and Implications for Immune Checkpoint Inhibition
by Luca Hegedüs, Elisabeth Livingstone, Ágnes Bánkfalvi, Jan Viehof, Ágnes Enyedi, Ágnes Bilecz, Balázs Győrffy, Marcell Baranyi, Anna-Mária Tőkés, Jeovanis Gil, György Marko-Varga, Klaus G. Griewank, Lisa Zimmer, Renáta Váraljai, Antje Sucker, Anne Zaremba, Dirk Schadendorf, Clemens Aigner and Balázs Hegedüs
Int. J. Mol. Sci. 2022, 23(6), 3324; https://doi.org/10.3390/ijms23063324 - 19 Mar 2022
Cited by 9 | Viewed by 2866
Abstract
PMCA4 is a critical regulator of Ca2+ homeostasis in mammalian cells. While its biological and prognostic relevance in several cancer types has already been demonstrated, only preclinical investigations suggested a metastasis suppressor function in melanoma. Therefore, we studied the expression pattern of [...] Read more.
PMCA4 is a critical regulator of Ca2+ homeostasis in mammalian cells. While its biological and prognostic relevance in several cancer types has already been demonstrated, only preclinical investigations suggested a metastasis suppressor function in melanoma. Therefore, we studied the expression pattern of PMCA4 in human skin, nevus, as well as in primary and metastatic melanoma using immunohistochemistry. Furthermore, we analyzed the prognostic power of PMCA4 mRNA levels in cutaneous melanoma both at the non-metastatic stage as well as after PD-1 blockade in advanced disease. PMCA4 localizes to the plasma membrane in a differentiation dependent manner in human skin and mucosa, while nevus cells showed no plasma membrane staining. In contrast, primary cutaneous, choroidal and conjunctival melanoma cells showed specific plasma membrane localization of PMCA4 with a wide range of intensities. Analyzing the TCGA cohort, PMCA4 mRNA levels showed a gender specific prognostic impact in stage I–III melanoma. Female patients with high transcript levels had a significantly longer progression-free survival. Melanoma cell specific PMCA4 protein expression is associated with anaplasticity in melanoma lung metastasis but had no impact on survival after lung metastasectomy. Importantly, high PMCA4 transcript levels derived from RNA-seq of cutaneous melanoma are associated with significantly longer overall survival after PD-1 blockade. In summary, we demonstrated that human melanoma cells express PMCA4 and PMCA4 transcript levels carry prognostic information in a gender specific manner. Full article
(This article belongs to the Special Issue Novel Biomarkers and Therapeutic Targets for Melanoma)
Show Figures

Figure 1

16 pages, 581 KiB  
Article
Identification of a Tumor Cell Associated Type I IFN Resistance Gene Expression Signature of Human Melanoma, the Components of Which Have a Predictive Potential for Immunotherapy
by Andrea Ladányi, Erzsébet Rásó, Tamás Barbai, Laura Vízkeleti, László G. Puskás, Szonja A. Kovács, Balázs Győrffy and József Tímár
Int. J. Mol. Sci. 2022, 23(5), 2704; https://doi.org/10.3390/ijms23052704 - 28 Feb 2022
Cited by 7 | Viewed by 3078
Abstract
We developed a human melanoma model using the HT168-M1 cell line to induce IFN-α2 resistance in vitro (HT168-M1res), which was proven to be maintained in vivo in SCID mice. Comparing the mRNA profile of in vitro cultured HT168-M1res cells to its sensitive counterpart, [...] Read more.
We developed a human melanoma model using the HT168-M1 cell line to induce IFN-α2 resistance in vitro (HT168-M1res), which was proven to be maintained in vivo in SCID mice. Comparing the mRNA profile of in vitro cultured HT168-M1res cells to its sensitive counterpart, we found 79 differentially expressed genes (DEGs). We found that only a 13-gene core of the DEGs was stable in vitro and only a 4-gene core was stable in vivo. Using an in silico cohort of IFN-treated melanoma tissues, we validated a differentially expressed 9-gene core of the DEGs. Furthermore, using an in silico cohort of immune checkpoint inhibitor (ICI)-treated melanoma tissues, we tested the predictive power of the DEGs for the response rate. Analysis of the top four upregulated and top four downregulated genes of the DEGs identified WFDC1, EFNA3, DDX10, and PTBP1 as predictive genes, and analysis of the “stable” genes of DEGs for predictive potential of ICI response revealed another 13 genes, out of which CDCA4, SOX4, DEK, and HSPA1B were identified as IFN-regulated genes. Interestingly, the IFN treatment associated genes and the ICI-therapy predictive genes overlapped by three genes: WFDC1, BCAN, and MT2A, suggesting a connection between the two biological processes. Full article
(This article belongs to the Special Issue Molecular Biology of Melanoma 2.0)
Show Figures

Figure 1

Back to TopTop