Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Authors = Alma Ramić

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2105 KiB  
Article
MicroRNA-193a-3p as a Valuable Biomarker for Discriminating between Colorectal Cancer and Colorectal Adenoma Patients
by Marija Fabijanec, Andrea Hulina-Tomašković, Mario Štefanović, Donatella Verbanac, Ivana Ćelap, Anita Somborac-Bačura, Marija Grdić Rajković, Alma Demirović, Snježana Ramić, Božo Krušlin, Lada Rumora, Andrea Čeri, Martha Koržinek, József Petrik, Neven Ljubičić, Neven Baršić and Karmela Barišić
Int. J. Mol. Sci. 2024, 25(15), 8156; https://doi.org/10.3390/ijms25158156 - 26 Jul 2024
Viewed by 1513
Abstract
Specific markers for colorectal cancer (CRC), preceded by colorectal adenoma (pre-CRC), are lacking. This study aimed to investigate whether microRNAs (miR-19a-3p, miR-92a-3p, miR-193a-3p, and miR-210-3p) from tissues and exosomes are potential CRC biomarkers and compare them to existing biomarkers, namely carcinoembryonic antigen (CEA) [...] Read more.
Specific markers for colorectal cancer (CRC), preceded by colorectal adenoma (pre-CRC), are lacking. This study aimed to investigate whether microRNAs (miR-19a-3p, miR-92a-3p, miR-193a-3p, and miR-210-3p) from tissues and exosomes are potential CRC biomarkers and compare them to existing biomarkers, namely carcinoembryonic antigen (CEA) and carbohydrate antigen (CA) 19-9. MiRNA was isolated in the samples of 52 CRC and 76 pre-CRC patients. Expression levels were analyzed by RT-qPCR. When comparing pre-CRC and CRC tissue expression levels, only miR-193a-3p showed statistically significant result (p < 0.0001). When comparing the tissues and exosomes of CRC samples, a statistically significant difference was found for miR-193a-3p (p < 0.0001), miR-19a-3p (p < 0.0001), miR-92a-3p (p = 0.0212), and miR-210-3p (p < 0.0001). A receiver-operating characteristic (ROC) curve and area under the ROC curve (AUC) were used to evaluate the diagnostic value of CEA, CA 19-9, and miRNAs. CEA and CA 19-9 had good diagnostic values (AUCs of 0.798 and 0.668). The diagnostic value only of miR-193a-3p was highlighted (AUC = 0.725). The final logistic regression model, in which we put a combination of CEA concentration and the miR-193a-3p expression level in tissues, showed that using these two markers can distinguish CRC and pre-CRC in 71.3% of cases (AUC = 0.823). MiR-193a-3p from tissues could be a potential CRC biomarker. Full article
(This article belongs to the Special Issue New Insights into Colorectal Cancer)
Show Figures

Figure 1

19 pages, 1567 KiB  
Article
Profiling Novel Quinuclidine-Based Derivatives as Potential Anticholinesterase Drugs: Enzyme Inhibition and Effects on Cell Viability
by Suzana Žunec, Donna Vadlja, Alma Ramić, Antonio Zandona, Nikola Maraković, Iva Brekalo, Ines Primožič and Maja Katalinić
Int. J. Mol. Sci. 2024, 25(1), 155; https://doi.org/10.3390/ijms25010155 - 21 Dec 2023
Cited by 2 | Viewed by 1957
Abstract
The cholinergic system, relying on the neurotransmitter acetylcholine (ACh), plays a significant role in muscle contraction, cognition, and autonomic nervous system regulation. The enzymes acetylcholinesterase, AChE, and butyrylcholinesterase, BChE, responsible for hydrolyzing ACh, can fine-tune the cholinergic system’s activity and are, therefore, excellent [...] Read more.
The cholinergic system, relying on the neurotransmitter acetylcholine (ACh), plays a significant role in muscle contraction, cognition, and autonomic nervous system regulation. The enzymes acetylcholinesterase, AChE, and butyrylcholinesterase, BChE, responsible for hydrolyzing ACh, can fine-tune the cholinergic system’s activity and are, therefore, excellent pharmacological targets to address a range of medical conditions. We designed, synthesized, and profiled 14 N-alkyl quaternary quinuclidines as inhibitors of human AChE and BChE and analyzed their impact on cell viability to assess their safety in the context of application as potential therapeutics. Our results showed that all of the 14 tested quinuclidines inhibited both AChE and BChE in the micromolar range (Ki = 0.26 − 156.2 μM). The highest inhibition potency was observed for two bisquaternary derivatives, 7 (1,1′-(decano)bis(3-hydroxyquinuclidinium bromide)) and 14 (1,1′-(decano)bis(3-hydroxyiminoquinuclidinium bromide)). The cytotoxic effect within 7–200 μM was observed only for monoquaternary quinuclidine derivatives, especially those with the C12–C16 alkyl chain. Further analysis revealed a time-independent mechanism of action, significant LDH release, and a decrease in the cells’ mitochondrial membrane potential. Taking all results into consideration, we can confirm that a quinuclidine core presents a good scaffold for cholinesterase binding and that two bisquaternary quinuclidine derivatives could be considered as candidates worth further investigations as drugs acting in the cholinergic system. On the other hand, specific cell-related effects probably triggered by the free long alkyl chain in monoquaternary quinuclidine derivatives should not be neglected in future N-alkyl quaternary quinuclidine derivative structure refinements. Such an effect and their potential to interact with other specific targets, as indicated by a pharmacophore model, open up a new perspective for future investigations of these compounds’ scaffold in the treatment of specific conditions and diseases other than cholinergic system-linked disorders. Full article
Show Figures

Figure 1

21 pages, 1273 KiB  
Article
Synthesis, Biological Evaluation and Machine Learning Prediction Model for Fluorinated Cinchona Alkaloid-Based Derivatives as Cholinesterase Inhibitors
by Alma Ramić, Ana Matošević, Barbara Debanić, Ana Mikelić, Ines Primožič, Anita Bosak and Tomica Hrenar
Pharmaceuticals 2022, 15(10), 1214; https://doi.org/10.3390/ph15101214 - 30 Sep 2022
Cited by 2 | Viewed by 2552
Abstract
A series of 46 Cinchona alkaloid derivatives that differ in positions of fluorine atom(s) in the molecule were synthesized and tested as human acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors. All tested compounds reversibly inhibited AChE and BChE in the nanomolar to micromolar range; [...] Read more.
A series of 46 Cinchona alkaloid derivatives that differ in positions of fluorine atom(s) in the molecule were synthesized and tested as human acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors. All tested compounds reversibly inhibited AChE and BChE in the nanomolar to micromolar range; for AChE, the determined enzyme-inhibitor dissociation constants (Ki) ranged from 3.9–80 µM, and 0.075–19 µM for BChE. The most potent AChE inhibitor was N-(para-fluorobenzyl)cinchoninium bromide, while N-(meta-fluorobenzyl)cinchonidinium bromide was the most potent BChE inhibitor with Ki constant in the nanomolar range. Generally, compounds were non-selective or BChE selective cholinesterase inhibitors, where N-(meta-fluorobenzyl)cinchonidinium bromide was the most selective showing 533 times higher preference for BChE. In silico study revealed that twenty-six compounds should be able to cross the blood-brain barrier by passive transport. An extensive machine learning procedure was utilized for the creation of multivariate linear regression models of AChE and BChE inhibition. The best possible models with predicted R2 (CD-derivatives) of 0.9932 and R2(CN-derivatives) of 0.9879 were calculated and cross-validated. From these data, a smart guided search for new potential leads can be performed. These results pointed out that quaternary Cinchona alkaloids are the promising structural base for further development as selective BChE inhibitors which can be used in the central nervous system. Full article
(This article belongs to the Special Issue Advances in Acetylcholinesterase and Butyrylcholinesterase Inhibitors)
Show Figures

Graphical abstract

15 pages, 7727 KiB  
Article
Antimicrobial Activity of Quasi-Enantiomeric Cinchona Alkaloid Derivatives and Prediction Model Developed by Machine Learning
by Alma Ramić, Mirjana Skočibušić, Renata Odžak, Ana Čipak Gašparović, Lidija Milković, Ana Mikelić, Karlo Sović, Ines Primožič and Tomica Hrenar
Antibiotics 2021, 10(6), 659; https://doi.org/10.3390/antibiotics10060659 - 31 May 2021
Cited by 8 | Viewed by 2976
Abstract
Bacterial infections that do not respond to current treatments are increasing, thus there is a need for the development of new antibiotics. Series of 20 N-substituted quaternary salts of cinchonidine (CD) and their quasi-enantiomer cinchonine (CN) were prepared and their antimicrobial activity [...] Read more.
Bacterial infections that do not respond to current treatments are increasing, thus there is a need for the development of new antibiotics. Series of 20 N-substituted quaternary salts of cinchonidine (CD) and their quasi-enantiomer cinchonine (CN) were prepared and their antimicrobial activity was assessed against a diverse panel of Gram-positive and Gram-negative bacteria. All tested compounds showed good antimicrobial potential (minimum inhibitory concentration (MIC) values 1.56 to 125.00 μg/mL), proved to be nontoxic to different human cell lines, and did not influence the production of reactive oxygen species (ROS). Seven compounds showed very strong bioactivity against some of the tested Gram-negative bacteria (MIC for E. coli and K. pneumoniae 6.25 μg/mL; MIC for P. aeruginosa 1.56 μg/mL). To establish a connection between antimicrobial data and potential energy surfaces (PES) of the compounds, activity/PES models using principal components of the disc diffusion assay and MIC and data towards PES data were built. An extensive machine learning procedure for the generation and cross-validation of multivariate linear regression models with a linear combination of original variables as well as their higher-order polynomial terms was performed. The best possible models with predicted R2(CD derivatives) = 0.9979 and R2(CN derivatives) = 0.9873 were established and presented. This activity/PES model can be used for accurate prediction of activities for new compounds based solely on their potential energy surfaces, which will enable wider screening and guided search for new potential leads. Based on the obtained results, N-quaternary derivatives of Cinchona alkaloids proved to be an excellent scaffold for further optimization of novel antibiotic species. Full article
(This article belongs to the Special Issue Antimicrobial Resistance in Gram-Negative Bacteria, 2nd Edition)
Show Figures

Graphical abstract

13 pages, 1084 KiB  
Article
Novel Imidazole Aldoximes with Broad-Spectrum Antimicrobial Potency against Multidrug Resistant Gram-Negative Bacteria
by Mirjana Skočibušić, Renata Odžak, Alma Ramić, Tomislav Smolić, Tomica Hrenar and Ines Primožič
Molecules 2018, 23(5), 1212; https://doi.org/10.3390/molecules23051212 - 18 May 2018
Cited by 12 | Viewed by 5348
Abstract
In the search for a new class of potential antimicrobial agents, five novel N-substituted imidazole 2-aldoximes and their six quaternary salts were evaluated. The antimicrobial activity was assessed against a panel of representative Gram-positive and Gram-negative bacteria, including multidrug resistant bacteria. All [...] Read more.
In the search for a new class of potential antimicrobial agents, five novel N-substituted imidazole 2-aldoximes and their six quaternary salts were evaluated. The antimicrobial activity was assessed against a panel of representative Gram-positive and Gram-negative bacteria, including multidrug resistant bacteria. All compounds demonstrated potent in vitro activity against the tested microorganisms, with MIC values ranging from 6.25 to 50.0 μg/mL. Among the tested compounds, two quaternary compounds (N-but-3-enyl- and meta- (10) or para- N-chlorobenzyl (11) imidazolium 2-aldoximes) displayed the most potent and broad-spectrum activity against both Gram-positive and Gram-negative bacterial strains. The broth microdilution assay was also used to investigate the antiresistance efficacy of the both most active compounds against a set of Enterobacteriaceae isolates carried a multiple extended-spectrum β-lactamases (ESBLs) in comparison to eight clinically relevant antibiotics. N-but-3-enyl-N-meta-chlorobenzyl imidazolium 2-aldoxime was found to possess promising antiresistance efficacy against a wide range of β-lactamases producing strains (MIC 2.0 to 16.0 μg/mL). Best results for that compound were obtained against Escherichia coli and Enterobacter cloacae producing multiple β-lactamases form A and C molecular classes, which were 32- and 128-fold more potent than ceftazidime and cefotaxime, respectively. To visualize the results, principal component analysis was used as an additional classification tool. The mixture of ceftazidime and compound 10 (3 μg:2 μg) showed a strong activity and lower the necessary amount (up to 40-fold) of 10 against five of ESBL-producing isolates (MIC ≤ 1 µg/mL). Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

13 pages, 1522 KiB  
Article
New Cinchona Oximes Evaluated as Reactivators of Acetylcholinesterase and Butyrylcholinesterase Inhibited by Organophosphorus Compounds
by Maja Katalinić, Antonio Zandona, Alma Ramić, Tamara Zorbaz, Ines Primožič and Zrinka Kovarik
Molecules 2017, 22(7), 1234; https://doi.org/10.3390/molecules22071234 - 22 Jul 2017
Cited by 32 | Viewed by 6961
Abstract
For the last six decades, researchers have been focused on finding efficient reactivators of organophosphorus compound (OP)-inhibited acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). In this study, we have focused our research on a new oxime scaffold based on the Cinchona structure since it was [...] Read more.
For the last six decades, researchers have been focused on finding efficient reactivators of organophosphorus compound (OP)-inhibited acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). In this study, we have focused our research on a new oxime scaffold based on the Cinchona structure since it was proven to fit the cholinesterases active site and reversibly inhibit their activity. Three Cinchona oximes (C1, C2, and C3), derivatives of the 9-oxocinchonidine, were synthesized and investigated in reactivation of various OP-inhibited AChE and BChE. As the results showed, the tested oximes were more efficient in the reactivation of BChE and they reactivated enzyme activity to up to 70% with reactivation rates similar to known pyridinium oximes used as antidotes in medical practice today. Furthermore, the oximes showed selectivity towards binding to the BChE active site and the determined enzyme-oxime dissociation constants supported work on the future development of inhibitors in other targeted studies (e.g., in treatment of neurodegenerative disease). Also, we monitored the cytotoxic effect of Cinchona oximes on two cell lines Hep G2 and SH-SY5Y to determine the possible limits for in vivo application. The cytotoxicity results support future studies of these compounds as long as their biological activity is targeted in the lower micromolar range. Full article
Show Figures

Figure 1

10 pages, 424 KiB  
Article
Preparation of Novel meta- and para-Substituted N-Benzyl Protected Quinuclidine Esters and Their Resolution with Butyrylcholinesterase
by Ines Primožič, Marijana Bolant, Alma Ramić and Srđanka Tomić
Molecules 2012, 17(1), 786-795; https://doi.org/10.3390/molecules17010786 - 16 Jan 2012
Cited by 4 | Viewed by 6457
Abstract
Since the optically active quinuclidin-3-ol is an important intermediate in the preparation of physiologically or pharmacologically active compounds, a new biocatalytic method for the production of chiral quinuclidin-3-ols was examined. Butyrylcholinesterase (BChE; EC 3.1.1.8) was chosen as a biocatalyst in a preparative kinetic [...] Read more.
Since the optically active quinuclidin-3-ol is an important intermediate in the preparation of physiologically or pharmacologically active compounds, a new biocatalytic method for the production of chiral quinuclidin-3-ols was examined. Butyrylcholinesterase (BChE; EC 3.1.1.8) was chosen as a biocatalyst in a preparative kinetic resolution of enantiomers. A series of racemic, (R)- and (S)-esters of quinuclidin-3-ol and acetic, benzoic, phthalic and isonicotinic acids were synthesized, as well as their racemic quaternary N-benzyl, meta- and para-N-bromo and N-methylbenzyl derivatives. After the resolution, all N-benzyl protected groups were successfully removed by catalytic transfer hydrogenation with ammonium formate (10% Pd-C). Hydrolyses studies with BChE confirmed that (R)-enantiomers of the prepared esters are much better substrates for the enzyme than (S)-enantiomers. Introduction of bromine atom or methyl group in the meta or para position of the benzyl moiety resulted in a considerable improvement of the stereoselectivity compared to the non-substituted compounds. Optically pure quinuclidin-3-ols were prepared in high yields and enantiopurity by the usage of various N-benzyl protected groups and BChE as a biocatalyst. Full article
(This article belongs to the Special Issue ECSOC-15)
Show Figures

Figure 1

Back to TopTop