Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Authors = Alexander Deutsch

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4105 KiB  
Article
MiR-4646-5p Acts as a Tumor-Suppressive Factor in Triple Negative Breast Cancer and Targets the Cholesterol Transport Protein GRAMD1B
by Katharina Jonas, Felix Prinz, Manuela Ferracin, Katarina Krajina, Alexander Deutsch, Tobias Madl, Beate Rinner, Ondrej Slaby, Christiane Klec and Martin Pichler
Non-Coding RNA 2024, 10(1), 2; https://doi.org/10.3390/ncrna10010002 - 26 Dec 2023
Cited by 3 | Viewed by 3099
Abstract
MicroRNAs (miRNAs) are crucial post-transcriptional regulators of gene expression, and their deregulation contributes to many aspects of cancer development and progression. Thus, miRNAs provide insight into oncogenic mechanisms and represent promising targets for new therapeutic approaches. A type of cancer that is still [...] Read more.
MicroRNAs (miRNAs) are crucial post-transcriptional regulators of gene expression, and their deregulation contributes to many aspects of cancer development and progression. Thus, miRNAs provide insight into oncogenic mechanisms and represent promising targets for new therapeutic approaches. A type of cancer that is still in urgent need of improved treatment options is triple negative breast cancer (TNBC). Therefore, we aimed to characterize a novel miRNA with a potential role in TNBC. Based on a previous study, we selected miR-4646-5p, a miRNA with a still unknown function in breast cancer. We discovered that higher expression of miR-4646-5p in TNBC patients is associated with better survival. In vitro assays showed that miR-4646-5p overexpression reduces growth, proliferation, and migration of TNBC cell lines, whereas inhibition had the opposite effect. Furthermore, we found that miR-4646-5p inhibits the tube formation ability of endothelial cells, which may indicate anti-angiogenic properties. By whole transcriptome analysis, we not only observed that miR-4646-5p downregulates many oncogenic factors, like tumor-promoting cytokines and migration- and invasion-related genes, but were also able to identify a direct target, the GRAM domain-containing protein 1B (GRAMD1B). GRAMD1B is involved in cellular cholesterol transport and its knockdown phenocopied the growth-reducing effects of miR-4646-5p. We thus conclude that GRAMD1B may partly contribute to the diverse tumor-suppressive effects of miR-4646-5p in TNBC. Full article
Show Figures

Figure 1

17 pages, 4178 KiB  
Article
Distinct Chemokine Receptor Expression Profiles in De Novo DLBCL, Transformed Follicular Lymphoma, Richter’s Trans-Formed DLBCL and Germinal Center B-Cells
by Barbara Uhl, Katharina T. Prochazka, Katrin Pansy, Kerstin Wenzl, Johanna Strobl, Claudia Baumgartner, Marta M. Szmyra, James E. Waha, Axel Wolf, Peter V. Tomazic, Elisabeth Steinbauer, Maria Steinwender, Sabine Friedl, Marc Weniger, Ralf Küppers, Martin Pichler, Hildegard T. Greinix, Georg Stary, Alan G. Ramsay, Benedetta Apollonio, Julia Feichtinger, Christine Beham-Schmid, Peter Neumeister and Alexander J. Deutschadd Show full author list remove Hide full author list
Int. J. Mol. Sci. 2022, 23(14), 7874; https://doi.org/10.3390/ijms23147874 - 17 Jul 2022
Cited by 7 | Viewed by 3599
Abstract
Chemokine receptors and their ligands have been identified as playing an important role in the development of diffuse large B-cell lymphoma (DLBCL), follicular lymphoma, and Richter syndrome (RS). Our aim was to investigate the different expression profiles in de novo DLBCL, transformed follicular [...] Read more.
Chemokine receptors and their ligands have been identified as playing an important role in the development of diffuse large B-cell lymphoma (DLBCL), follicular lymphoma, and Richter syndrome (RS). Our aim was to investigate the different expression profiles in de novo DLBCL, transformed follicular lymphoma (tFL), and RS. Here, we profiled the mRNA expression levels of 18 chemokine receptors (CCR1CCR9, CXCR1CXCR7, CX3CR1 and XCR1) using RQ-PCR, as well as immunohistochemistry of seven chemokine receptors (CCR1, CCR4–CCR8 and CXCR2) in RS, de novo DLBCL, and tFL biopsy-derived tissues. Tonsil-derived germinal center B-cells (GC-B) served as non-neoplastic controls. The chemokine receptor expression profiles of de novo DLBCL and tFL substantially differed from those of GC-B, with at least 5-fold higher expression of 15 out of the 18 investigated chemokine receptors (CCR1CCR9, CXCR1, CXCR2, CXCR6, CXCR7, CX3CR1 and XCR1) in these lymphoma subtypes. Interestingly, the de novo DLBCL and tFL exhibited at least 22-fold higher expression of CCR1, CCR5, CCR8, and CXCR6 compared with RS, whereas no significant difference in chemokine receptor expression profile was detected when comparing de novo DLBCL with tFL. Furthermore, in de novo DLBCL and tFLs, a high expression of CCR7 was associated with a poor overall survival in our study cohort, as well as in an independent patient cohort. Our data indicate that the chemokine receptor expression profile of RS differs substantially from that of de novo DLBCL and tFL. Thus, these multiple dysregulated chemokine receptors could represent novel clinical markers as diagnostic and prognostic tools. Moreover, this study highlights the relevance of chemokine signaling crosstalk in the tumor microenvironment of aggressive lymphomas. Full article
(This article belongs to the Special Issue Tumor Microenvironment from a Precision Medicine Perspective 2.0)
Show Figures

Figure 1

19 pages, 1469 KiB  
Review
Targeting the Microenvironment for Treating Multiple Myeloma
by Peter Neumeister, Eduard Schulz, Katrin Pansy, Marta Szmyra and Alexander JA Deutsch
Int. J. Mol. Sci. 2022, 23(14), 7627; https://doi.org/10.3390/ijms23147627 - 10 Jul 2022
Cited by 25 | Viewed by 7544
Abstract
Multiple myeloma (MM) is a malignant, incurable disease characterized by the expansion of monoclonal terminally differentiated plasma cells in the bone marrow. MM is consistently preceded by an asymptomatic monoclonal gammopathy of undetermined significance, and in the absence of myeloma defining events followed [...] Read more.
Multiple myeloma (MM) is a malignant, incurable disease characterized by the expansion of monoclonal terminally differentiated plasma cells in the bone marrow. MM is consistently preceded by an asymptomatic monoclonal gammopathy of undetermined significance, and in the absence of myeloma defining events followed by a stage termed smoldering multiple myeloma (SMM), which finally progresses to active myeloma if signs of organ damage are present. The reciprocal interaction between tumor cells and the tumor microenvironment plays a crucial role in the development of MM and the establishment of a tumor-promoting stroma facilitates tumor growth and myeloma progression. Since myeloma cells depend on signals from the bone marrow microenvironment (BMME) for their survival, therapeutic interventions targeting the BMME are a novel and successful strategy for myeloma care. Here, we describe the complex interplay between myeloma cells and the cellular components of the BMME that is essential for MM development and progression. Finally, we present BMME modifying treatment options such as anti-CD38 based therapies, immunomodulatory drugs (IMiDs), CAR T-cell therapies, bispecific antibodies, and antibody-drug conjugates which have significantly improved the long-term outcome of myeloma patients, and thus represent novel therapeutic standards. Full article
(This article belongs to the Special Issue Tumor Microenvironment from a Precision Medicine Perspective 2.0)
Show Figures

Figure 1

35 pages, 1942 KiB  
Review
(Dis)similarities between the Decidual and Tumor Microenvironment
by Jelena Krstic, Alexander Deutsch, Julia Fuchs, Martin Gauster, Tina Gorsek Sparovec, Ursula Hiden, Julian Christopher Krappinger, Gerit Moser, Katrin Pansy, Marta Szmyra, Daniela Gold, Julia Feichtinger and Berthold Huppertz
Biomedicines 2022, 10(5), 1065; https://doi.org/10.3390/biomedicines10051065 - 4 May 2022
Cited by 25 | Viewed by 5263
Abstract
Placenta-specific trophoblast and tumor cells exhibit many common characteristics. Trophoblast cells invade maternal tissues while being tolerated by the maternal immune system. Similarly, tumor cells can invade surrounding tissues and escape the immune system. Importantly, both trophoblast and tumor cells are supported by [...] Read more.
Placenta-specific trophoblast and tumor cells exhibit many common characteristics. Trophoblast cells invade maternal tissues while being tolerated by the maternal immune system. Similarly, tumor cells can invade surrounding tissues and escape the immune system. Importantly, both trophoblast and tumor cells are supported by an abetting microenvironment, which influences invasion, angiogenesis, and immune tolerance/evasion, among others. However, in contrast to tumor cells, the metabolic, proliferative, migrative, and invasive states of trophoblast cells are under tight regulatory control. In this review, we provide an overview of similarities and dissimilarities in regulatory processes that drive trophoblast and tumor cell fate, particularly focusing on the role of the abetting microenvironments. Full article
(This article belongs to the Special Issue Gynecological Tumor and Placenta Development)
Show Figures

Figure 1

51 pages, 1586 KiB  
Review
Immune Regulatory Processes of the Tumor Microenvironment under Malignant Conditions
by Katrin Pansy, Barbara Uhl, Jelena Krstic, Marta Szmyra, Karoline Fechter, Ana Santiso, Lea Thüminger, Hildegard Greinix, Julia Kargl, Katharina Prochazka, Julia Feichtinger and Alexander JA. Deutsch
Int. J. Mol. Sci. 2021, 22(24), 13311; https://doi.org/10.3390/ijms222413311 - 10 Dec 2021
Cited by 77 | Viewed by 13183
Abstract
The tumor microenvironment (TME) is a critical regulator of tumor growth, progression, and metastasis. Since immune cells represent a large fraction of the TME, they play a key role in mediating pro- and anti-tumor immune responses. Immune escape, which suppresses anti-tumor immunity, enables [...] Read more.
The tumor microenvironment (TME) is a critical regulator of tumor growth, progression, and metastasis. Since immune cells represent a large fraction of the TME, they play a key role in mediating pro- and anti-tumor immune responses. Immune escape, which suppresses anti-tumor immunity, enables tumor cells to maintain their proliferation and growth. Numerous mechanisms, which have been intensively studied in recent years, are involved in this process and based on these findings, novel immunotherapies have been successfully developed. Here, we review the composition of the TME and the mechanisms by which immune evasive processes are regulated. In detail, we describe membrane-bound and soluble factors, their regulation, and their impact on immune cell activation in the TME. Furthermore, we give an overview of the tumor/antigen presentation and how it is influenced under malignant conditions. Finally, we summarize novel TME-targeting agents, which are already in clinical trials for different tumor entities. Full article
(This article belongs to the Special Issue Tumor Microenvironment from a Precision Medicine Perspective)
Show Figures

Figure 1

13 pages, 861 KiB  
Article
Impact of Different Positive End-Expiratory Pressures on Lung Mechanics in the Setting of Moderately Elevated Intra-Abdominal Pressure and Acute Lung Injury in a Porcine Model
by Mascha O. Fiedler, Emilis Simeliunas, B. Luise Deutsch, Dovile Diktanaite, Alexander Harms, Maik Brune, Maximilian Dietrich, Florian Uhle, Markus A. Weigand and Armin Kalenka
J. Clin. Med. 2021, 10(2), 306; https://doi.org/10.3390/jcm10020306 - 15 Jan 2021
Cited by 6 | Viewed by 2555
Abstract
The effects of a moderately elevated intra-abdominal pressure (IAP) on lung mechanics in acute respiratory distress syndrome (ARDS) have still not been fully analyzed. Moreover, the optimal positive end-expiratory pressure (PEEP) in elevated IAP and ARDS is unclear. In this paper, 18 pigs [...] Read more.
The effects of a moderately elevated intra-abdominal pressure (IAP) on lung mechanics in acute respiratory distress syndrome (ARDS) have still not been fully analyzed. Moreover, the optimal positive end-expiratory pressure (PEEP) in elevated IAP and ARDS is unclear. In this paper, 18 pigs under general anesthesia received a double hit lung injury. After saline lung lavage and 2 h of injurious mechanical ventilation to induce an acute lung injury (ALI), an intra-abdominal balloon was filled until an IAP of 10 mmHg was generated. Animals were randomly assigned to one of three groups (group A = PEEP 5, B = PEEP 10 and C = PEEP 15 cmH2O) and ventilated for 6 h. We measured end-expiratory lung volume (EELV) per kg bodyweight, driving pressure (ΔP), transpulmonary pressure (ΔPL), static lung compliance (Cstat), oxygenation (P/F ratio) and cardiac index (CI). In group A, we found increases in ΔP (22 ± 1 vs. 28 ± 2 cmH2O; p = 0.006) and ΔPL (16 ± 1 vs. 22 ± 2 cmH2O; p = 0.007), with no change in EELV/kg (15 ± 1 vs. 14 ± 1 mL/kg) when comparing hours 0 and 6. In group B, there was no change in ΔP (26 ± 2 vs. 25 ± 2 cmH2O), ΔPL (19 ± 2 vs. 18 ± 2 cmH2O), Cstat (21 ± 3 vs. 21 ± 2 cmH2O/mL) or EELV/kg (12 ± 2 vs. 13 ± 3 mL/kg). ΔP and ΔPL were significantly lower after 6 h when comparing between group C and A (21 ± 1 vs. 28 ± 2 cmH2O; p = 0.020) and (14 ± 1 vs. 22 ± 2 cmH2O; p = 0.013)). The EELV/kg increased over time in group C (13 ± 1 vs. 19 ± 2 mL/kg; p = 0.034). The P/F ratio increased in all groups over time. CI decreased in groups B and C. The global lung injury score did not significantly differ between groups (A: 0.25 ± 0.05, B: 0.21 ± 0.02, C: 0.22 ± 0.03). In this model of ALI, elevated IAP, ΔP and ΔPL increased further over time in the group with a PEEP of 5 cmH2O applied over 6 h. This was not the case in the groups with a PEEP of 10 and 15 cmH2O. Although ΔP and ΔPL were significantly lower after 6 hours in group C compared to group A, we could not show significant differences in histological lung injury score. Full article
(This article belongs to the Special Issue Acute Respiratory Distress Syndrome (ARDS))
Show Figures

Figure 1

18 pages, 1854 KiB  
Article
The CXCR4–CXCL12-Axis Is of Prognostic Relevance in DLBCL and Its Antagonists Exert Pro-Apoptotic Effects In Vitro
by Katrin Pansy, Julia Feichtinger, Barbara Ehall, Barbara Uhl, Miriam Sedej, David Roula, Beata Pursche, Axel Wolf, Manuel Zoidl, Elisabeth Steinbauer, Verena Gruber, Hildegard T Greinix, Katharina T. Prochazka, Gerhard G. Thallinger, Akos Heinemann, Christine Beham-Schmid, Peter Neumeister, Tanja M. Wrodnigg, Karoline Fechter and Alexander JA. Deutsch
Int. J. Mol. Sci. 2019, 20(19), 4740; https://doi.org/10.3390/ijms20194740 - 24 Sep 2019
Cited by 16 | Viewed by 4889
Abstract
In tumor cells of more than 20 different cancer types, the CXCR4-CXCL12-axis is involved in multiple key processes including proliferation, survival, migration, invasion, and metastasis. Since data on this axis in diffuse large B cell lymphoma (DLBCL) are inconsistent and limited, we [...] Read more.
In tumor cells of more than 20 different cancer types, the CXCR4-CXCL12-axis is involved in multiple key processes including proliferation, survival, migration, invasion, and metastasis. Since data on this axis in diffuse large B cell lymphoma (DLBCL) are inconsistent and limited, we comprehensively studied the CXCR4-CXCL12-axis in our DLBCL cohort as well as the effects of CXCR4 antagonists on lymphoma cell lines in vitro. In DLBCL, we observed a 140-fold higher CXCR4 expression compared to non-neoplastic controls, which was associated with poor clinical outcome. In corresponding bone marrow biopsies, we observed a correlation of CXCL12 expression and lymphoma infiltration rate as well as a reduction of CXCR4 expression in remission of bone marrow involvement after treatment. Additionally, we investigated the effects of three CXCR4 antagonists in vitro. Therefore, we used AMD3100 (Plerixafor), AMD070 (Mavorixafor), and WKI, the niacin derivative of AMD070, which we synthesized. WK1 demonstrated stronger pro-apoptotic effects than AMD070 in vitro and induced expression of pro-apoptotic genes of the BCL2-family in CXCR4-positive lymphoma cell lines. Finally, WK1 treatment resulted in the reduced expression of JNK-, ERK1/2- and NF-κB/BCR-target genes. These data indicate that the CXCR4-CXCL12-axis impacts the pathogenesis of DLBCL and represents a potential therapeutic target in aggressive lymphomas. Full article
Show Figures

Graphical abstract

17 pages, 3710 KiB  
Article
Comparative Gene Expression Analysis in WM164 Melanoma Cells Revealed That β-β-Dimethylacrylshikonin Leads to ROS Generation, Loss of Mitochondrial Membrane Potential, and Autophagy Induction
by Nadine Kretschmer, Alexander Deutsch, Christin Durchschein, Beate Rinner, Alexander Stallinger, Juan Carlos Higareda-Almaraz, Marcel Scheideler, Birgit Lohberger and Rudolf Bauer
Molecules 2018, 23(11), 2823; https://doi.org/10.3390/molecules23112823 - 30 Oct 2018
Cited by 22 | Viewed by 4843
Abstract
Skin cancer is currently diagnosed as one in every three cancers. Melanoma, the most aggressive form of skin cancer, is responsible for 79% of skin cancer deaths and the incidence is rising faster than in any other solid tumor type. Previously, we have [...] Read more.
Skin cancer is currently diagnosed as one in every three cancers. Melanoma, the most aggressive form of skin cancer, is responsible for 79% of skin cancer deaths and the incidence is rising faster than in any other solid tumor type. Previously, we have demonstrated that dimethylacrylshikonin (DMAS), isolated from the roots of Onosma paniculata (Boraginaceae), exhibited the lowest IC50 values against different tumor types out of several isolated shikonin derivatives. DMAS was especially cytotoxic towards melanoma cells and led to apoptosis and cell cycle arrest. In this study, we performed a comprehensive gene expression study to investigate the mechanism of action in more detail. Gene expression signature was compared to vehicle-treated WM164 control cells after 24 h of DMAS treatment; where 1192 distinct mRNAs could be identified as expressed in all replicates and 89 were at least 2-fold differentially expressed. DMAS favored catabolic processes and led in particular to p62 increase which is involved in cell growth, survival, and autophagy. More in-depth experiments revealed that DMAS led to autophagy, ROS generation, and loss of mitochondrial membrane potential in different melanoma cells. It has been reported that the induction of an autophagic cell death represents a highly effective approach in melanoma therapy. Full article
(This article belongs to the Special Issue Natural Product Isolation, Identification and Biological Activity)
Show Figures

Graphical abstract

21 pages, 19967 KiB  
Article
Synthesis of Novel Shikonin Derivatives and Pharmacological Effects of Cyclopropylacetylshikonin on Melanoma Cells
by Christin Durchschein, Antje Hufner, Beate Rinner, Alexander Stallinger, Alexander Deutsch, Birgit Lohberger, Rudolf Bauer and Nadine Kretschmer
Molecules 2018, 23(11), 2820; https://doi.org/10.3390/molecules23112820 - 30 Oct 2018
Cited by 21 | Viewed by 5467
Abstract
Despite much research in the last centuries, treatment of malignant melanoma is still challenging because of its mostly unnoticeable metastatic spreading and aggressive growth rate. Therefore, the discovery of novel drug leads is an important goal. In a previous study, we have isolated [...] Read more.
Despite much research in the last centuries, treatment of malignant melanoma is still challenging because of its mostly unnoticeable metastatic spreading and aggressive growth rate. Therefore, the discovery of novel drug leads is an important goal. In a previous study, we have isolated several shikonin derivatives from the roots of Onosma paniculata Bureau & Franchet (Boraginaceae) which evolved as promising anticancer candidates. β,β-Dimethylacrylshikonin (1) was the most cytotoxic derivative and exhibited strong tumor growth inhibitory activity, in particular, towards melanoma cells. In this study, we synthesized eighteen novel shikonin derivatives in order to obtain compounds which exhibit a higher cytotoxicity than 1. We investigated their cytotoxic potential against various melanoma cell lines and juvenile skin fibroblasts. The most active compound was (R)-1-(1,4-dihydro-5,8-dihydroxy-1,4-dioxonaphthalen-2-yl)-4-methylpent-3-enyl cyclopropylacetate (cyclopropylacetylshikonin) (6). It revealed significant stronger tumor growth inhibitory activity towards two melanoma cell lines derived from metastatic lesions (WM164 and MUG-Mel2). Further investigations have shown that 6 induced apoptosis caspase-dependently, increased the protein levels of cleaved PARP, and led to double-stranded DNA breaks as shown by phosphorylation of H2AX. Cell membrane damage and cell cycle arrest were not observed. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

19 pages, 1350 KiB  
Article
miR-199a and miR-497 Are Associated with Better Overall Survival due to Increased Chemosensitivity in Diffuse Large B-Cell Lymphoma Patients
by Katharina Troppan, Kerstin Wenzl, Martin Pichler, Beata Pursche, Daniela Schwarzenbacher, Julia Feichtinger, Gerhard G. Thallinger, Christine Beham-Schmid, Peter Neumeister and Alexander Deutsch
Int. J. Mol. Sci. 2015, 16(8), 18077-18095; https://doi.org/10.3390/ijms160818077 - 5 Aug 2015
Cited by 57 | Viewed by 6806
Abstract
Micro-RNAs (miRNAs) are short non-coding single-stranded RNA molecules regulating gene expression at the post-transcriptional level. miRNAs are involved in cell development, differentiation, apoptosis, and proliferation. miRNAs can either function as tumor suppressor genes or oncogenes in various important pathways. The expression of specific [...] Read more.
Micro-RNAs (miRNAs) are short non-coding single-stranded RNA molecules regulating gene expression at the post-transcriptional level. miRNAs are involved in cell development, differentiation, apoptosis, and proliferation. miRNAs can either function as tumor suppressor genes or oncogenes in various important pathways. The expression of specific miRNAs has been identified to correlate with tumor prognosis. For miRNA expression analysis real-time PCR on 81 samples was performed, including 63 diffuse large B-cell lymphoma (DLBCL, 15 of germinal center B-cell like subtype, 17 non germinal center B-cell, 23 transformed, and eight unclassified) and 18 controls, including nine peripheral B-cells, 5 germinal-center B-cells, four lymphadenitis samples, and 4 lymphoma cell lines (RI-1, SUDHL4, Karpas, U2932). Expression levels of a panel of 11 miRNAs that have been previously involved in other types of cancer (miR-15b_2, miR-16_1*, miR-16_2, miR-16_2*, miR-27a, miR-27a*, miR-98-1, miR-103a, miR-185, miR-199a, and miR-497) were measured and correlated with clinical data. Furthermore, cell lines, lacking miR-199a and miR-497 expression, were electroporated with the two respective miRNAs and treated with standard immunochemotherapy routinely used in patients with DLBCL, followed by functional analyses including cell count and apoptosis assays. Seven miRNAs (miR-16_1*, miR-16_2*, miR-27a, miR-103, miR-185, miR-199, and miR-497) were statistically significantly up-regulated in DLBCL compared to normal germinal cells. However, high expression of miR-497 or miR-199a was associated with better overall survival (p = 0.042 and p = 0.007). Overexpression of miR-199a and miR-497 led to a statistically significant decrease in viable cells in a dose-dependent fashion after exposure to rituximab and various chemotherapeutics relevant in multi-agent lymphoma therapy. Our data indicate that elevated miR-199a and miR-497 levels are associated with improved survival in aggressive lymphoma patients most likely by modifying drug sensitivity to immunochemotherapy. This functional impairment may serve as a potential novel therapeutic target in future treatment of patients with DLBCL. Full article
(This article belongs to the Collection Regulation by Non-coding RNAs)
Show Figures

Graphical abstract

12 pages, 2974 KiB  
Article
Terahertz Active Photonic Crystals for Condensed Gas Sensing
by Alexander Benz, Christoph Deutsch, Martin Brandstetter, Aaron M. Andrews, Pavel Klang, Hermann Detz, Werner Schrenk, Gottfried Strasser and Karl Unterrainer
Sensors 2011, 11(6), 6003-6014; https://doi.org/10.3390/s110606003 - 3 Jun 2011
Cited by 38 | Viewed by 10302
Abstract
The terahertz (THz) spectral region, covering frequencies from 1 to 10 THz, is highly interesting for chemical sensing. The energy of rotational and vibrational transitions of molecules lies within this frequency range. Therefore, chemical fingerprints can be derived, allowing for a simple detection [...] Read more.
The terahertz (THz) spectral region, covering frequencies from 1 to 10 THz, is highly interesting for chemical sensing. The energy of rotational and vibrational transitions of molecules lies within this frequency range. Therefore, chemical fingerprints can be derived, allowing for a simple detection scheme. Here, we present an optical sensor based on active photonic crystals (PhCs), i.e., the pillars are fabricated directly from an active THz quantum-cascade laser medium. The individual pillars are pumped electrically leading to laser emission at cryogenic temperatures. There is no need to couple light into the resonant structure because the PhC itself is used as the light source. An injected gas changes the resonance condition of the PhC and thereby the laser emission frequency. We achieve an experimental frequency shift of 10−3 times the center lasing frequency. The minimum detectable refractive index change is 1.6 × 10−5 RIU. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Back to TopTop