Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Authors = Albena Ivanova

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1080 KiB  
Article
Microplastic Bioaccumulation and Oxidative Stress in Key Species of the Bulgarian Black Sea: Ecosystem Risk Early Warning
by Albena Alexandrova, Svetlana Mihova, Elina Tsvetanova, Madlena Andreeva, Georgi Pramatarov, Georgi Petrov, Nesho Chipev, Valentina Doncheva, Kremena Stefanova, Maria Grandova, Hristiyana Stamatova, Elitsa Hineva, Dimitar Dimitrov, Violin Raykov and Petya Ivanova
Microplastics 2025, 4(3), 50; https://doi.org/10.3390/microplastics4030050 - 6 Aug 2025
Viewed by 263
Abstract
Plastic pollution in marine environments poses a new global threat. Microplastics (MPs) can bioaccumulate in marine organisms, leading to oxidative stress (OS). This study investigates MP accumulation and associated OS responses in six invertebrate species (Bivalvia, Gastropoda, and Malacostraca) and three key fish [...] Read more.
Plastic pollution in marine environments poses a new global threat. Microplastics (MPs) can bioaccumulate in marine organisms, leading to oxidative stress (OS). This study investigates MP accumulation and associated OS responses in six invertebrate species (Bivalvia, Gastropoda, and Malacostraca) and three key fish species of the Bulgarian Black Sea ecosystems. The target hydrobionts were collected from nine representative coastal habitats of the northern and southern aquatory. MPs were quantified microscopically, and OS biomarkers (lipid peroxidation, glutathione, and antioxidant enzymes) were analyzed spectrometrically in fish liver and gills and invertebrate soft tissues (STs). The specific OS (SOS) index was calculated as a composite indicator of the ecological impact, incl. MP effects. The results revealed species-specific MP bioaccumulation, with the highest concentrations in Palaemon adspersus, Rathke (1837) (0.99 ± 1.09 particles/g ST) and the least abundance in Bittium reticulatum (da Costa, 1778) (0.0033 ± 0.0025 particles/g ST). In Sprattus sprattus (Linnaeus, 1758), the highest accumulation of MPs was present (2.01 ± 2.56 particles/g muscle). The correlation analyses demonstrated a significant association between MP counts and catalase activity in all examined species. The SOS index varied among species, reflecting different stress responses, and this indicated that OS levels were linked to ecological conditions of the habitat and the species-specific antioxidant defense potential to overcome multiple stressors. These findings confirmed the importance of environmental conditions, including MP pollution and the evolutionarily developed capacity of marine organisms to tolerate and adapt to environmental stress. This study emphasizes the need for novel approaches in monitoring MPs and OS to better assess potential ecological risks. Full article
Show Figures

Figure 1

22 pages, 4979 KiB  
Article
Optical, Photocatalytic, and Antibacterial Properties of Sol-Gel Derived Fe Doped SrTiO3 Powders
by Stefani Petrova, Kalina Ivanova, Iliana Ivanova and Albena Bachvarova-Nedelcheva
Water 2025, 17(14), 2072; https://doi.org/10.3390/w17142072 - 11 Jul 2025
Viewed by 393
Abstract
In this study, Fe-doped SrTiO3 powders have been synthesized using the sol-gel approach. The effect of the Fe3+ doping on the degradation efficiency of SrTiO3 toward specific pollutants was studied. The obtained samples were characterized using the following techniques: XRD, [...] Read more.
In this study, Fe-doped SrTiO3 powders have been synthesized using the sol-gel approach. The effect of the Fe3+ doping on the degradation efficiency of SrTiO3 toward specific pollutants was studied. The obtained samples were characterized using the following techniques: XRD, SEM-EDS, FTIR, UV-Vis, and BET. Subsequently, the samples were tested for degradation of two organic pollutants—tetracycline hydrochloride and Malachite green in distilled water under different light sources—UV light and visible light. The investigated powders exhibited good photocatalytic degradation efficiency against both pollutants. A comparison of the photocatalytic abilities of the samples under different lights has been made, which emphasizes the paper’s novelty. Undoped SrTiO3 exhibited better photocatalytic activity for TCH both under UV and visible light irradiation in comparison to the Fe-doped. The SrTi0.15Fe0.85O3 shows superior photocatalytic activity under visible light irradiation for the degradation of MG dye. The antibacterial activity has been tested against two bacterial strains, E. coli ATCC 25922 and P. aeruginosa ATCC 27853. It has been found that the antibacterial efficiency of the Fe-doped sample is greater than compared of the undoped one. Full article
Show Figures

Figure 1

20 pages, 5033 KiB  
Article
Plant-Based Biosorbents for Copper(II) Removal: A Comparative Study of Biomass and Essential Oil Residues
by Lidia Ivanova, Paunka Vassileva, Albena Detcheva, Violeta Koleva and Ivalina Avramova
Appl. Sci. 2025, 15(14), 7695; https://doi.org/10.3390/app15147695 - 9 Jul 2025
Viewed by 214
Abstract
The present study compared the adsorption properties of two plant materials and the waste products after their essential oil extraction for removing Cu(II) ions from contaminated water. Methods like SEM, XRD, nitrogen adsorption, DTA, TGA, FTIR, and XPS were used for characterization of [...] Read more.
The present study compared the adsorption properties of two plant materials and the waste products after their essential oil extraction for removing Cu(II) ions from contaminated water. Methods like SEM, XRD, nitrogen adsorption, DTA, TGA, FTIR, and XPS were used for characterization of the materials. All materials showed similar porosity and structure, favoring Cu(II) biosorption. The effects of contact time, pH, temperature, sample amount, and initial metal concentration on Cu(II) removal were examined. Optimal pH was 4, with equilibrium reached in less than 10 min. Temperature and sample amount do not significantly influence the biosorption. The experimental data were fitted to the Langmuir, Freundlich, and Dubinin–Radushkevich isotherm models, and maximum adsorption capacities were calculated. The four plant materials proved to be effective biosorbents for removing copper ions from contaminated water. Desorption experiments using 1 M HNO3 and 0.1 M EDTA showed 100% recovery. The reusability of the most effective biosorbent was confirmed through four adsorption/desorption cycles with EDTA. This material was also used to study the possibilities of purifying a real sample of contaminated water. Full article
(This article belongs to the Special Issue Advanced Adsorbents for Wastewater Treatment)
Show Figures

Graphical abstract

20 pages, 5010 KiB  
Article
Antimicrobial, Oxidant, Cytotoxic, and Eco-Safety Properties of Sol–Gel-Prepared Silica–Copper Nanocomposite Materials
by Lilia Yordanova, Lora Simeonova, Miroslav Metodiev, Albena Bachvarova-Nedelcheva, Yoanna Kostova, Stela Atanasova-Vladimirova, Elena Nenova, Iliana Ivanova, Lyubomira Yocheva and Elitsa Pavlova
Pharmaceuticals 2025, 18(7), 976; https://doi.org/10.3390/ph18070976 - 28 Jun 2025
Viewed by 524
Abstract
Background: The present work is devoted to the biological effects of sol–gel-derived silica (Si)–copper (Cu) nanomaterials. Methods and Results: Tetraethyl orthosilane (TEOS) was used as a silica precursor; copper was introduced as a solution in ethanol with Cu(OH)2. The obtained samples [...] Read more.
Background: The present work is devoted to the biological effects of sol–gel-derived silica (Si)–copper (Cu) nanomaterials. Methods and Results: Tetraethyl orthosilane (TEOS) was used as a silica precursor; copper was introduced as a solution in ethanol with Cu(OH)2. The obtained samples were denoted as Si/Cu (gel) and Si/Cu/500 (500 °C heat-treated). Their phase formation and morphology were studied by XRD and SEM. The antibacterial activity was tested by two Gram-positive bacteria, three Gram-negative bacteria, and two types of eukaryotic species. Most bacteria were more sensitive to Si/Cu/500 materials than to Si/Cu (gel). The yeasts were more sensitive to Si/Cu (gel). The new nanomaterials were tested for oxidant activity at pH 7.4 (physiological) and pH 8.5 (optimal) in three model systems by the chemiluminescent method. They significantly inhibited the generation of free radicals and ROS. This result underlines their potential as regulators of the free radical processes in living systems. The epithelial tumor cell lines appeared more sensitive than the non-transformed fibroblasts, likely due to their metabolic activity and proliferation rates, leading to greater accumulation of the substances. Using Daphnia magna, the ecotoxicity study showed that the LC50 was reached at 1 mg/L of Si/Cu/500. Si/Cu (gel) was more toxic. Conclusions: Our results reveal the potential of these nanohybrids to be applied in living, eukaryotic systems. The cytotoxicity evaluation showed higher tolerance of normal, non-transformed cells, in concurrence with the oxidation tests. Full article
(This article belongs to the Special Issue Nanotechnology in Biomedical Applications)
Show Figures

Figure 1

16 pages, 3377 KiB  
Article
Synthesis, Luminescent and Antibacterial Properties of Sol-Gel TiO2/TeO2/Nb2O5 Powders
by Kalina Ivanova, Albena Bachvarova-Nedelcheva, Reni Iordanova, Angelina Stoyanova, Petia Petrova, Lilia Yordanova and Iliana Ivanova
Materials 2025, 18(5), 946; https://doi.org/10.3390/ma18050946 - 21 Feb 2025
Viewed by 642
Abstract
The present paper deals with the synthesis, characterization, and properties of sol-gel-derived TiO2/TeO2/Nb2O5 nanopowders. The gels were prepared using a combination of organic [Ti (IV) n-butoxide, Nb (V) ethoxide (C10H25NbO5)] [...] Read more.
The present paper deals with the synthesis, characterization, and properties of sol-gel-derived TiO2/TeO2/Nb2O5 nanopowders. The gels were prepared using a combination of organic [Ti (IV) n-butoxide, Nb (V) ethoxide (C10H25NbO5)] and inorganic [telluric acid (H6TeO6)] precursors. The aging of gels was performed in air for several days in order to enable further hydrolysis. The phase formation of the gels was investigated by XRD upon heating in the temperature range of 200–700 °C. It was established that the gels heat-treated up to 300 °C exhibited a predominantly amorphous phase in all binary and ternary compositions. The amount of amorphous phase gradually decreased with increasing temperature, and the first TiO2 (anatase) crystals were detected at about 400–500 °C. The average crystallite size of TiO2 (anatase) in the powdered samples heat-treated at 400 °C was about 10 nm. By DTA, it was established that the decomposition of organics is accompanied by strong weight loss occurring in the temperature range of 200–300 °C. The completeness of the hydrolysis-condensation reactions was verified by IR and UV–Vis analyses. The UV–Vis spectra of the as-prepared gels exhibited red shifting of the cut-off. Photoluminescence spectra exhibited a change in intensity with varying temperature and composition. The performed photocatalytic tests showed that all powders possess photocatalytic activity toward Malachite green organic dye. The obtained nanopowders exhibited good antibacterial properties against E. coli ATCC 25922. The obtained samples can be considered as prospective materials for use as environmental catalysts. Full article
Show Figures

Figure 1

14 pages, 3380 KiB  
Article
Optical Properties and Antimicrobial Activity of Si/PVP Hybrid Material Combined with Antibiotics
by Lilia Yordanova, Yoanna Kostova, Elitsa Pavlova, Albena Bachvarova-Nedelcheva, Iliana Ivanova and Elena Nenova
Molecules 2024, 29(22), 5322; https://doi.org/10.3390/molecules29225322 - 12 Nov 2024
Viewed by 1325
Abstract
Silica–poly (vinylpyrrolidone) hybrid material was prepared using the sol–gel method. Tetramethyl ortosilane (TMOS) was used as a silica precursor. XRD analysis established that the as-prepared material is amorphous. The morphological structure of the final product was determined by the incorporated PVP. The UV–Vis [...] Read more.
Silica–poly (vinylpyrrolidone) hybrid material was prepared using the sol–gel method. Tetramethyl ortosilane (TMOS) was used as a silica precursor. XRD analysis established that the as-prepared material is amorphous. The morphological structure of the final product was determined by the incorporated PVP. The UV–Vis analysis showed that the obtained hybrid exhibited absorption in the ultraviolet range. The antimicrobial activity of the SiO2/15PVP hybrid material was tested on Staphylococcus epidermidis ATCC 14990, Salmonella typhimurium ATCC BAA-2162, Candida albicans, and Saccharomyces cerevisiae in combination with the following antibiotics: Vancomycin for Gram-positive bacteria, Ciprofloxacin for Gram-negative bacteria, and Nystatin for yeast. The results confirmed a concentration-dependent synergistic effect of the antibiotic in combination with the TM15/PVP hybrid particles, especially at their highest concentration of 100 mg/mL on Gram-positive bacteria and for the Gram-negative Salmonella. On Candida albicans ATCC 18804 and Saccharomyces cerevisiae CCY 21-6-3, the effect was synergistic again, and a fungicidal effect was observed at 6.25 and 1.50 mg/mL for the antibiotic concentration and concentrations of hybrid material at 100 mg/mL. The toxicity on Daphnia magna was also tested. The registered prooxidant activity of SiO2/15PVP shows possible applications at very low concentrations. The obtained results demonstrate the possibility of clinical implementations of the newly synthesized hybrid material. Full article
Show Figures

Figure 1

18 pages, 6575 KiB  
Article
Sol–Gel Synthesis of Silica–Poly (Vinylpyrrolidone) Hybrids with Prooxidant Activity and Antibacterial Properties
by Albena Bachvarova-Nedelcheva, Yoanna Kostova, Lilia Yordanova, Elena Nenova, Pavletta Shestakova, Iliana Ivanova and Elitsa Pavlova
Molecules 2024, 29(11), 2675; https://doi.org/10.3390/molecules29112675 - 5 Jun 2024
Cited by 4 | Viewed by 1804
Abstract
The present work deals with the sol–gel synthesis of silica–poly (vinylpyrrolidone) hybrid materials. The nanohybrids (Si-PVP) have been prepared using an acidic catalyst at ambient temperature. Tetramethyl ortosilane (TMOS) was used as a silica precursor. Poly (vinylpyrrolidone) (PVP) was introduced into the reaction [...] Read more.
The present work deals with the sol–gel synthesis of silica–poly (vinylpyrrolidone) hybrid materials. The nanohybrids (Si-PVP) have been prepared using an acidic catalyst at ambient temperature. Tetramethyl ortosilane (TMOS) was used as a silica precursor. Poly (vinylpyrrolidone) (PVP) was introduced into the reaction mixture as a solution in ethanol with a concentration of 20%. The XRD established that the as-prepared material is amorphous. The IR and 29Si MAS NMR spectra proved the formation of a polymerized silica network as well as the hydrogen bonding interactions between the silica matrix and OH hydrogens of the silanol groups. The TEM showed spherical particle formation along with increased agglomeration tendency. The efficacy of SiO2/PVP nanoparticles as a potential antimicrobial agent against a wide range of bacteria was evaluated as bacteriostatic, using agar diffusion and spot tests. Combined effects of hybrid nanomaterial and antibiotics could significantly reduce the bactericidal concentrations of both the antibiotic and the particles, and they could also eliminate the antibiotic resistance of the pathogen. The registered prooxidant activity of the newly synthesized material was confirmative and explicatory for the antibacterial properties of the tested substance and its synergetic combination with antibiotics. The effect of new hybrid material on Crustacea Daphnia magna was also estimated as harmless under concentration of 0.1 mg/mL. Full article
Show Figures

Figure 1

17 pages, 939 KiB  
Article
Physicochemical, Antioxidant, and Antimicrobial Properties of Three Medicinal Plants from the Western Part of the Rhodope Mountains, Bulgaria
by Albena Parzhanova, Velichka Yanakieva, Ivelina Vasileva, Maria Momchilova, Dimitar Dimitrov, Petya Ivanova and Yulian Tumbarski
Life 2023, 13(12), 2237; https://doi.org/10.3390/life13122237 - 21 Nov 2023
Cited by 3 | Viewed by 3042
Abstract
The present study examined the physicochemical, antioxidant, and antimicrobial properties of three medicinal plants: thyme (Thymus callieri Borbás ex Velen), cotton thistle (Onopordum acanthium L.), and hawthorn fruit (Crataegus monogyna Jacq.) from the Western Rhodope Mountains, Bulgaria. The first stage [...] Read more.
The present study examined the physicochemical, antioxidant, and antimicrobial properties of three medicinal plants: thyme (Thymus callieri Borbás ex Velen), cotton thistle (Onopordum acanthium L.), and hawthorn fruit (Crataegus monogyna Jacq.) from the Western Rhodope Mountains, Bulgaria. The first stage determined the physicochemical characteristics (moisture, ash, carbohydrates, proteins, and vitamin C) of the three herbs. The second stage investigated four types of extracts (aqueous, oil, methanolic, and ethanolic) of each herb and evaluated their total phenolic content, the presence of phenolic compounds (flavonoids and phenolic acids), their antioxidant activity, and antimicrobial properties. Thyme was characterised by the highest ash, protein, and vitamin C content (6.62%, 11.30%, and 571 mg/100 g, respectively). Hawthorn fruit showed the highest moisture and carbohydrate content (8.50% and 4.20%, respectively). The 70% ethanolic extracts of the three herbs exhibited the highest levels of phenolic compounds and, consequently, pronounced antioxidant activity, compared to the other three types of extracts. The aqueous, oil, methanolic, and ethanolic thyme extracts demonstrated the highest total phenolic content—TPC (27.20 mg GAE/g, 8.20 mg GAE/g, 31.70 mg GAE/g, and 310.00 mg GAE/g, respectively), compared to the extracts of the other two plants. These results were consistent with the highest antioxidant activity of the thyme extracts determined using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, the oxygen radical absorbance capacity (ORAC) assay, and the hydroxyl radical averting capacity (HORAC) assay (except for the oil extract examined using the DPPH method). The results from the high-performance liquid chromatography (HPLC) analysis revealed that the flavonoid quercetin-3-ß-glucoside had the highest concentration in thyme (374.5 mg/100 g), while myricetin dominated in the cotton thistle (152.3 mg/100 g). The phenolic acid content analysis showed prevalence of rosmaric acid in the thyme (995 mg/100 g), whereas chlorogenic acid was detected in the highest concentration in the cotton thistle and hawthorn fruit (324 mg/100 g and 27.7 mg/100 g, respectively). The aqueous, methanolic, and ethanolic extracts showed moderate to high antibacterial potential but limited antifungal activity. None of the oil extracts inhibited the test microorganisms used in the study. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

21 pages, 774 KiB  
Article
Essential Oil Composition of Seven Bulgarian Hypericum Species and Its Potential as a Biopesticide
by Ivanka Semerdjieva, Valtcho D. Zheljazkov, Ivayla Dincheva, Neshka Piperkova, Vasilina Maneva, Charles L. Cantrell, Tess Astatkie, Albena Stoyanova and Tanya Ivanova
Plants 2023, 12(4), 923; https://doi.org/10.3390/plants12040923 - 17 Feb 2023
Cited by 11 | Viewed by 2759
Abstract
Hypericum species and especially H. perforatum L. are well known for their therapeutic applications. The present study assessed the essential oil (EO) composition, and antifungal and aphid suppression activity of seven Bulgarian Hypericum species. The EOs were analyzed by GC–MS–FID. Two experiments were [...] Read more.
Hypericum species and especially H. perforatum L. are well known for their therapeutic applications. The present study assessed the essential oil (EO) composition, and antifungal and aphid suppression activity of seven Bulgarian Hypericum species. The EOs were analyzed by GC–MS–FID. Two experiments were conducted. In the first experiment, H. perforatum, H. maculatum, and H. hirsutum were used. Additionally, the EO composition of H. perforatum extracted via hydrodistillation (ClevA) and via commercial steam distillation (Com) were compared. The second experiment compared the EOs of H. perforatum, H. cerastoides, H. rumeliacum, H. montbretii, and H. calycinum (flowers and leaves) extracted via hydrodistillation and collected with n-hexane. Overall, the EO constituents belonged to four classes, namely alkanes, monoterpenes, sesquiterpenes, and fatty acids. The main class for compounds in H. maculatum and H. perforatum (section Hypericum) were sesquiterpenes for both experiments except for H. perforatum (Com). Hypericum montbretii (section Drosocarpium) EO had monoterpenes (38.09%) and sesquiterpenes (37.09%) as major groups, while H. hirsutum EO (section Taeniocarpium) contained predominately alkanes (67.19%). Hypericum hirsutum EO contained cedrol (5.04%), found for the first time in Hypericum species. Fatty acids were the main compounds in H. cerastoides (section Campylopus), while monoterpenes were the most abundant class in H. rumeliacum and H. calycinum EOs. α-Pinene and germacrene D were the major EO constituents of all analyzed Hypericum species except for H. hirsutum and H. cerastoides. Hypericum perforatum EO (Com) had significant repellent and insecticidal activity against two aphid species, Rhopalosiphum padi (Bird Cherry-oat aphid) and Sitobion avenae (English grain aphid) at concentrations of 0%, 1%, 2.5%, 3.5%, 4.5%, and 5%. The tested EOs did not show significant activity against selected economically important agricultural fungal pathogens Fusarium spp., Botrytis cinerea, Colletotrichum spp., Rhizoctonia solani, and Aspergillus sp. The EO of the Hypericum species found in the Bulgarian flora could be utilized for the development of new biopesticides for aphid control. Full article
16 pages, 296 KiB  
Article
EU Institutions: Revisiting Gender Balance and Women’s Empowerment
by Gabriela Belova and Albena Ivanova
Laws 2023, 12(1), 3; https://doi.org/10.3390/laws12010003 - 26 Dec 2022
Cited by 5 | Viewed by 4767
Abstract
Equality Gender balance between men and women is one of the most current controversial issues in recent years that provokes a number of debates, questioning whether it really exists or is instead a myth. This article examines how the issue is regulated by [...] Read more.
Equality Gender balance between men and women is one of the most current controversial issues in recent years that provokes a number of debates, questioning whether it really exists or is instead a myth. This article examines how the issue is regulated by European Union (EU) law and to what extent the legal framework is implemented into the current composition and work of European institutions. The trend of women’s empowerment is examined on the example of some of the EU institutions, mainly the European Commission and the European Parliament. The authors point out that, at the moment, three of the institutions included in the single institutional framework of the EU are headed by women—Ursula von der Leyen, Roberta Metsola, and Christine Lagarde—and the European Ombudsman is a woman. This represents an undisputed achievement in the field of gender balance at a higher political level within the EU as well as the appointment of the first-ever commissioner for equality. The newest secondary legislation framework is observed: Directive 2019/1158/EU on work–life balance and the latest development with regard to the female representation on corporate boards (Women on Boards Directive). The article also concludes that while some of the institutions have managed to make steps towards a real gender balance during recent years, not all of the Member States have experienced such progress, and this is evident in the organization and work of the Council of the EU. Although the introduction of quotas for women on company boards has been assessed ambiguously, it represents a necessary action ‘to break the glass ceiling’ and would give a new impetus to women’s empowerment within the EU. Full article
16 pages, 2191 KiB  
Article
Chemical Composition Assessment of Structural Parts (Seeds, Peel, Pulp) of Physalis alkekengi L. Fruits
by Venelina Popova, Zhana Petkova, Nadezhda Mazova, Tanya Ivanova, Nadezhda Petkova, Magdalena Stoyanova, Albena Stoyanova, Sezai Ercisli, Zuhal Okcu, Sona Skrovankova and Jiri Mlcek
Molecules 2022, 27(18), 5787; https://doi.org/10.3390/molecules27185787 - 7 Sep 2022
Cited by 5 | Viewed by 2768
Abstract
In recent years there has been an extensive search for nature-based products with functional potential. All structural parts of Physalis alkekengi (bladder cherry), including fruits, pulp, and less-explored parts, such as seeds and peel, can be considered sources of functional macro- and micronutrients, [...] Read more.
In recent years there has been an extensive search for nature-based products with functional potential. All structural parts of Physalis alkekengi (bladder cherry), including fruits, pulp, and less-explored parts, such as seeds and peel, can be considered sources of functional macro- and micronutrients, bioactive compounds, such as vitamins, minerals, polyphenols, and polyunsaturated fatty acids, and dietetic fiber. The chemical composition of all fruit structural parts (seeds, peel, and pulp) of two phenotypes of P. alkekengi were studied. The seeds were found to be a rich source of oil, yielding 14–17%, with abundant amounts of unsaturated fatty acids (over 88%) and tocopherols, or vitamin E (up to 5378 mg/kg dw; dry weight). The predominant fatty acid in the seed oils was linoleic acid, followed by oleic acid. The seeds contained most of the fruit’s protein (16–19% dw) and fiber (6–8% dw). The peel oil differed significantly from the seed oil in fatty acid and tocopherol composition. Seed cakes, the waste after oil extraction, contained arginine and aspartic acid as the main amino acids; valine, phenylalanine, threonine, and isoleucine were present in slightly higher amounts than the other essential amino acids. They were also rich in key minerals, such as K, Mg, Fe, and Zn. From the peel and pulp fractions were extracted fruit concretes, aromatic products with specific fragrance profiles, of which volatile compositions (GC-MS) were identified. The major volatiles in peel and pulp concretes were β-linalool, α-pinene, and γ-terpinene. The results from the investigation substantiated the potential of all the studied fruit structures as new sources of bioactive compounds that could be used as prospective sources in human and animal nutrition, while the aroma-active compounds in the concretes supported the plant’s potential in perfumery and cosmetics. Full article
Show Figures

Figure 1

16 pages, 942 KiB  
Article
Phytonutrient Composition of Two Phenotypes of Physalis alkekengi L. Fruit
by Venelina Popova, Nadezhda Mazova, Tanya Ivanova, Nadezhda Petkova, Magdalena Stoyanova, Albena Stoyanova, Sezai Ercisli, Amine Assouguem, Mohammed Kara, Samar Zuhair Alshawwa and Omkulthom Al Kamaly
Horticulturae 2022, 8(5), 373; https://doi.org/10.3390/horticulturae8050373 - 25 Apr 2022
Cited by 6 | Viewed by 3313
Abstract
Physalis alkekengi L. is the only representative of the genus Physalis (Solanaceae) that is native to Bulgaria, found in wild habitats under different climatic and soil conditions. The plant is poisonous, but produces edible fruit, which are a source of functional nutrients—vitamins, phenolic [...] Read more.
Physalis alkekengi L. is the only representative of the genus Physalis (Solanaceae) that is native to Bulgaria, found in wild habitats under different climatic and soil conditions. The plant is poisonous, but produces edible fruit, which are a source of functional nutrients—vitamins, phenolic antioxidants, minerals, etc. Therefore, the objective of this work was to determine the presence of certain nutrient and bioactive substances in two phenotypes of P. alkekengi fruit from Bulgaria, in order to better reveal the prospects of fruit use in nutrition. Different macro and micronutrients were determined in the fruit—protein, ash, lipids, fiber, natural pigments, sugars, amino acids, minerals—and the results showed differences between the phenotypes. Fruit energy values were low and identical in the samples, 43 kcal/100 g. The fruits were rich in extractable phenolics (TPC, 17.74–20.25 mg GAE/100 g FW; flavonoids, 15.84–18.03 mg QE/100 g FW) and demonstrated good antioxidant activity (DPPH, 171.55–221.26 mM TE/g; FRAP, 193.18–256.35 mM TE/g). P. alkekengi fruits were processed to obtain a dry extract with ethanol (yield 47.92–58.6%), and its individual composition was identified (GC-MS). The results in this study supported the presumed phytonutritive potential of P. alkekengi fruit, thus, opening doors for further research. Full article
(This article belongs to the Special Issue The State-of-the-Art Horticulture in the Balkan Region)
Show Figures

Figure 1

17 pages, 1892 KiB  
Article
Metabolic Profiling of Xylooligosaccharides by Lactobacilli
by Ilia Iliev, Tonka Vasileva, Veselin Bivolarski, Albena Momchilova and Iskra Ivanova
Polymers 2020, 12(10), 2387; https://doi.org/10.3390/polym12102387 - 16 Oct 2020
Cited by 32 | Viewed by 4446
Abstract
Three lactic acid bacteria (LAB) strains identified as Lactobacillus plantarum, Lactobacillus brevis, and Lactobacillus sakei isolated from meat products were tested for their ability to utilize and grow on xylooligosaccharides (XOSs). The extent of carbohydrate utilization by the studied strains was [...] Read more.
Three lactic acid bacteria (LAB) strains identified as Lactobacillus plantarum, Lactobacillus brevis, and Lactobacillus sakei isolated from meat products were tested for their ability to utilize and grow on xylooligosaccharides (XOSs). The extent of carbohydrate utilization by the studied strains was analyzed by HPLC. All three strains showed preferences for the degree of polymerization (DP). The added oligosaccharides induced the LAB to form end-products of typical mixed-acid fermentation. The utilization of XOSs by the microorganisms requires the action of three important enzymes: β-xylosidase (EC 3.2.1.37) exo-oligoxylanase (EC 3.2.1.156) and α-L-arabinofuranosidase (EC 3.2.1.55). The presence of intracellular β-D-xylosidase in Lb. brevis, Lb. plantarum, and Lb. sakei suggest that XOSs might be the first imported into the cell by oligosaccharide transporters, followed by their degradation to xylose. The studies on the influence of XOS intake on the lipids of rat liver plasma membranes showed that oligosaccharides display various beneficial effects for the host organism, which are probably specific for each type of prebiotic used. The utilization of different types of oligosaccharides may help to explain the ability of Lactobacillus strains to compete with other bacteria in the ecosystem of the human gastrointestinal tract. Full article
Show Figures

Figure 1

15 pages, 1182 KiB  
Article
GC-MS Composition and Olfactory Profile of Concretes from the Flowers of Four Nicotiana Species
by Venelina Popova, Tanya Ivanova, Albena Stoyanova, Violeta Nikolova, Tsveta Hristeva and Valtcho D. Zheljazkov
Molecules 2020, 25(11), 2617; https://doi.org/10.3390/molecules25112617 - 4 Jun 2020
Cited by 18 | Viewed by 6049
Abstract
The genus Nicotiana (Solanaceae) includes over 70 species, with a long history of traditional use; many of them are nowadays used in bioengineering, biosynthesis, molecular biology, and other studies, while common tobacco, N. tabacum L., is one of the most economically important industrial [...] Read more.
The genus Nicotiana (Solanaceae) includes over 70 species, with a long history of traditional use; many of them are nowadays used in bioengineering, biosynthesis, molecular biology, and other studies, while common tobacco, N. tabacum L., is one of the most economically important industrial crops worldwide. Although Nicotiana species have been extensively investigated, relatively less research has focused on flowers, especially research related to obtaining aromatic products for cosmetic and perfumery use. On the other hand, there is evidence that Nicotiana flowers accumulate various secondary metabolites with a distinct aroma and biological activities, and the flowers represent a biomass available in sufficient quantities. Therefore, this study aimed to determinate the chemical composition (by GC-MS) and the olfactory profiles of a specific type of natural aromatic product (concrete), obtained from the flowers of four Nicotiana species, in a direct comparison between them. The yields of extracted concrete were sufficiently high, varying between the species, 1.4% (N. rustica L.), 2.5% (N. glutinosa L.), 1.6% (N. alata Link&Otto genotype with white flowers), 2.7% (N. alata genotype with pink flowers), 3.2% (N. tabacum, Oriental type), and 5.2% (N. tabacum, Virginia type). The major components of the obtained concretes belonged to different chemical classes: N. rustica and N. tabacum (OR), the hydrocarbons n-tetratriacontane (14.5%; 15.0%) and n-triacontane (12.1%; 13.3%), and 3-methyl-pentanoic acid (11.1%; 12.2%); N. glutinosa, the diterpenes sclareol (25.9%), 3-α-hydroxy-manool (16.3%), and 13-epimanool (14.9%); N. alata (WF), the phenylpropanoid terephthalic acid and di(2-ethylhexyl) ester (42.9%); N. alata (PF), the diterpene tributyl acetylcitrate (30.7%); and N. tabacum (FCV), the hydrocarbons n-hexacosane (12.9%) and n-pentacosane (12.9%). Each of the flower concretes revealed a characteristic odor profile. This is the first report about Nicotiana species as a source for obtaining flower concretes; these initial results about the concrete yield, olfactory profile, and chemical composition are a prerequisite for the possible processing of Nicotiana flowers into new aromatic products for use in perfumery and cosmetics. The study provides new data in favor of the potential of the four Nicotiana species as aromatic plants, as well as a possible alternative use of flowers, a valuable, but discarded, plant material in other applications. Full article
Show Figures

Graphical abstract

16 pages, 1472 KiB  
Article
Terpenoids in the Essential Oil and Concentrated Aromatic Products Obtained from Nicotiana glutinosa L. Leaves
by Venelina Popova, Tanya Ivanova, Albena Stoyanova, Violeta Nikolova, Tsveta Hristeva, Velizar Gochev, Yonko Yonchev, Nikolay Nikolov and Valtcho D. Zheljazkov
Molecules 2020, 25(1), 30; https://doi.org/10.3390/molecules25010030 - 20 Dec 2019
Cited by 31 | Viewed by 5383
Abstract
N. glutinosa L. is a relatively less studied Nicotiana species (Solanaceae), although there are data about its importance as a model plant in viral control studies, as a gene donor in tobacco hybridization and as a source of agents with insecticidal or fungicidal [...] Read more.
N. glutinosa L. is a relatively less studied Nicotiana species (Solanaceae), although there are data about its importance as a model plant in viral control studies, as a gene donor in tobacco hybridization and as a source of agents with insecticidal or fungicidal effects. The biological activities of the species were associated mostly with the presence of leaf surface metabolites, in particular diterpenes and sucrose esters. The aim of this study was to identify the chemical composition of the essential oil (EO) and two aromatic extraction products (concrete and resinoid) obtained from N. glutinosa L. leaves. GC-MS analysis identified 26 components in the EO (representing 97.3% of total oil content), which contained mostly diterpene compounds with major components manool (14.2%), sclarene (8.4%) and manoyl oxide (8.1%). The number of compounds identified in the concrete was 37 (95.5% of the total content) and the major component was the diterpene alcohol sclareol (14.2%). In the resinoid, 30 volatile components (representing 95.1% of resinoid content) were identified, with major components nicotine (32.9%), α-tocopherol (8.2%), tridecanoin (6.9%), sclareol (6.9%), and solanone (6.9%). The group of bicyclic diterpenes had the largest share in the diterpene fraction of the products (57.3%, 91.7%, and 86.3%, respectively for the EO, concrete, and resinoid). Considering the abundance of sclareol in the aromatic products, the antimicrobial activity of the pure substance was determined. Sclareol was highly effective against a set of medicinally important yeasts; Candida albicans АТСС 10231, C. glabrata ATCC 90030, C. parapsilosis clinical isolate, and C. tropicalis NBIMCC 23, while being less effective against the studied Gram-positive and Gram-negative bacteria. Data from the study on N. glutinosa aromatic products composition may be of interest to the aroma industries for their possible use in perfumery and cosmetics. Full article
Show Figures

Figure 1

Back to TopTop