Physicochemical, Antioxidant, and Antimicrobial Properties of Three Medicinal Plants from the Western Part of the Rhodope Mountains, Bulgaria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Plant Material
2.1.2. Plant Extracts
2.1.3. Test Microorganisms
2.1.4. Culture Media
2.2. Methods
2.2.1. Physicochemical Analyses
2.2.2. Total Phenolic Content
2.2.3. Antioxidant Activity
2.2.4. High-Performance Liquid Chromatography (HPLC) Analysis of Phenolic Compounds
2.2.5. Antimicrobial Activity Assay
2.2.6. Statistical Analysis
3. Results
3.1. Polyphenolic Content and Antioxidant Activity
3.2. Flavonoids and Phenolic Acid Contents
3.3. Antimicrobial Activity
4. Discussion
4.1. Physicochemical Characteristics
4.2. Polyphenolic Content and Antioxidant Activity
4.3. Flavonoid and Phenolic Acid Content
4.4. Antimicrobial Activity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Scalbert, A.; Johnson, I.T.; Saltmarsh, M. Polyphenols: Antioxidants and beyond. Am. J. Clin. Nutr. 2005, 81, 215–217. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.; Mukhtar, H. Tea polyphenols for health promotion. Life Sci. 2007, 81, 519–533. [Google Scholar] [CrossRef] [PubMed]
- Naruszewicz, M.; Laniewska, I.; Millo, B.; Dluniewski, M. Combination therapy of statin with flavonoids rich extract from chokeberry fruits enhanced reduction in cardiovascular risk markers in patients after myocardial infraction (MI). Atherosclerosis 2007, 194, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Ercisli, S.; Yanar, M.; Sengul, M.; Yildiz, H.; Topdas, E.F.; Taskin, T.; Yilmaz, K.U. Physico-chemical and biological activity of hawthorn (Crataegus spp. L.) fruits in Turkey. Acta Sci. Pol. Hortorum Cultus 2015, 14, 83–93. [Google Scholar] [CrossRef]
- Voca, S.; Dobricevic, N.; Druzic, J.; Duralija, B.; Babojelic, M.S.; Dermisek, D.; Cmelik, Z. The change of fruit quality parameters in day-neutral strawberries cv. Diamante grown out of season. Int. J. Food Sci. Nutr. 2009, 60, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Ercisli, S.; Sengul, M.; Yildiz, H.; Sener, D.; Duralija, B.; Voca, S.; Purgar, D. Phytochemical and antioxidant characteristics of medlar fruits (Mespilus germanica L.). J. Appl. Bot. Food Qual. 2012, 85, 86–90. [Google Scholar]
- Kostić, D.A.; Dimitrijević, D.S.; Mitić, S.S.; Mitić, M.N.; Stojanović, G.S.; Zivanović, A.V. Phenolic content and antioxidant activities of fruit extracts of Morusnigra (Moraceae) from Southeast Serbia. Trop. J. Pharm. Res. 2013, 12, 105–110. [Google Scholar] [CrossRef]
- Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef]
- Hegedus, A.; Balogh, E.; Engel, R.; Sipos, B.Z.; Papp, J.; Blazovics, A.; Stefanovits-Banyai, E. Comparative nutrient element and antioxidant characterisation of berry fruit species and cultivars grown in Hungary. Hort. Sci. 2008, 43, 1711–1715. [Google Scholar] [CrossRef]
- Tulipani, S.; Mezzetti, B.; Capocasa, F.; Bompadre, S.; Beekwilder, J.; De Vos, C.H.; Capanoglu, E.; Bovy, A.; Battino, M. Antioxidants, phenolic compounds, and nutritional quality of different strawberry genotypes. J. Agric. Food Chem. 2008, 56, 694–704. [Google Scholar] [CrossRef]
- Tomosaka, H.; Chin, Y.W.; Salim, A.A.; Keller, W.J.; Chai, H.; Kinghorn, A.D. Antioxidant and cytoprotective compounds from Berberis vulgaris (barberry). Phytother. Res. 2008, 22, 979–981. [Google Scholar] [CrossRef]
- Popovici, V.; Sturza, R.; Ghendov-Moşanu, A. Physico-chemical characteristics of lipophilic extracts of rosehip (Rosa Canina) and hawthorn (Crataegus) fruits. In Proceedings of the International Conference Intelligent Valorisation of Agro-Food Industrial Wastes, Chişinău, Moldova, 7–8 October 2021; p. 46. [Google Scholar]
- Mincheva, I.; Naychov, Z.; Radev, C.; Aneva, I.; Rastrelli, L.; Kozuharova, E. Ethnobotanical and Ethnopharmacological Study in the Bulgarian Rhodopes Mountains—Part I. Diversity 2022, 14, 686. [Google Scholar] [CrossRef]
- Zahariev, D.; Taneva, L.; Racheva, K. Medicinal plants on the territory of the Municipality of Dospat. J. BioSci. Biotech. 2015, 6, 59–71. [Google Scholar]
- Mincheva, I.; Naychov, Z.; Radev, C.; Aneva, I.; Rastrelli, L.; Kamusheva, M.; Nikolov, N.; Kozuharova, E. Ethnobotanical and Ethnopharmacological Study in the Bulgarian Mountain Rhodopes: Part II—Contemporary Use of Medicinal Plants. Diversity 2023, 15, 482. [Google Scholar] [CrossRef]
- Liu, S.; Chang, X.; Liu, X.; Shen, Z. Effects of pretreatments on anthocyanin composition, phenolics contents and antioxidant capacities during fermentation of hawthorn (Crataegus pinnatifida) drink. Food Chem. 2016, 212, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Kallio, H.; Lü, D.; Zhou, C.; Yang, B. Quantitative analysis of phenolic compounds in Chinese hawthorn (Crataegus spp.) fruits by high performance liquid chromatography-electrospray ionisation mass spectrometry. Food Chem. 2011, 127, 1370–1377. [Google Scholar] [CrossRef] [PubMed]
- Lund, J.A.; Brown, P.N.; Shipley, P.R. Quantification of North American and European Crataegus flavonoids by nuclear magnetic resonance spectrometry. Fitoterapia 2020, 143, 104537. [Google Scholar] [CrossRef] [PubMed]
- Dokumacı, Y.K.; Uslu, N.; Hacıseferoğulları, H.; Örnek, M.N. Determination of Some Physical and Chemical Properties of Common Hawthorn (Crataegus Monogyna Jacq. Var. Monogyna). Erwerbs-Obstbau 2021, 63, 99–106. [Google Scholar] [CrossRef]
- Stef, L.; Dumitrescu, G.; Drinceanu, D.; Stef, D.; Mot, D.; Julean, C.; Corcionivoschi, N. The effect of medicinal plants and plant extracted oils on broiler duodenum morphology and immunological profile. Rom. Biotech. Lett. 2009, 14, 4606–4614. [Google Scholar]
- Belabdelli, F.; Bekhti, N.; Piras, A.; Benhafsa, F.M.; Ilham, M.; Adil, S.; Anes, L. Chemical composition, antioxidant and antibacterial activity of Crataegus monogyna leaves’ extracts. Nat. Prod. Res. 2022, 36, 3234–3239. [Google Scholar] [CrossRef]
- Tadić, V.M.; Dobrić, S.; Marković, G.M.; Ðorđević, S.M.; Arsić, I.A.; Menković, N.R.; Stević, T. Anti-inflammatory, Gastroprotective, Free-Radical-Scavenging, and Antimicrobial Activities of Hawthorn Berries Ethanol Extract. J. Agric. Food Chem. 2008, 56, 7700–7709. [Google Scholar] [CrossRef] [PubMed]
- Kostić, D.A.; Velicković, J.M.; Mitić, S.S.; Mitić, M.N.; Randelović, S.S. Phenolic Content, and Antioxidant and Antimicrobial Activities of Crataegus Oxyacantha L. (Rosaceae) Fruit Extract from Southeast Serbia. Trop. J. Pharm. Res. 2012, 11, 117–124. [Google Scholar] [CrossRef]
- Ziouche, N.; Derradji, L.; Hadef, Y. Determination of polyphenolic components by high performance liquid chromatography (HPLC) and evaluation of the antioxidant activity of leaves and fruits of Crataegus mongyna Jacq. GSC Biolog. Pharm. Sci. 2020, 13, 251–256. [Google Scholar] [CrossRef]
- Aneva, I.; Zhelev, P.; Bonchev, G.; Boycheva, I.; Simeonova, S.; Kancheva, D. DNA Barcoding Study of Representative Thymus Species in Bulgaria. Plants 2022, 11, 270. [Google Scholar] [CrossRef] [PubMed]
- Aneva, I.; Zhelev, P.; Nikolova, M.; Savev, S. Resource assessment of Adonis vernalis in representative Natural localities in western Bulgaria. In Proceedings of the X International Scientific Agricultural Symposium “Agrosym 2019”, Sarajevo, Bosnia and Herzegovina, 3–6 October 2019; Department of Plant and Fungal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences: Sofia, Bulgaria, 2019; pp. 1356–1362. [Google Scholar]
- Djenane, D.; Yangüela, J.; Montañés, L.; Djerbal, M.; Roncalésa, P. Antimicrobial activity of Pistacia lentiscus and Satureja montana essential oils against Listeria monocytogenes CECT 935 using laboratory media: Efficacy and synergistic potential in minced beef. Food Control 2011, 22, 1046–1053. [Google Scholar] [CrossRef]
- Hyldgaard, M.; Mygind, T.; Meyer, R.L. Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components. Front. Microbiol. 2012, 3, 12. [Google Scholar] [CrossRef] [PubMed]
- Askari, F.; Sefidcon, F.; Rezaee, M.B. Essential oil of Thymus pubescens Boiss. Et kotschy ex celak from different locality of lar valley. Iran. J. Med. Aromat. Plants 2002, 12, 87–127. [Google Scholar] [CrossRef]
- Sefidkon, F.; Fatemeh, A. Essential oil composition of 5 thymus species. Iran. J. Med. Aromat. Plants 2002, 12, 29–51. [Google Scholar] [CrossRef]
- Cavers, P.B.; Qaderi, M.M.; Threadgill, P.F.; Steel, M.G. The Biology of Canadian Weeds. 147. Onopordum acanthium L. Can. J. Plant Sci. 2011, 91, 739–758. [Google Scholar] [CrossRef]
- Rolnik, A.; Olas, B. The plants of the Asteraceae family as agents in the protection of human health. Int. J. Mol. Sci. 2021, 22, 3009. [Google Scholar] [CrossRef]
- Zhelev, I.; Merdzhanov, P.; Angelova-Romova, M.; Zlatanov, M.; Antova, G.; Dimitrova-Dyulgerova, I.; Stoyanova, A. Lipid Composition of Carduus thoermeri Weinm., Onopordum acanthium L. and Silybum marianum L., growing in Bulgaria. Bulg. J. Agric. Sci. Agric. Acad. 2014, 20, 622–627. [Google Scholar] [CrossRef]
- Arfaoui, M.O.; Renaud, J.; Ghazghazi, H.; Boukhchina, S.; Mayer, P. Variation in oil content, fatty acid and phytosterols profile of Onopordum acanthium L. during seed development. Nat. Prod. Res. 2014, 28, 2293–2300. [Google Scholar] [CrossRef] [PubMed]
- ISO 939:2021; Spices and Condiments—Determination of Moisture Content. Bulgarian Institute for Standardization: Sofia, Bulgaria, 2021.
- ISO 928:2004; Spices and Condiments—Determination of Total Ash. Bulgarian Institute for Standardization: Sofia, Bulgaria, 2004.
- 7169:1989; Products from Processed Fruits and Vegetables. Determination of Sugar’s Content. Bulgarian Institute for Standardization: Sofia, Bulgaria, 1989.
- 15438:1982; Tinned Meat. Method for Determination of Protein Content According to Keldal. Bulgarian Institute for Standardization: Sofia, Bulgaria, 1982.
- 11812:1991; Processed Fruits and Vegetable Products. Determination of Ascorbic Acid Content (Vitamin C). Bulgarian Institute for Standardization: Sofia, Bulgaria, 1991.
- Ivanov, I.G.; Vrancheva, R.Z.; Marchev, A.S.; Petkova, N.T.; Aneva, I.Y.; Denev, P.P.; Georgiev, V.G.; Pavlov, A.I. Antioxidant activities and phenolic compounds in Bulgarian Fumaria species. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 296–306. [Google Scholar]
- Teneva, D.; Pencheva, D.; Petrova, A.; Ognyanov, M.; Georgiev, Y.; Denev, P. Addition of Medicinal Plants Increases Antioxidant Activity, Color, and Anthocyanin Stability of Black Chokeberry (Aronia melanocarpa) Functional Beverages. Plants 2022, 11, 243. [Google Scholar] [CrossRef] [PubMed]
- Tumbarski, Y.; Deseva, I.; Mihaylova, D.; Stoyanova, M.; Krastev, L.; Nikolova, R.; Yanakieva, V.; Ivanov, I. Isolation, Characterisation and Amino Acid Composition of a Bacteriocin Produced by Bacillus methylotrophicus Strain BM47. Food Technol. Biotech. 2018, 56, 546–552. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, J.M.; Munekata, P.E.S. Phenolic compounds of green tea: Health benefits and technological application in food. Asian Pac. J. Trop. Biomed. 2016, 6, 709–719. [Google Scholar] [CrossRef]
- Tonguc, M.; Erbas, S. Evaluation of fatty acid compositions and some seed characters of common wild plant species of Turkey. Turk. J. Agric. For. 2012, 36, 673–679. [Google Scholar] [CrossRef]
- Petkova, N.; Hambarlyiska, I.; Angelova, E.; Ivanov, I. Fructans, polyphenols and antioxidant activity in edible roots and thistles from seven medicinal plants. CMU J. Nat. Sci. 2021, 20, e2021082. [Google Scholar] [CrossRef]
- Balladin, D.A.; Headley, O. Evaluation of solar dried thyme (Thymus vulgaris Linné) herbs. Renew. Energy 1999, 17, 523–531. [Google Scholar] [CrossRef]
- Shahar, B.; Indira, A.; Santosh, O.; Dolma, N.; Chongtham, N. Nutritional composition, antioxidant activity and characterisation of bioactive compounds from Thymus serpyllum L.: An underexploited wild aromatic plant. Meas. Food. 2023, 10, 100092. [Google Scholar] [CrossRef]
- Li, W.Q.; Hu, Q.P.; Xu, J.G. Changes in physicochemical characteristics and free amino acids of hawthorn (Crataegus pinnatifida) fruits during maturation. Food Chem. 2015, 175, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Özcan, M.; Haciseferoğullari, H.; Marakoğlu, T.; Arslan, D. Hawthorn (Crataegus spp.) fruit: Some physical and chemical properties. J. Food Eng. 2005, 69, 409–413. [Google Scholar] [CrossRef]
- Mironeasa, S.; Todosi Sănduleac, E.; Iuga, M. Physico-chemical characteristics, antioxidant activity and mineral content of hawthorn fruits from Suceava County. Food Environ. Safet. J. 2016, 15, 108–116. [Google Scholar]
- Yanar, M.; Kaçar, Y.A.; Uğur, Y. Chemical properties of some wild fruit species in Turkey. In Proceedings of the III International Agricultural, Biological & Life Science Conference, Edirne, Turkey, 1–3 September 2021; pp. 496–501. [Google Scholar]
- Pinelo, M.; Rubilar, M.; Sineiro, J.; Nunez, M.J. Extraction of antioxidant phenolics from almond hulls (Prunus amygdalus) and pine sawdust (Pinus pinaster). Food Chem. 2004, 85, 267–273. [Google Scholar] [CrossRef]
- Goli, A.H.; Barzegar, M.; Sahari, M.A. Antioxidant activity, total phenolic compounds of pistachio (Pistachia vera) hull extracts. Food Chem. 2005, 92, 521–525. [Google Scholar] [CrossRef]
- Sun, T.; Ho, C.-T. Antioxidant activities of buckwheat extracts. Food Chem. 2005, 90, 743–749. [Google Scholar] [CrossRef]
- Roby, M.H.H.; Sarhan, M.A.; Selim, K.A.H.; Khalel, K.I. Evaluation of antioxidant activity, total phenols and phenolic compounds in thyme (Thymus vulgaris L.), sage (Salvia officinalis L.), and marjoram (Origanum majorana L.) extracts. Ind. Crop. Prod. 2013, 43, 827–831. [Google Scholar] [CrossRef]
- Köksal, E.; Bursal, E.; Gülçin, İ.; Korkmaz, M.; Çağlayan, C.; Gören, A.C.; Alwasel, S.H. Antioxidant activity and polyphenol content of Turkish thyme (Thymus vulgaris) monitored by liquid chromatography and tandem mass spectrometry. Int. J. Food Prop. 2016, 20, 514–525. [Google Scholar] [CrossRef]
- Sarfaraz, D.; Rahimmalek, M.; Saeidi, G. Polyphenolic and molecular variation in Thymus species using HPLC and SRAP analyses. Sci. Rep. 2021, 11, 5019. [Google Scholar] [CrossRef]
- Georgieva, P.I.; Vasileva, I.N.; Parzhanova, A.B.; Chalova, V.I.; Ivanova, S.D.; Slavov, A.M. Factors affecting the amount of biologically active substances in extracts of Bulgarian medical plants typical of Western Rhodopes. Bulg. Chem. Commun. 2022, 54, 74–80. [Google Scholar]
- Parzhanova, A.B.; Petkova, N.T.; Ivanov, I.G.; Ivanova, S.D. Evaluation of biologically active substance and antioxidant potential of medicinal plants extracts for food and cosmetic purposes. J. Pharm. Sci. Res. 2018, 10, 1804–1809. [Google Scholar]
- Wang, C.Y.; Chen, C.T.; Wang, S.Y. Changes of flavonoid content and antioxidant capacity in blueberries after illumination with UV-C. Food Chem. 2009, 117, 426–431. [Google Scholar] [CrossRef]
- Keinänen, M.; Julkunen-Tiitto, R.; Mutikainen, P.; Walls, M.; Ovaska, J.; Vapaavuori, E. Trade-offs in phenolic metabolism of silver birch: Effects of fertilization, defoliation, and genotype. Ecology 1999, 80, 1970–1986. [Google Scholar] [CrossRef]
- Asl, R.M.Z.; Niakousari, M.; Gahruie, H.H.; Saharkhiz, M.J.; Khaneghah, A.M. Study of two-stage ohmic hydro-extraction of essential oil from Artemisia aucheri Boiss.: Antioxidant and antimicrobial characteristics. Food Res. Int. 2018, 107, 462–469. [Google Scholar] [CrossRef]
- Wang, S.Y.; Bunce, J.A.; Maas, J.L. Elevated carbon dioxide increases contents of antioxidant compounds in field-grown strawberries. J. Agric. Food Chem. 2003, 51, 4315–4320. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Rodríguez, B.M.; De Ancos, B.; Sánchez-Moreno, C.; Fernández-Ruiz, V.; de Cortes Sánchez-Mata, M.; Cámara, M.; Tardío, J. Wild blackthorn (Prunus spinosa L.) and hawthorn (Crataegus monogyna Jacq.) fruits as valuable sources of antioxidants. Fruits 2014, 69, 61–73. [Google Scholar] [CrossRef]
- Stoyanova, M. Investigation of the Content of Biologically Active Substances in Extracts of Fruits of Rosaceae Family. PhD Thesis, University of Food Technologies, Plovdiv, Bulgaria, 2013. [Google Scholar]
- Khokhlova, K.; Zdoryk, O.; Vyshnevska, L. Chromatographic characterisation on flavonoids and triterpenes of leaves and flowers of 15 Crataegus L. species. Nat. Prod. Res. 2020, 34, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Keser, S.; Celik, S.; Turkoglu, S.; Yilmaz, Ö.; Turkoglu, I. The investigation of some bioactive compounds and antioxidant properties of hawthorn (Crataegus monogyna subsp. monogyna Jacq). J. Intercult. Ethnopharmacol. 2014, 3, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Al-Juraifani, A.A. Antimicrobial activity of some medicinal plants used in Saudi Arabia. Can. J. Pure App. Sci. 2011, 5, 1509–1512. [Google Scholar]
- Mokhtari, R.; Fard, M.K.; Rezaei, M.; Moftakharzadeh, S.A.; Mohseni, A. Antioxidant, Antimicrobial Activities, and Characterisation of Phenolic Compounds of Thyme (Thymus vulgaris L.), Sage (Salvia officinalis L.), and Thyme–Sage Mixture Extracts. J. Food Qual. 2023, 9, 2602454. [Google Scholar] [CrossRef]
- Martinelli, F.; Perrone, A.; Yousefi, S.; Papini, A.; Castiglione, S.; Guarino, F.; Cicatelli, A.; Aelaei, M.; Arad, N.; Gholami, M.; et al. Botanical, Phytochemical, Anti-Microbial and Pharmaceutical Characteristics of Hawthorn (Crataegus monogyna Jacq.), Rosaceae. Molecules 2021, 26, 7266. [Google Scholar] [CrossRef]
- Yiğit, D.; Yiğit, N.; Sülün, A. Screening of antioxidant and antimicrobial potential of hawthorn (Crataegus monogyna) fruit and leaves extracts. Erz. Univ. J. Sci. Tech. 2014, 7, 149–158. [Google Scholar] [CrossRef]
- Pugna, A.-A.; Nagy, I.-N.; Socaci, S.A.; Hodișan, B.; Birișdorhoi, S.-E.; T.ofană, M. Evalation of Antioxidant and Antimicrobial Activities of Crataegus monogyna. Hop. Med. Plants 2022, 1–2, 287–295. [Google Scholar]
- Zare, K.; Nazemyeh, H.; Lotfipour, F.; Farabi, S.; Ghiamirad, M.; Barzegari, A. Antibacterial Activity and Total Phenolic Content of the Onopordon acanthium L. Seeds. Pharm. Sci. 2014, 20, 6–11. [Google Scholar]
- Móricz, Á.M.; Krüzselyi, D.; Alberti, Á.; Darcsi, A.; Horváth, G.; Csontos, P.; Béni, S.; Ott, P.G. Layer chromatography-bioassays directed screening and identification of antibacterial compounds from Scotch thistle. J. Chromatogr. A 2017, 1524, 266–272. [Google Scholar] [CrossRef]
Plant | Region | District | GPS Coordinates | Altitude, m |
---|---|---|---|---|
Thyme (Thymus callieri Borbás ex Velen.) | Near Dospat | Smolyan | 41°66′ N 24°16′ E | 1214 |
Cotton thistle (Onopordum acanthium L.) | Dospat, Chillii locality | Smolyan | 41°66′ N 24°16′ E | 1207 |
Hawthorn (Crataegus monogyna Jacq.) | Satovcha, Aspen locality | Blagoevgrad | 41°63′N 24°51′ E | 1134 |
Parameter | Standard |
---|---|
Moisture | BSS ISO 939:2021 [35] |
Ash | BSS ISO 928:2004 [36] |
Carbohydrates | BSS 7169:1989 [37] |
Proteins | BSS 15438:1982 [38] |
Vitamin C | BSS 11812:1991 [39] |
Parameter | Thyme | Cotton Thistle | Hawthorn Fruit |
---|---|---|---|
Moisture, % | 8.15 ± 0.25 ab | 7.53 ± 0.24 b | 8.50 ± 0.25 a |
Ash, % | 6.62 ± 0.01 a | 4.91 ± 0.01 b | 2.62 ± 0.00 c |
Carbohydrates, % | 3.20 ± 0.22 b | 0.60 ± 0.06 c | 4.20 ± 0.22 a |
Proteins, % | 11.30 ± 0.73 a | 8.33 ± 0.55 b | 2.95 ± 0.26 c |
Vitamin C, mg/100 g | 571.00 ± 2.02 a | 407.00 ± 1.35 c | 430.00 ± 1.57 b |
Plant Extract | Total Polyphenols, mg GAE/g | Antioxidant Activity | ||||||
---|---|---|---|---|---|---|---|---|
DPPH, μmol TE/g | ||||||||
Aqueous | Oil | MeOH | EtOH | Aqueous | Oil | MeOH | EtOH | |
Thyme | 27.25 ± 0.61 b,A | 8.20 ± 0.13 c,A | 31.70 ± 0.75 b,A | 310.00 ± 4.25 a,A | 35.93 ± 0.45 c,A | 15.66 ± 0.21 d,C | 320.75 ± 3.39 b,A | 397.48 ± 2.98 a,A |
Cotton thistle | 6.20 ± 0.05 c,C | 5.30 ± 0.02 c,B | 14.90 ± 0.31 b,B | 168.00 ± 2.05 a,B | 5.26 ± 0.03 c,C | 19.93 ± 0.18 b,B | 4.67 ± 0.04 c,B | 45.00 ± 1.12 a,B |
Hawthorn fruit | 12.80 ± 0.14 b,B | 3.70 ± 0.00 d,C | 9.20 ± 0.08 c,C | 13.60 ± 0.11 a,C | 11.28 ± 0.15 c,B | 21.80 ± 0.23 b,A | 2.09 ± 0.01 d,C | 38.99 ± 0.89 a,C |
Plant Extract | Antioxidant Activity | |||||||
---|---|---|---|---|---|---|---|---|
ORAC, µmol TE/g | HORAC, µmol GAE/g | |||||||
Aqueous | Oil | MeOH | EtOH | Aqueous | Oil | MeOH | EtOH | |
Thyme | 1483.08 ± 10.3 b,A | 29.63 ± 1.11 d,A | 458.98 ± 3.14 c,A | 3221.95 ± 41.92 a,A | 426.72 ± 6.91 b,A | n.d. | 170.19 ± 6.09 c,A | 961.21 ± 2.36 a,A |
Cotton thistle | 241.05 ± 0.43 b,C | 11.41 ± 0.56 d,B | 117.49 ± 1.33 c,C | 1742.49 ± 33.80 a,C | 48.93 ± 2.74 b,C | n.d. | 42.13 ± 0.82 b,C | 716.37 ± 6.75 a,B |
Hawthorn fruit | 469.51 ± 0.81 b,B | 10.30 ± 0.52 d,B | 177.13 ± 5.99 c,B | 1891.73 ± 12.67 a,B | 173.05 ± 6.22 b,B | n.d. | 65.24 ± 7.06 c,B | 669.83 ± 1.39 a,C |
70% EtOH Extracts | Quercetin-3-β- Glucoside, mg/100 g | Myricetin, mg/100 g | Kaempferol, mg/100 g | Apigenin, mg/100 g | Luteolin, mg/100 g |
---|---|---|---|---|---|
Thyme | 374.5 ± 4.0 | - | 16.1 ± 0.1 | 16.4 ± 0.4 | 73.8 ± 0.2 |
Cotton thistle | - | 152.3 ± 0.3 | 42.2 ± 0.1 | 85.1 ± 0.2 | - |
Hawthorn fruit | 48.5 ± 0.1 | 10.9 ± 0.2 | - | - | - |
70% EtOH Extracts | Neochlorogenic Acid, mg/100 g | Chlorogenic Acid, mg/100 g | Gallic Acid, mg/100 g | Rosmaric Acid, mg/100 g | Caffeic Acid, mg/100 g |
---|---|---|---|---|---|
Thyme | - | - | - | 995.0 ± 0.6 | 26.0 ± 1.6 |
Cotton thistle | 19.2 ± 0.1 | 324.0 ± 4.4 | 5.8 ± 0.1 | - | - |
Hawthorn fruit | 12.3 ± 0.5 | 27.7 ± 0.1 | - | - | 9.4 ± 0.1 |
Test Microorganism | Inhibition Zones (IZ), mm | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Aqueous | MeOH | 70% EtOH | Controls (10 mg/mL) | |||||||||
T * | HF ** | CT *** | T * | HF ** | CT *** | T * | HF ** | CT *** | Amp. | Pen. | Cypr. | |
B. subtilis ATCC 6633 | - | 10 | - | 12 | 10 | 11 | 14 | 14 | 20 | 19 | 18 | 32 |
B. amyloliquefaciens 4BCL-YT | - | - | - | 10 | 8 | 10 | 13 | 9 | - | 30 | 32 | 30 |
S. aureus ATCC 25923 | 10 | - | - | 9 | - | - | 18 | - | 17 | 34 | 36 | 35 |
L. monocytogenes NBIMCC 8632 | 13 | 13 | 13 | 9 | - | - | 14 | 12 | 13 | 30 | 28 | 21 |
E. faecalis ATCC 29212 | - | 13 | 13 | 8 | - | - | 12 | 10 | 13 | 30 | 30 | 30 |
M. luteus 2YC-YT | 20 | 15 | 22 | 10 | 9 | 9 | 17 | 16 | 16 | 33 | 33 | 33 |
S. enteritidis ATCC 13076 | 12 | - | 12 | 12 | - | - | 13 | 10 | 13 | 35 | 30 | 36 |
S. typhimurium NBIMCC1672 | - | - | - | 12 | 10 | 11 | 11 | 11 | 11 | 14 | 19 | 33 |
K. pneumoniae ATCC 13883 | - | - | - | 14 | 14 | 10 | 14 | 11 | 10 | 19 | 21 | 29 |
E. coli ATCC 25922 | - | 8 | - | 12 | 10 | 10 | 18 | 15 | 18 | 18 | 18 | 30 |
P. vulgaris ATCC 6380 | - | - | - | 13 | 12 | 12 | 12 | 11 | 8 | 25 | 19 | 28 |
lP. aeruginosa ATCC 9027 | - | 8 | - | 13 | 10 | 12 | 17 | 15 | 16 | 23 | 20 | 33 |
Test Microorganism | Inhibition Zones (IZ), mm | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Aqueous | MeOH | 70% EtOH | Controls (10 mg/mL) | |||||||||
T * | HF ** | CT *** | T * | HF ** | CT *** | T * | HF ** | CT *** | Fluc. | N. (M) | N. (W) | |
C. albicans NBIMCC 74 | - | - | - | 8 | 8 | 8 | - | - | 8 | - | 35 | 20 |
S. cerevisiae ATCC 9763 | - | - | - | 8 | - | - | 8 | - | 8 | - | 30 | 20 |
A. niger ATCC 1015 | - | - | - | 8 | - | - | - | - | 8 | 15 | 35 | 23 |
A. flavus | - | - | - | - | - | - | - | - | - | - | 30 | 16 |
P. chrysogenum | 10 | 11 | 15 | 10 | 10 | 8 | 8 | - | 8 | - | 35 | 13 |
Rhizopus sp. | 11 | 12 | 10 | 8 | - | - | 8 | - | 8 | - | 32 | 16 |
F. moniliforme ATCC 38932 | - | - | - | 8 | - | - | 8 | - | 8 | - | 29 | 15 |
Mucor sp. | - | - | - | - | - | - | - | - | - | - | 35 | 18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parzhanova, A.; Yanakieva, V.; Vasileva, I.; Momchilova, M.; Dimitrov, D.; Ivanova, P.; Tumbarski, Y. Physicochemical, Antioxidant, and Antimicrobial Properties of Three Medicinal Plants from the Western Part of the Rhodope Mountains, Bulgaria. Life 2023, 13, 2237. https://doi.org/10.3390/life13122237
Parzhanova A, Yanakieva V, Vasileva I, Momchilova M, Dimitrov D, Ivanova P, Tumbarski Y. Physicochemical, Antioxidant, and Antimicrobial Properties of Three Medicinal Plants from the Western Part of the Rhodope Mountains, Bulgaria. Life. 2023; 13(12):2237. https://doi.org/10.3390/life13122237
Chicago/Turabian StyleParzhanova, Albena, Velichka Yanakieva, Ivelina Vasileva, Maria Momchilova, Dimitar Dimitrov, Petya Ivanova, and Yulian Tumbarski. 2023. "Physicochemical, Antioxidant, and Antimicrobial Properties of Three Medicinal Plants from the Western Part of the Rhodope Mountains, Bulgaria" Life 13, no. 12: 2237. https://doi.org/10.3390/life13122237