Arsenic Exposure During Pregnancy and Childhood: Factors Explaining Changes over a Decade
Abstract
1. Introduction
2. Methods
2.1. Design and Study Population
2.2. Inorganic Arsenic Exposure
2.3. Covariates
2.4. Statistical Analysis
3. Results
3.1. Characteristics of Pregnant Women in Measurement 1 and Their Children in Measurement 2
3.2. Inorganic Arsenic Concentration During Pregnancy and Childhood
3.3. Bivariate Analysis Between Study Variables and Inorganic Arsenic Concentration in Pregnant Women and Children
3.4. Multivariate Model
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Organización Mundial de la Salud. Arsénico. Datos y Cifras 2022. Available online: https://www.who.int/es/news-room/fact-sheets/detail/arsenic (accessed on 18 July 2024).
- National Institute of Environmental Health Sciences. Arsenic. Health and Education. Environmental Health Topics. 2024. Available online: https://www.niehs.nih.gov/health/topics/agents/arsenic (accessed on 18 July 2024).
- World Health Organization. Guidelines for drinking-water quality: Small Water Supplies. 2024. Available online: https://www.who.int/publications/i/item/9789240088740 (accessed on 4 August 2024).
- Shittu, E.; Lakhanpaul, M.; Vigurs, C.; Sarkar, K.; Koch, M.; Parikh, P.; Campos, L.C. A rapid systematic scoping review of research on the impacts of water contaminated by chemicals on very young children. Sci. Total. Environ. 2023, 891, 164604. [Google Scholar] [CrossRef] [PubMed]
- UK Health Security Agency. Arsenic: Toxicological Overview. 2024. Available online: https://www.gov.uk/government/publications/arsenic-properties-incident-management-and-toxicology/arsenic-toxicological-overview#:~:text=Main%20points-,Kinetics%20and%20metabolism,of%20species%2C%20predominantly%20organic%20arsenic (accessed on 4 August 2024).
- Young, J.L.; Cai, L.; States, J.C. Impact of prenatal arsenic exposure on chronic adult diseases. Syst. Biol. Reprod. Med. 2018, 64, 469–483. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, C.W. Low-dose arsenic in search of a risk threshold. Environ. Health Perspect. 2014, 122, A130–A134. [Google Scholar] [CrossRef]
- Ortiz-Garcia, N.Y.; Cipriano Ramírez, A.I.; Juarez, K.; Brand Galindo, J.; Briceño, G.; Calderon Martinez, E. Maternal Exposure to Arsenic and Its Impact on Maternal and Fetal Health: A Review. Cureus 2023, 15, e49177. [Google Scholar] [CrossRef] [PubMed]
- Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; del Mazo, J.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, L.; Leblanc, J.C.; Nebbia, C.S.; et al. Update of the risk assessment of inorganic arsenic in food. EFSA J. 2024, 22, e8488. [Google Scholar] [CrossRef]
- Spaur, M.; Lombard, M.A.; Ayotte, J.D.; Harvey, D.E.; Bostick, B.C.; Chillrud, S.N.; Navas-Acien, A.; Nigra, A.E. Associations between private well water and community water supply arsenic concentrations in the conterminous United States. Sci. Total. Environ. 2021, 787, 147555. [Google Scholar] [CrossRef]
- Pace, C.; Balazs, C.; Bangia, K.; Depsky, N.; Renteria, A.; Morello-Frosch, R.; Cushing, L.J. Inequities in Drinking Water Quality Among Domestic Well Communities and Community Water Systems, California, 2011‒2019. Am. J. Public Health 2022, 112, 88–97. [Google Scholar] [CrossRef]
- Adewumi, A.J.; Ogundele, O.D. Hidden hazards in urban soils: A meta-analysis review of global heavy metal contamination (2010-2022), sources and its Ecological and health consequences. Sustain. Environ. 2024, 10, 2293239. [Google Scholar] [CrossRef]
- Huang, Y.; Miao, Q.; Kwong, R.W.; Zhang, D.; Fan, Y.; Zhou, M.; Yan, X.; Jia, J.; Yan, B.; Li, C. Leveraging the One Health concept for arsenic sustainability. Eco-Environ. Health 2024, 3, 392–405. [Google Scholar] [CrossRef]
- Biblioteca del Congreso Nacional de Chile. Arica Reporte Comunal 2024. 2024. Available online: https://www.bcn.cl/siit/reportescomunales/comunas_v.html?anno=2024&idcom=15101 (accessed on 7 December 2024).
- Pincetti-Zúniga, G.P.; Richards, L.A.; Daniele, L.; Boyce, A.J.; Polya, D.A. Hydrochemical characterization, spatial distribution, and geochemical controls on arsenic and boron in waters from arid Arica and Parinacota, northern Chile. Sci. Total Environ. 2022, 806, 150206. [Google Scholar] [CrossRef]
- Burgos, S.; Tenorio, M.; Zapata, P.; Cáceres, D.D.; Klarian, J.; Alvarez, N.; Oviedo, R.; Toro-Campos, R.; Claudio, L.; Iglesias, V. Cognitive performance among cohorts of children exposed to a waste disposal site containing heavy metals in Chile. Int. J. Environ. Health Res. 2017, 27, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Naciones Unidas. Chile y Suecia Deben Poner fin al Daño con Residuos Tóxicos a la Población de Arica, Dicen Expertos de Derechos Humanos. Mirada Global Historias Humanas. 2021. Available online: https://news.un.org/es/story/2021/06/1492942 (accessed on 28 July 2024).
- Instituto Salud Publica. Laboratorio Nacional de Control mantuvo Acreditación ISO/IEC 17025, 2017 por Parte de ANAB (ANSI National Accreditation Board). 2021. Available online: https://www.ispch.gob.cl/noticia/laboratorio-nacional-de-control-mantuvo-acreditacion-iso-iec-170252017-por-parte-de-anab-ansi-national-accreditation-board/ (accessed on 25 December 2024).
- Laboratorio Barnafi Krause. Reacreditación y Certificaciones 2022. 2023. Available online: https://www.bklab.cl/reacreditacion-y-certificaciones-2022/ (accessed on 25 December 2024).
- Gardner, R.; Hamadani, J.; Grandér, M.; Tofail, F.; Nermell, B.; Palm, B.; Kippler, M.; Vahter, M. Persistent exposure to arsenic via drinking water in rural Bangladesh despite major mitigation efforts. Am. J. Public Health 2011, 101, 333–338. [Google Scholar] [CrossRef]
- Hughes, M.F. Biomarkers of Exposure: A Case Study with Inorganic Arsenic. Environ. Health Perspect. 2006, 114, 1790–1796. [Google Scholar] [CrossRef]
- Kuo, C.-C.; Balakrishnan, P.; Gribble, M.O.; Best, L.G.; Goessler, W.; Umans, J.G.; Navas-Acien, A. The association of arsenic exposure and arsenic metabolism with all-cause, cardiovascular and cancer mortality in the Strong Heart Study. Environ. Int. 2022, 159, 107029. [Google Scholar] [CrossRef] [PubMed]
- Navas-Acien, A.; Umans, J.G.; Howard, B.V.; Goessler, W.; Francesconi, K.A.; Crainiceanu, C.M.; Silbergeld, E.K.; Guallar, E. Urine Arsenic Concentrations and Species Excretion Patterns in American Indian Communities Over a 10-year Period: The Strong Heart Study. Environ. Health Perspect. 2009, 117, 1428–1433. [Google Scholar] [CrossRef]
- Ministerio Secretaría General de la Presidencia. Ley 20.590 Establece un Programa de Intervención en Zonas con Presencia de Polimetales en la Comuna de Arica. 2012. Available online: https://bcn.cl/3lkuz (accessed on 2 March 2025).
- Raju, N.J. Arsenic in the geo-environment: A review of sources, geochemical processes, toxicity and removal technologies. Environ. Res. 2022, 203, 111782. [Google Scholar] [CrossRef]
- Ministerio de Salud de Chile. Informe Encuesta Nacional de Salud 2016–2017 Medición de Exposición a Metales y Metaloides. [internet]. Santiago de Chile. 28, 38p. Available online: https://epi.minsal.cl/wp-content/uploads/2022/01/2022.01.10_Informe-Metales-ENS-2016-17.pdf (accessed on 12 March 2025).
- Superintendencia de Servicio Sanitarios. Superintendencia de Servicios Sanitarios Audita Plantas de Tratamiento de Agua Potable de Arica. 2016. Available online: https://www.siss.gob.cl/586/w3-article-15674.html (accessed on 18 December 2024).
- Spaur, M.; Bostick, B.C.; Chillrud, S.N.; Factor-Litvak, P.; Navas-Acien, A.; Nigra, A.E. Impact of lowering the US maximum contaminant level on arsenic exposure: Differences by race, region, and water arsenic in NHANES 2003–2014. Environ. Pollut. 2023, 333, 122047. [Google Scholar] [CrossRef] [PubMed]
- Ferreccio, C.; Sancha, A.M. Arsenic exposure and its impact on health in Chile. J. Health Popul. Nutr. 2006, 24, 164–175. [Google Scholar]
- Berasaluce, M.; Díaz-Siefer, P.; Rodríguez-Díaz, P.; Mena-Carrasco, M.; Ibarra, J.T.; Celis-Diez, J.L.; Mondaca, P. Social-environmental conflicts in Chile: Is there any potential for an ecological constitution? Sustainability 2021, 13, 12701. [Google Scholar] [CrossRef]
- Biblioteca del Congreso Nacional de Chile. Decreto 106 Aprueba Reglamento de Aguas Minerales; Biblioteca del Congreso Nacional de Chile: Santiago, Chile, 1997; Volume 106. [Google Scholar]
- Daniele, L.; Cannatelli, C.; Buscher, J.T.; Bonatici, G. Chemical composition of Chilean bottled waters: Anomalous values and possible effects on human health. Sci. Total Environ. 2019, 689, 526–533. [Google Scholar] [CrossRef]
- Biblioteca del Congreso Nacional de Chile. Ley 20998 Regula los Servicios Sanitarios Rurales; Biblioteca del Congreso Nacional de Chile: Santiago, Chile, 2017. [Google Scholar]
- Instituto Nacional de Normalización. Nch 409/1 of.2005 Agua Potable—Parte 1, Requisitos. Decreto 446 Exento Declara Normas Oficiales de La Republica de Chile 2006. Available online: https://www.bcn.cl/leychile/navegar?idNorma=250801 (accessed on 18 December 2024).
- Seremi de Salud Arica y Parinacota. Estado de Avance Polimetales 2024. Available online: https://seremi15.redsalud.gob.cl/estados-de-avance-polimetales/ (accessed on 18 December 2024).
- Morales, D.; Vicuña, S.; Cid, F. Pobres de Agua: Radiografía del Agua Rural en Chile: Visualización de un problema oculto; Santiago, Chile, 2019; Available online: https://www.fundacionamulen.cl/wp-content/uploads/2020/07/Informe_Amulen.pdf (accessed on 2 March 2025).
- Ersbøll, A.K.; Monrad, M.; Sørensen, M.; Baastrup, R.; Hansen, B.; Bach, F.W.; Tjønneland, A.; Overvad, K.; Raaschou-Nielsen, O. Low-level exposure to arsenic in drinking water and incidence rate of stroke: A cohort study in Denmark. Environ. Int. 2018, 120, 72–80. [Google Scholar] [CrossRef]
- Nuvolone, D.; Stoppa, G.; Petri, D.; Voller, F. Long-term exposure to low-level arsenic in drinking water is associated with cause-specific mortality and hospitalization in the Mt. Amiata area (Tuscany, Italy). BMC Public Health 2023, 23, 71. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First and Second Addenda; World Health Organization: Geneva, Switzerland, 2022.
- Ahmad, A.; Bhattacharya, P. Arsenic in Drinking Water: Is 10 μg/L a Safe Limit? Curr. Pollut. Rep. 2019, 5, 1–3. [Google Scholar] [CrossRef]
- Gavino-Lopez, N.; Eaves, L.A.; Enggasser, A.E.; Fry, R.C. Developing Toxic Metal Environmental Justice Indices (TM-EJIs) for Arsenic, Cadmium, Lead, and Manganese Contamination in Private Drinking Wells in North Carolina. Water 2022, 14, 2088. [Google Scholar] [CrossRef]
- Schlosberg, D. Theorising environmental justice: The expanding sphere of a discourse. Environ. Polit. 2013, 22, 37–55. [Google Scholar] [CrossRef]
- Kennedy, C.M.; Fariss, B.; Oakleaf, J.R.; Garnett, S.T.; Fernández-Llamazares, Á.; Fa, J.E.; Baruch-Mordo, S.; Kiesecker, J. Indigenous Peoples’ lands are threatened by industrial development; conversion risk assessment reveals need to support Indigenous stewardship. One Earth 2023, 6, 1032–1049. [Google Scholar] [CrossRef]
- Yalew, S.; Prasad, P.; Mul, M.; Van der Zaag, P. Integrating equity and justice principles in water resources modeling and management. Environ. Res. Lett. 2024, 19, 111001. [Google Scholar] [CrossRef]
- Gardner, R.M.; Kippler, M.; Tofail, F.; Bottai, M.; Hamadani, J.; Grandér, M.; Nermell, B.; Palm, B.; Rasmussen, K.M.; Vahter, M. Environmental exposure to metals and children’s growth to age 5 years: A prospective cohort study. Am. J. Epidemiol. 2013, 177, 1356–1367. [Google Scholar] [CrossRef]
- Bühl, V.; Álvarez, C.; Kordas, K.; Pistón, M.; Mañay, N. Development of a Simple Method for the Determination of Toxicologically Relevant Species of Arsenic in Urine Using HG-AAS. J. Environ. Pollut. Hum. Health 2015, 3, 46–51. [Google Scholar] [CrossRef]
- Apata, M.; Arriaza, B.; Llop, E.; Moraga, M. Human adaptation to arsenic in Andean populations of the Atacama Desert. Am. J. Phys. Anthropol. 2017, 163, 192–199. [Google Scholar] [CrossRef]
Sample Size (Pregnant Women/Children) | Measurement 1 (Pregnant Women) | Measurement 2 (Children) | ||||
---|---|---|---|---|---|---|
n | % | n | % | |||
Age of the mother | 443 | Under 20 years of age | 61 | 13.8 | ||
20 to 39 years old | 373 | 84.2 | ||||
40 years old or older | 9 | 2 | ||||
Age of the children | 450 | 7 years old | 146 | 32.4 | ||
8 years old | 233 | 51.8 | ||||
9 years old or older | 71 | 15.8 | ||||
Sex | Female | 223 | 49.6 | |||
Male | 227 | 50.4 | ||||
Body mass index | 441/448 | Malnourished | 0 | 0 | 21 | 4.7 |
Normal weight | 65 | 14.7 | 178 | 39.7 | ||
Overweight | 167 | 37.8 | 101 | 22.5 | ||
Obese | 209 | 47.4 | 148 | 33.0 | ||
Belongs to ethnic minority | 438/450 | Yes | 171 | 39.0 | 204 | 45.3 |
Schooling | 441/450 | Basic education or less | 21 | 4.8 | 50 | 11.1 |
(mother/responsible adult) | Highschool or less | 348 | 78.9 | 247 | 54.9 | |
At least one year of tertiary education | 72 | 16.3 | 153 | 34.0 | ||
Use of pesticides | 437/450 | Yes | 12 | 2.7 | 214 | 47.6 |
Smoking | 437/450 | Yes | 3 | 0.7 | 113 | 25.1 |
(pregnant/mother of the child) | No | 239 | 54.3 | 337 | 74.9 | |
Quit smoking (6 months to 1 year ago) | 198 | 45 | ||||
Comorbidity | 333/450 | Yes | 54 | 16.2 | 55 | 12.2 |
Living on a paved street | 443/449 | No | 86 | 19.4 | 77 | 17.2 |
Drinking water | 443/450 | Tap water | 173 | 39.0 | 64 | 14.2 |
Rural drinking water or well water | 11 | 2.5 | 4 | 0.9 | ||
Bottled water | 259 | 59.5 | 382 | 84.9 | ||
Fish consumption (last 3 days) | 443/450 | Yes | 136 | 30.7 | 72 | 16 |
Living in an exposed area/beneficiary law | 443/410 | Yes | 43 | 9.7 | 72 | 16 |
Change of address since birth | 450 | No | 156 | 34.7 |
Measure 1 (Pregnant Women) | Measure 2 (Children) | |||
---|---|---|---|---|
Inorganic Arsenic (*) | Inorganic Arsenic (*) Corrected by Creatinine | Inorganic Arsenic (***) | Inorganic Arsenic (***) Corrected by Creatinine | |
(n = 443) | (n = 405) | (n = 450) | (n = 408) | |
µg/L | µg/g ** | µg/L | µg/g ** | |
P25 | 10 | 13.1 | 9.0 | 11.7 |
P50 | 15 | 17.0 | 14.6 | 16.3 |
P75 | 23 | 23.0 | 20.8 | 23.0 |
P90 | 33 | 29.8 | 29.3 | 31.8 |
P95 | 41 | 38.9 | 35.9 | 36.5 |
Media | 18.6 | 18.9 | 17.1 | 19.0 |
Standard deviation | 14.8 | 9.4 | 14.8 | 11.9 |
Minimum | 2.5 | 3.4 | 2.5 | 4.0 |
Maximum | 126 | 72.8 | 202.0 | 146.4 |
Geometric mean | 14.2 | 16.9 | 13.5 | 16.6 |
Pregnant woman living in an exposure area (n = 33) | 17.0 | 18.5 | ||
Children with a parent who is a beneficiary of the Polymetallic Law (n = 55) | 17.0 | 15.4 |
Pregnant Women | Children | ||||||||
---|---|---|---|---|---|---|---|---|---|
n (%) | Median | IQR | p Value | n (%) | Median | IQR | p Value | ||
Age of the mother | Under 20 years of age | 55 (13.6) | 17.2 | 12.3–23.2 | 0.884 | ||||
20 to 39 years old | 341 (84.2) | 17.0 | 13.2–22.7 | ||||||
40 years old or older | 9 (2.2) | 16.7 | 15.7–23.9 | ||||||
Age of the children | 7 years old | 127 (31.1) | 17.3 | 13.3–23.8 | 0.026 * | ||||
8 years old | 216 (52.9) | 16.8 | 11.1–24.1 | ||||||
9 years old or older | 65 (15.9) | 14.7 | 11.5–19.3 | ||||||
Sex | Female | 210 (51.5) | 16.7 | 11.7–22.8 | 0.985 | ||||
Male | 198 (48.5) | 16.0 | 11.7–23.8 | ||||||
Body mass index | Malnourished | 0.926 | 19 (4.7) | 13.5 | 10.8–21.4 | 0.679 | |||
Normal weight | 59 (14.6) | 17.1 | 13.1–23.1 | 155 (38.2) | 16.3 | 11.4–23.8 | |||
Overweight | 153 (38.0) | 17.2 | 13.2–22.6 | 96 (23.7) | 17.4 | 11.6–24.0 | |||
Obese | 191 (47.4) | 16.5 | 12.8–23.1 | 136 (33.5) | 16.1 | 12.4–22.7 | |||
Belongs to ethnic | Yes | 154 (38.5) | 18.4 | 13.6–25.4 | 0.017 * | 185 (45.3) | 17.8 | 13.0–24.2 | 0.009 * |
Schooling (mother/ | Basic education or less | 19 (4.7) | 19.4 | 13.5–24.1 | 0.220 | 43 (10.5) | 21.1 | 10.8–28.2 | 0.029 * |
responsible adult) | Highschool or less | 315 (78.2) | 17.1 | 13.0–23.5 | 222 (54.4) | 16.8 | 12.3–23.8 | ||
At least one year of tertiary education | 69 (17.1) | 15.5 | 13.1–20.4 | 143 (35.1) | 15.0 | 10.8–21.4 | |||
Use of pesticides | Yes | 9 (2.3) | 21.2 | 13.1–22.6 | 0.295 | 194 (47.6) | 18.8 | 12.0–24.9 | 0.006 * |
Smoking (pregnant/mother of the children) | Yes | 3 (0.8) | 25.8 | 16.7–28.6 | 0.112 | 100 (24.5) | 15.1 | 11.2–22.7 | |
No | 212 (52.7) | 17.9 | 13.3–23.1 | 308 (75.5) | 16.7 | 11.8–23.2 | |||
Quit smoking (6 months to 1 year ago) | 187 (46.5) | 15.8 | 12.4–22.6 | ||||||
Comorbidity | Yes | 49 (16.3) | 16.4 | 13.9–22.6 | 0.925 | 51 (12.5) | 14.3 | 11.8–22.1 | 0.608 |
Living on a paved street | No | 78 (19.3) | 17.9 | 13.7–23.5 | 0.442 | 69 (17.0) | 19.1 | 13.3–28.2 | 0.025 * |
Drinking water | Tap water | 158 (39.0) | 17.6 | 13.6–23.5 | 0.014 * | 57 (14) | 17.4 | 13.3–24.7 | 0.005 * |
Rural drinking water or well water | 9 (2.2) | 21.2 | 20.2–35.3 | 4 (1.0) | 33.7 | 30.0–64.2 | |||
Bottled water | 238 (58.8) | 16.4 | 12.5–22.6 | 347 (85.1) | 16.0 | 11.5–22.2 | |||
Fish consumption (last 3 days) | Yes | 136 (30.8) | 17.3 | 13.6–23.6 | 0.231 | 61 (15.0) | 17.4 | 12.9–23.7 | 0.468 |
Living in an exposed area/beneficiary law | Yes | 39 (9.7) | 17.7 | 13.6–24.2 | 0.536 | 61 (14.9) | 16.3 | 11.7–24.8 | 0.868 |
Change of address since birth | No | 266 (65.2) | 17.4 | 11.7–23.9 | 0.075 |
Estimates (%) | ||||
---|---|---|---|---|
Variables | (exp(β) − 1) × 100 | p Value | Confidence Interval (95%) | |
Drinking water | Tap water | Ref | ||
Rural drinking water or well water | 35.18 | 0.084 | −4.00 to 90.34 | |
Bottled water | −8.25 | 0.037 * | −15.36 to −0.54 | |
Living on a paved street | No | −4.98 | 0.303 | −13.78 to 4.72 |
Belongs to ethnic | Yes | 8.64 | 0.037 * | 0.49 to 17.45 |
Schooling (mother/ responsible adult) | Basic education or less | Ref | ||
Highschool or less | −4.02 | 0.553 | −8.61 to 1.02 | |
At least one year of tertiary education | −13.67 | 0.042 * | −25.06 to −0.56 | |
Use of pesticides | Yes | 6.04 | 0.150 | −2.09 to 14.84 |
Change of address since birth | No | 2.07 | 0.614 | −5.76 to 10.55 |
Age of the children | −2.30 | 0.416 | −7.64 to 3.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rubilar, P.; Hirmas-Adauy, M.; Apablaza, M.; Awad, C.; Molina, X.; Muñoz, M.P.; Delgado, I.; Zanetta-Colombo, N.C.; Castillo-Laborde, C.; Matute, M.I.; et al. Arsenic Exposure During Pregnancy and Childhood: Factors Explaining Changes over a Decade. Toxics 2025, 13, 215. https://doi.org/10.3390/toxics13030215
Rubilar P, Hirmas-Adauy M, Apablaza M, Awad C, Molina X, Muñoz MP, Delgado I, Zanetta-Colombo NC, Castillo-Laborde C, Matute MI, et al. Arsenic Exposure During Pregnancy and Childhood: Factors Explaining Changes over a Decade. Toxics. 2025; 13(3):215. https://doi.org/10.3390/toxics13030215
Chicago/Turabian StyleRubilar, Paola, Macarena Hirmas-Adauy, Mauricio Apablaza, Camila Awad, Xaviera Molina, María Pía Muñoz, Iris Delgado, Nicolás C. Zanetta-Colombo, Carla Castillo-Laborde, María Isabel Matute, and et al. 2025. "Arsenic Exposure During Pregnancy and Childhood: Factors Explaining Changes over a Decade" Toxics 13, no. 3: 215. https://doi.org/10.3390/toxics13030215
APA StyleRubilar, P., Hirmas-Adauy, M., Apablaza, M., Awad, C., Molina, X., Muñoz, M. P., Delgado, I., Zanetta-Colombo, N. C., Castillo-Laborde, C., Matute, M. I., Retamal, M. A., Olea, A., Pino, P., González, C., Carvajal, C., & Iglesias, V. (2025). Arsenic Exposure During Pregnancy and Childhood: Factors Explaining Changes over a Decade. Toxics, 13(3), 215. https://doi.org/10.3390/toxics13030215