Microplastics as an Emerging Potential Threat: Toxicity, Life Cycle Assessment, and Management
Abstract
:1. Introduction
2. Methodology
3. Mechanism of Microplastic Formation
4. Distribution of Microplastics and Their Potential Risks to the Environment and Human Health
4.1. Soil
4.2. Aquatic Environment
4.3. Air
4.4. Human Health
5. Microplastic Detection Approaches
6. Microplastic Life Cycle Assessment and Management
6.1. Life Cycle Assessment Tools
6.2. Socio-Economic Impacts of Plastics
7. Microplastic Waste Management
- Controlling the manufacturing and use of environmentally damaging plastic items by taxes or prohibitions while maintaining food safety and human health.
- Raising the price of virgin plastics or imposing penalties or taxes on them to increase the request for recycled plastics.
- Decreasing the utilization of plastics by eliminating useless packaging and labeling, raising awareness, and public educating, as well as by offering eco-friendly substitutes for plastics whenever possible without unintended effects.
- The introduction of waste collection methods that reduce waste generation and increase recycling rates is based on the Pay-as-You-Throw (PAYT) concept, such as deposit-refund systems and D2D waste collection.
- Recycling should be prioritized, then feedstock and WtE that enable the recovery of high-value-added products and energy, and landfill usage should be reserved only for trash created by the earlier processes.
- Decreasing and reusing waste generated through the production stage, taking ownership of waste, and mitigating the effects of products (Extended Producer Responsibility).
- Utilizing renewable energy for waste collection and recycling to lessen the negative environmental effects of recycled plastics.
- The application of LCA to enhance environmental design while taking into account the anticipated EoL of items.
- Using bio-based plastics where composting is advantageous and offering particular collection and management strategies to decrease the production of degradable plastics that produce MPs.
- Enhancing e-waste’s recycling capacity while disposing of it through waste-to-energy.
8. Challenges and Perspectives
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ali, S.S.; Elsamahy, T.; Al-Tohamy, R.; Sun, J. A critical review of microplastics in aquatic ecosystems: Degradation mechanisms and removing strategies. Environ. Sci. Ecotechnol. 2024, 21, 100427. [Google Scholar] [CrossRef]
- Ali, S.S.; Elsamahy, T.; Koutra, E.; Kornaros, M.; El-Sheekh, M.; Abdelkarim, E.A.; Zhu, D.; Sun, J. Degradation of conventional plastic wastes in the environment: A review on current status of knowledge and future perspectives of disposal. Sci. Total Environ. 2021, 771, 144719. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.S.; Elsamahy, T.; Al-Tohamy, R.; Zhu, D.; Mahmoud, Y.A.-G.; Koutra, E.; Metwally, M.A.; Kornaros, M.; Sun, J. Plastic wastes biodegradation: Mechanisms, challenges and future prospects. Sci. Total. Environ. 2021, 780, 146590. [Google Scholar] [CrossRef] [PubMed]
- Mazhandu, Z.S.; Muzenda, E. Global plastic waste pollution challenges and management. In Proceedings of the 2019 7th International Renewable and Sustainable Energy Conference (IRSEC), Agadir, Morocco, 27–30 November 2019; pp. 1–8. [Google Scholar]
- Al-Tohamy, R.; Ali, S.S.; Zhang, M.; Elsamahy, T.; Abdelkarim, E.A.; Jiao, H.; Sun, S.; Sun, J. Environmental and Human Health Impact of Disposable Face Masks During the COVID-19 Pandemic: Wood-Feeding Termites as a Model for Plastic Biodegradation. Appl. Biochem. Biotechnol. 2022, 195, 2093–2113. [Google Scholar] [CrossRef] [PubMed]
- Wong, R. Reducing Single-Use Plastic Waste: A Better Alternative to the Reduce Act Tax Proposal. Hastings Sci. Tech. L.J. 2023, 14, 149. [Google Scholar]
- Chen, Y.; Awasthi, A.K.; Wei, F.; Tan, Q.; Li, J. Single-use plastics: Production, usage, disposal, and adverse impacts. Sci. Total Environ. 2021, 752, 141772. [Google Scholar] [CrossRef]
- Gautam, B.P.S.; Qureshi, A.; Gwasikoti, A.; Kumar, V.; Gondwal, M. Global Scenario of Plastic Production, Consumption, and Waste Generation and Their Impacts on Environment and Human Health. In Advanced Strategies for Biodegradation of Plastic Polymers; Springer Nature: Cham, Switzerland, 2024; pp. 1–34. [Google Scholar]
- Al-Tohamy, R.; Ali, S.S.; Zhang, M.; Sameh, M.; Zahoor, Z.; Mahmoud, Y.A.-G.; Waleed, N.; Okasha, K.M.; Sun, S.; Sun, J. Can wood-feeding termites solve the environmental bottleneck caused by plastics? A critical state-of-the-art review. J. Environ. Manag. 2022, 326, 116606. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, G.K.; Khare, V.; Bundela, P.; Khiriya, P.; Khare, P.S.; Dixit, P.; Sundaramurthy, S. Impact of PPEs Waste Generation During COVID-19 Pandemic on the Environmental Sustainability and Its Economic Aspects in India and Worldwide. In Advanced Materials and Conversion Technologies for Personal Protective Equipment Used in the COVID-19 Pandemic; Springer Nature: Singapore, 2024; pp. 1–15. [Google Scholar]
- Chan, W.; Guo, W.; Yu, J.Z. Polyurethane-based face mask as a sampling device for environmental tobacco smoke. Anal. Chem. 2021, 93, 13912–13918. [Google Scholar] [CrossRef] [PubMed]
- Norman, T.; Guenther, J.; Asante, I.; Adler, B.L. Analysis of Contact Allergens in Polyvinyl Chloride Examination Gloves in the United States. Dermatitis 2024, 35, 160–166. [Google Scholar] [CrossRef]
- Dongre, D.G.; Garad, N.P.; Kumbharkhane, A.C. Dielectric Study of Nitriles Using Time-Domain Reflectometry. Braz. J. Phys. 2024, 54, 62. [Google Scholar] [CrossRef]
- Xiang, M.; Yang, R.; Zhuang, H.; Wu, J.; Liu, C.; Yang, Z.; Dong, S. Electromagnetic interference shielding composites obtained from waste face masks, MXene and polyethylene terephthalate micro plastics. J. Hazard. Mater. Adv. 2023, 12, 100365. [Google Scholar] [CrossRef]
- George Varghese, P.J.; David, D.A.; Karuth, A.; Jafferali, A.F.A.; Sabura Begum, P.M.; George, J.J.; Rasulev, B.; Raghavan, P. Experimental and simulation studies on nonwoven polypropylene–nitrile rubber blend: Recycling of medical face masks to an engineering product. ACS Omega 2022, 7, 4791–4803. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Zhang, Y.S.; Ji, G.; Li, A. The interactions between mixed waste from discarded surgical masks and face shields during the degradation in supercritical water. J. Hazard. Mater. 2023, 459, 132338. [Google Scholar] [CrossRef]
- Carreiras-Suárez, S.; Domínguez-Ramos, L.; Lazzari, M. Study of the Long-Term Aging of Polypropylene-Made Disposable Surgical Masks and Filtering Facepiece Respirators. Polymers 2023, 15, 1001. [Google Scholar] [CrossRef] [PubMed]
- Baysal, A.; Saygin, H. Multispectroscopic Characterization of Surface Interaction between Antibiotics and Micro(nano)-sized Plastics from Surgical Masks and Plastic Bottles. ACS Omega 2023, 8, 12739–12751. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, L.; Xi, H.; Lu, X.; Chu, D.; Xie, M.; Li, L.; Chen, J. Providing nursing care to Ebola virus disease patients: China Ebola Treatment Unit experience. J. Glob. Health 2015, 5, 020301. [Google Scholar] [CrossRef] [PubMed]
- Dain, S.J. Materials for occupational eye protectors. Clin. Exp. Optom. 2012, 95, 129–139. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Laboratory testing for 2019 novel coronavirus (2019-nCoV) in suspected human cases: Interim guidance, 17 January 2020; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Silva, A.L.P.; Prata, J.C.; Walker, T.R.; Campos, D.; Duarte, A.C.; Soares, A.M.V.M.; Barcelò, D.; Rocha-Santos, T. Rethinking and optimising plastic waste management under COVID-19 pandemic: Policy solutions based on redesign and reduction of single-use plastics and personal protective equipment. Sci. Total Environ. 2020, 742, 140565. [Google Scholar] [CrossRef]
- Pawar, P.R.; Shirgaonkar, S.S.; Patil, R.B. Plastic marine debris: Sources, distribution and impacts on coastal and ocean biodiversity. PENCIL Publ. Biol. Sci. 2016, 3, 40–54. [Google Scholar]
- Zhang, F.; Zhao, Y.; Wang, D.; Yan, M.; Zhang, J.; Zhang, P.; Ding, T.; Chen, L.; Chen, C. Current technologies for plastic waste treatment: A review. J. Clean. Prod. 2020, 282, 124523. [Google Scholar] [CrossRef]
- Nanda, S.; Berruti, F. Municipal solid waste management and landfilling technologies: A review. Environ. Chem. Lett. 2020, 19, 1433–1456. [Google Scholar] [CrossRef]
- Abda, E.M.; Muleta, A.; Tafesse, M.; Prabhu, S.V.; Aemro, A. Recent endeavors in microbial remediation of micro- and nanoplastics. Phys. Sci. Rev. 2021, 8, 2853–2877. [Google Scholar]
- Ali, S.S.; Abdelkarim, E.A.; Elsamahy, T.; Al-Tohamy, R.; Li, F.; Kornaros, M.; Zuorro, A.; Zhu, D.; Sun, J. Bioplastic production in terms of life cycle assessment: A state-of-the-art review. Environ. Sci. Ecotechnol. 2023, 15, 100254. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.S.; Elsamahy, T.; Al-Tohamy, R.; Abdelkarim, E.A.; Sun, J. Plastic Contaminants in Water and Recent Advances in Bioremediation. In Water Security: Big Data-Driven Risk Identification, Assessment and Control of Emerging Contaminants; Elsevier: Amsterdam, The Netherlands, 2024; pp. 375–394. [Google Scholar] [CrossRef]
- Mukherjee, S.; Joshi, S.J.; Paul, S.; Kundu, R. Toxicity of Aquatic System and Remediation: The Contemporary Issues; CRC Press: Boca Raton, FL, USA, 2024. [Google Scholar]
- Carpenter, E.J.; Anderson, S.J.; Harvey, G.R.; Miklas, H.P.; Peck, B.B. Polystyrene Spherules in Coastal Waters. Science 1972, 178, 749–750. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Huang, D.; Chen, S.; Wang, G.; Li, R.; Xu, W.; Lei, Y.; Xiao, R.; Yin, L.; Chen, H.; et al. Microplastic dilemma: Assessing the unexpected trade-offs between biodegradable and non-biodegradable forms on plant health, cadmium uptake, and sediment microbial ecology. J. Hazard. Mater. 2024, 477, 135240. [Google Scholar] [CrossRef]
- Zhou, J.; Gui, H.; Banfield, C.C.; Wen, Y.; Zang, H.; Dippold, M.A.; Charlton, A.; Jones, D.L. The microplastisphere: Biodegradable microplastics addition alters soil microbial community structure and function. Soil Biol. Biochem. 2021, 156, 108211. [Google Scholar] [CrossRef]
- Raju, P.; Santhanam, P.; Pandian, S.S.; Divya, M.; Arunkrishnan, A.; Devi, K.N.; Ananth, S.; Roopavathy, J.; Perumal, P. Impact of polystyrene microplastics on major marine primary (phytoplankton) and secondary producers (copepod). Arch. Microbiol. 2021, 204, 84. [Google Scholar] [CrossRef] [PubMed]
- Jansen, M.; Andrady, A.; Bornman, J.; Aucamp, P.; Bais, A.; Banaszak, A.; Barnes, P.; Bernhard, G.; Bruckman, L.; Busquets, R.; et al. Plastics in the environment in the context of UV radiation, climate change and the Montreal Protocol: UNEP Environmental Effects Assessment Panel, Update 2023. Photochem. Photobiol. Sci. 2024, 23, 629–650. [Google Scholar] [CrossRef]
- Jong, M.-C.; Tong, X.; Li, J.; Xu, Z.; Chng, S.H.Q.; He, Y.; Gin, K.Y.-H. Microplastics in equatorial coasts: Pollution hotspots and spatiotemporal variations associated with tropical monsoons. J. Hazard. Mater. 2021, 424, 127626. [Google Scholar] [CrossRef]
- Ali, S.S.; Elsamahy, T.; Abdelkarim, E.A.; Al-Tohamy, R.; Kornaros, M.; Ruiz, H.A.; Zhao, T.; Li, F.; Sun, J. Biowastes for biodegradable bioplastics production and end-of-life scenarios in circular bioeconomy and biorefinery concept. Bioresour. Technol. 2022, 363, 127869. [Google Scholar] [CrossRef]
- Oginah, S.A.; Posthuma, L.; Maltby, L.; Hauschild, M.; Fantke, P. Linking freshwater ecotoxicity to damage on ecosystem services in life cycle assessment. Environ. Int. 2022, 171, 107705. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, A.; Sodiq, A.; Giwa, A.; Eke, J.; Pikuda, O.; Eniola, J.O.; Ajiwokewu, B.; Sambudi, N.S.; Bilad, M.R. Updated review on microplastics in water, their occurrence, detection, measurement, environmental pollution, and the need for regulatory standards. Environ. Pollut. 2022, 292, 118421. [Google Scholar] [CrossRef]
- O’Dea, R.E.; Lagisz, M.; Jennions, M.D.; Koricheva, J.; Noble, D.W.; Parker, T.H.; Gurevitch, J.; Page, M.J.; Stewart, G.; Moher, D.; et al. Preferred reporting items for systematic reviews and meta-analyses in ecology and evolutionary biology: A PRISMA extension. Biol. Rev. 2021, 96, 1695–1722. [Google Scholar] [CrossRef] [PubMed]
- Allen, D.; Allen, S.; Abbasi, S.; Baker, A.; Bergmann, M.; Brahney, J.; Butler, T.; Duce, R.A.; Eckhardt, S.; Evangeliou, N.; et al. Microplastics and nanoplastics in the marine-atmosphere environment. Nat. Rev. Earth Environ. 2022, 3, 393–405. [Google Scholar] [CrossRef]
- Fan, S.; Yan, Z.; Qiao, L.; Gui, F.; Li, T.; Yang, Q.; Zhang, X.; Ren, C. Biological effects on the migration and transformation of microplastics in the marine environment. Mar. Environ. Res. 2023, 185, 105875. [Google Scholar] [CrossRef] [PubMed]
- Harel, E.; Zucker, I.; Shenkar, N. Effects of biological filtration by ascidians on microplastic composition in the water column. Chemosphere 2024, 367, 143589. [Google Scholar] [CrossRef]
- Priya, A.K.; Muruganandam, M.; Ali, S.S.; Kornaros, M. Clean-up of heavy metals from contaminated soil by phytoremediation: A multidisciplinary and eco-friendly approach. Toxics 2023, 11, 422. [Google Scholar] [CrossRef] [PubMed]
- Elnabi, M.K.A.; Elkaliny, N.E.; Elyazied, M.M.; Azab, S.H.; Elkhalifa, S.A.; Elmasry, S.; Mouhamed, M.S.; Shalamesh, E.M.; Alhorieny, N.A.; Elaty, A.E.A.; et al. Toxicity of Heavy Metals and Recent Advances in Their Removal: A Review. Toxics 2023, 11, 580. [Google Scholar] [CrossRef]
- Sun, J.; He, X.; LE, Y.; Al-Tohamy, R.; Ali, S.S. Potential applications of extremophilic bacteria in the bioremediation of extreme environments contaminated with heavy metals. J. Environ. Manag. 2024, 352, 120081. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Zhao, S.; Qiu, T.; Cui, Q.; Yang, Y.; Li, L.; Chen, J.; Huang, M.; Zhan, A.; Fang, L. Interaction of microplastics with heavy metals in soil: Mechanisms, influencing factors and biological effects. Sci. Total. Environ. 2024, 918, 170281. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Gupta, R.; Singh, R.L. Microbes and environment. In Principles and Applications of Environmental Biotechnology for a Sustainable Future; Springer: Singapore, 2017; pp. 43–84. [Google Scholar]
- Liu, M.; Lu, S.; Song, Y.; Lei, L.; Hu, J.; Lv, W.; Zhou, W.; Cao, C.; Shi, H.; Yang, X.; et al. Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China. Environ. Pollut. 2018, 242, 855–862. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Zhou, S.; Zhang, C.; Zhou, Y.; Qin, W. Soil microplastic characteristics and the effects on soil properties and biota: A systematic review and meta-analysis. Environ. Pollut. 2022, 313, 120183. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, M.; Mützel, S.; Primpke, S.; Tekman, M.B.; Trachsel, J.; Gerdts, G. White and wonderful? Microplastics prevail in snow from the Alps to the Arctic. Sci. Adv. 2019, 5, eaax1157. [Google Scholar] [CrossRef]
- Huang, J.; Chen, H.; Zheng, Y.; Yang, Y.; Zhang, Y.; Gao, B. Microplastic pollution in soils and groundwater: Characteristics, analytical methods and impacts. Chem. Eng. J. 2021, 425, 131870. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, J.; Zou, M.; Jia, Z.; Zhou, S.; Li, Y. Microplastics in soils: A review of methods, occurrence, fate, transport, ecological and environmental risks. Sci. Total Environ. 2020, 748, 141368. [Google Scholar] [CrossRef] [PubMed]
- e Souza Machado, A.A.; Lau, C.W.; Till, J.; Kloas, W.; Lehmann, A.; Becker, R.; Rillig, M.C. Impacts of Microplastics on the Soil Biophysical Environment. Environ. Sci. Technol. 2018, 52, 9656–9665. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Yang, X.; Liu, G.; Liang, C.; Xue, S.; Chen, H.; Ritsema, C.J.; Geissen, V. Response of soil dissolved organic matter to microplastic addition in Chinese loess soil. Chemosphere 2017, 185, 907–917. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Lv, S.; Zhang, M.; Chen, G.; Zhu, T.; Zhang, S.; Teng, Y.; Christie, P.; Luo, Y. Effects of plastic film residues on occurrence of phthalates and microbial activity in soils. Chemosphere 2016, 151, 171–177. [Google Scholar] [CrossRef]
- Mendes, L.A.; Beiras, R.; Domínguez, J. Earthworm (Eisenia andrei)-Mediated Degradation of Commercial Compostable Bags and Potential Toxic Effects. Microplastics 2024, 3, 322–338. [Google Scholar] [CrossRef]
- Miller, M.E.; Hamann, M.; Kroon, F.J. Bioaccumulation and biomagnification of microplastics in marine organisms: A review and meta-analysis of current data. PLoS ONE 2020, 15, e0240792. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Shi, J.; Zhang, N.; Pan, Z.; Xing, C.; Chen, X. Current research trends on microplastics pollution and impacts on agro-ecosystems: A short review. Sep. Sci. Technol. 2021, 57, 656–669. [Google Scholar] [CrossRef]
- Fajardo, C.; Martín, C.; Costa, G.; Sánchez-Fortún, S.; Rodríguez, C.; Burneo, J.J.d.L.; Nande, M.; Mengs, G.; Martín, M. Assessing the role of polyethylene microplastics as a vector for organic pollutants in soil: Ecotoxicological and molecular approaches. Chemosphere 2021, 288, 132460. [Google Scholar] [CrossRef]
- Coleman, D.C.; Callaham, M.A., Jr.; Crossley, D.A., Jr. Fundamentals of Soil Ecology; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Wang, F.; Wang, Q.; Adams, C.A.; Sun, Y.; Zhang, S. Effects of microplastics on soil properties: Current knowledge and future perspectives. J. Hazard. Mater. 2022, 424, 127531. [Google Scholar] [CrossRef] [PubMed]
- Naz, M.; Dai, Z.; Hussain, S.; Tariq, M.; Danish, S.; Khan, I.U.; Qi, S.; Du, D. The soil pH and heavy metals revealed their impact on soil microbial community. J. Environ. Manag. 2022, 321, 115770. [Google Scholar] [CrossRef]
- de Souza Machado, A.A.; Lau, C.W.; Kloas, W.; Bergmann, J.; Bachelier, J.B.; Faltin, E.; Becker, R.; Görlich, A.S.; Rillig, M.C. Microplastics Can Change Soil Properties and Affect Plant Performance. Environ. Sci. Technol. 2019, 53, 6044–6052. [Google Scholar] [CrossRef] [PubMed]
- Büks, F.; van Schaik, N.L.; Kaupenjohann, M. What do we know about how the terrestrial multicellular soil fauna reacts to microplastic? SOIL 2020, 6, 245–267. [Google Scholar] [CrossRef]
- Zandonadi, D.B.; Santos, M.P.; Olivares, F.L.; Canellas, L.P. Humic Acids and Fatty Acid Amides: Soil-Plant Interactions. In Strigolactones, Alkamides and Karrikins in Plants; CRC Press: Boca Raton, FL, USA, 2023; pp. 143–163. [Google Scholar]
- Huerta Lwanga, E.; Gertsen, H.; Gooren, H.; Peters, P.; Salánki, T.; Van Der Ploeg, M.; Besseling, E.; Koelmans, A.A.; Geissen, V. Microplastics in the terrestrial ecosystem: Implications for Lumbricus terrestris (Oligochaeta, Lumbricidae). Environ. Sci. Technol. 2016, 50, 2685–2691. [Google Scholar] [CrossRef]
- Cao, D.; Wang, X.; Luo, X.; Liu, G.; Zheng, H. April. Effects of polystyrene microplastics on the fitness of earthworms in an agricultural soil. IOP Conf. Ser. Earth Environ. Sci. 2017, 61, 012148. [Google Scholar] [CrossRef]
- Zhao, T.; Lozano, Y.M.; Rillig, M.C. Microplastics increase soil pH and decrease microbial activities as a function of microplastic shape, polymer type, and exposure time. Front. Environ. Sci. 2021, 9, 675803. [Google Scholar] [CrossRef]
- Feng, X.; Wang, Q.; Sun, Y.; Zhang, S.; Wang, F. Microplastics change soil properties, heavy metal availability and bacterial community in a Pb-Zn-contaminated soil. J. Hazard. Mater. 2022, 424, 127364. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Chen, L.; Li, D.; Ji, Y.; Feng, Y.; Feng, Y.; Yang, Z. Influence of polyethylene terephthalate microplastic and biochar co-existence on paddy soil bacterial community structure and greenhouse gas emission. Environ. Pollut. 2021, 292, 118386. [Google Scholar] [CrossRef]
- Lin, D.; Yang, G.; Dou, P.; Qian, S.; Zhao, L.; Yang, Y.; Fanin, N. Microplastics negatively affect soil fauna but stimulate microbial activity: Insights from a field-based microplastic addition experiment. Proc. R. Soc. B Biol. Sci. 2020, 287, 20201268. [Google Scholar] [CrossRef] [PubMed]
- Galgani, F.; Michela, A.; Gérigny, O.; Maes, T.; Tambutté, E.; Harris, P.T. Marine litter, plastic, and microplastics on the seafloor. In Plastics and the Ocean: Origin, Characterization, Fate, and Impacts; John Wiley & Sons: Hoboken, NJ, USA, 2022; pp. 151–197. [Google Scholar]
- Ostle, C.; Thompson, R.C.; Broughton, D.; Gregory, L.; Wootton, M.; Johns, D.G. The rise in ocean plastics evidenced from a 60-year time series. Nat. Commun. 2019, 10, 1622. [Google Scholar] [CrossRef] [PubMed]
- Auta, H.; Emenike, C.; Fauziah, S. Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions. Environ. Int. 2017, 102, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Bellasi, A.; Binda, G.; Pozzi, A.; Galafassi, S.; Volta, P.; Bettinetti, R. Microplastic contamination in freshwater environments: A review, focusing on interactions with sediments and benthic organisms. Environments 2020, 7, 30. [Google Scholar] [CrossRef]
- Zhang, L.; He, Y.; Jiang, L.; Shi, Y.; Hao, L.; Huang, L.; Lyu, M.; Wang, S. Plastic additives as a new threat to the global environment: Research status, remediation strategies and perspectives. Environ. Res. 2024, 263, 120007. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Liu, C.; He, D.; Sun, J.; Li, J.; Pan, X. Effects of aging on environmental behavior of plastic additives: Migration, leaching, and ecotoxicity. Sci. Total. Environ. 2022, 849, 157951. [Google Scholar] [CrossRef]
- Wu, N.C.; Seebacher, F. Effect of the plastic pollutant bisphenol A on the biology of aquatic organisms: A meta-analysis. Glob. Chang. Biol. 2020, 26, 3821–3833. [Google Scholar] [CrossRef]
- Chen, C.-F.; Albarico, F.P.J.B.; Wang, M.-H.; Lim, Y.C.; Chen, C.-W.; Dong, C.-D. Potential risks of accumulated microplastics in shells and soft tissues of cultured hard clams (Meretrix taiwanica) and associated metals. J. Hazard. Mater. 2024, 476, 135088. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Wen, Y.; Marshall, M.R.; Zhao, J.; Gui, H.; Yang, Y.; Zeng, Z.; Jones, D.L.; Zang, H. Microplastics as an emerging threat to plant and soil health in agroecosystems. Sci. Total. Environ. 2021, 787, 147444. [Google Scholar] [CrossRef]
- Zhu, Z.-L.; Wang, S.-C.; Zhao, F.-F.; Wang, S.-G.; Liu, F.-F.; Liu, G.-Z. Joint toxicity of microplastics with triclosan to marine microalgae Skeletonema costatum. Environ. Pollut. 2019, 246, 509–517. [Google Scholar] [CrossRef]
- Zhou, W.; Tang, Y.; Du, X.; Han, Y.; Shi, W.; Sun, S.; Zhang, W.; Zheng, H.; Liu, G. Fine polystyrene microplastics render immune responses more vulnerable to two veterinary antibiotics in a bivalve species. Mar. Pollut. Bull. 2021, 164, 111995. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Shi, W.; Tang, Y.; Han, Y.; Du, X.; Zhou, W.; Zhang, W.; Sun, C.; Liu, G. The toxic impacts of microplastics (MPs) and polycyclic aromatic hydrocarbons (PAHs) on haematic parameters in a marine bivalve species and their potential mechanisms of action. Sci. Total Environ. 2021, 783, 147003. [Google Scholar] [CrossRef]
- Straub, S.; Hirsch, P.E.; Burkhardt-Holm, P. Biodegradable and Petroleum-Based Microplastics Do Not Differ in Their Ingestion and Excretion but in Their Biological Effects in a Freshwater Invertebrate Gammarus fossarum. Int. J. Environ. Res. Public Health 2017, 14, 774. [Google Scholar] [CrossRef] [PubMed]
- González-Pleiter, M.; Tamayo-Belda, M.; Pulido-Reyes, G.; Amariei, G.; Leganés, F.; Rosal, R.; Fernández-Piñas, F. Secondary nanoplastics released from a biodegradable microplastic severely impact freshwater environments. Environ. Sci. Nano 2019, 6, 1382–1392. [Google Scholar] [CrossRef]
- Jang, F.H.; Wong, C.; Choo, J.; Sia, E.S.A.; Mujahid, A.; Müller, M. Increased transfer of trace metals and Vibrio sp. from biodegradable microplastics to catfish Clarias gariepinus. Environ. Pollut. 2022, 298, 118850. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Cheng, Z.; Hou, Y.; Lin, S.; Gao, L.; Wang, Z.; Bao, R.; Peng, L. Biodegradable and conventional microplastics posed similar toxicity to marine algae Chlorella vulgaris. Aquat. Toxicol. 2022, 244, 106097. [Google Scholar] [CrossRef] [PubMed]
- Capolupo, M.; Rafiq, A.; Coralli, I.; Alessandro, T.; Valbonesi, P.; Fabbri, D.; Fabbri, E. Bioplastic leachates characterization and impacts on early larval stages and adult mussel cellular, biochemical and physiological responses. Environ. Pollut. 2022, 319, 120951. [Google Scholar] [CrossRef] [PubMed]
- Sai, S.; Mani, R.; Vijayakumar, P.; Ganesan, M.; Velu, K.; Ayyamperumal, R.; Rajagopal, R.; Chang, S.W.; Alfarhan, A.; Ravindran, B. Risk assessment of potential toxicity induced by bio and synthetic plastic microspheres in Lates calcarifer. Chemosphere 2022, 298, 134269. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xia, M.; Su, X.; Yuan, P.; Li, X.; Zhou, C.; Wan, Z.; Zou, W. Photolytic degradation elevated the toxicity of polylactic acid microplastics to developing zebrafish by triggering mitochondrial dysfunction and apoptosis. J. Hazard. Mater. 2021, 413, 125321. [Google Scholar] [CrossRef] [PubMed]
- Di Giannantonio, M.; Gambardella, C.; Miroglio, R.; Costa, E.; Sbrana, F.; Smerieri, M.; Carraro, G.; Utzeri, R.; Faimali, M.; Garaventa, F. Ecotoxicity of polyvinylidene difluoride (PVDF) and polylactic acid (PLA) microplastics in marine zooplankton. Toxics 2022, 10, 479. [Google Scholar] [CrossRef] [PubMed]
- Grosu, M.C.; Visileanu, E.; Ene, A.G.; Scarlat, R.V.; Marinescu, V.E. Collection and Characterization of Synthetic Airborne Particles. Adv. Mater. Lett. 2023, 12, 13. [Google Scholar] [CrossRef]
- Gupta, B.S. Manufactured textile fibers. In Kent and Riegel’s Handbook of Industrial Chemistry and Biotechnology; Springer: Boston, MA, USA, 2007; pp. 431–498. [Google Scholar]
- Huang, Y.; Qing, X.; Wang, W.; Han, G.; Wang, J. Mini-review on current studies of airborne microplastics: Analytical methods, occurrence, sources, fate and potential risk to human beings. Trends Anal. Chem. 2020, 125, 115821. [Google Scholar] [CrossRef]
- Amato-Lourenço, L.F.; Galvão, L.d.S.; de Weger, L.A.; Hiemstra, P.S.; Vijver, M.G.; Mauad, T. An emerging class of air pollutants: Potential effects of microplastics to respiratory human health? Sci. Total Environ. 2020, 749, 141676. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Feng, Q.; Wang, J. Mini-review of microplastics in the atmosphere and their risks to humans. Sci. Total Environ. 2020, 703, 135504. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zhou, Y.; Liang, C.; Song, J.; Yu, S.; Liao, G.; Zou, P.; Tang, K.H.D.; Wu, C. Airborne microplastics: Occurrence, sources, fate, risks and mitigation. Sci. Total Environ. 2023, 858, 159943. [Google Scholar] [CrossRef] [PubMed]
- Kannan, K.; Vimalkumar, K. A review of human exposure to microplastics and insights into microplastics as obesogens. Front. Endocrinol. 2021, 12, 724989. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.; Chu, X.; Wu, Y.; Wang, Z.; Liao, Z.; Ji, X.; Ju, J.; Yang, B.; Chen, Z.; Dahlgren, R.; et al. Micro-and Nano-plastics in the atmosphere: A review of occurrence, properties and human health risks. J. Hazard. Mater. 2024, 465, 133412. [Google Scholar] [CrossRef]
- Gasperi, J.; Wright, S.L.; Dris, R.; Collard, F.; Mandin, C.; Guerrouache, M.; Langlois, V.; Kelly, F.J.; Tassin, B. Microplastics in air: Are we breathing it in? Curr. Opin. Environ. Sci. Health 2018, 1, 1–5. [Google Scholar] [CrossRef]
- Cox, K.D.; Covernton, G.A.; Davies, H.L.; Dower, J.F.; Juanes, F.; Dudas, S.E. Human Consumption of Microplastics. Environ. Sci. Technol. 2019, 53, 7068–7074. [Google Scholar] [CrossRef]
- Blackburn, K.; Green, D. The potential effects of microplastics on human health: What is known and what is unknown. Ambio 2022, 51, 518–530. [Google Scholar] [CrossRef] [PubMed]
- Allen, S.; Allen, D.; Phoenix, V.R.; Le Roux, G.; Durántez Jiménez, P.; Simonneau, A.; Binet, S.; Galop, D. Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nat. Geosci. 2019, 12, 339–344. [Google Scholar] [CrossRef]
- Conti, G.O.; Ferrante, M.; Banni, M.; Favara, C.; Nicolosi, I.; Cristaldi, A.; Fiore, M.; Zuccarello, P. Micro- and nano-plastics in edible fruit and vegetables. The first diet risks assessment for the general population. Environ. Res. 2020, 187, 109677. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Zheng, R.; Chen, H.; Hong, F.; Lin, L.; Lin, H.; Guo, H.; Bailey, C.; Segner, H.; Mu, J.; et al. Comparison of microplastic contamination in fish and bivalves from two major cities in Fujian province, China and the implications for human health. Aquaculture 2019, 512, 734322. [Google Scholar] [CrossRef]
- El-Shouny, W.A.; Ali, S.S.; Sun, J.; Samy, S.M.; Ali, A. Drug resistance profile and molecular characterization of extended spectrum beta-lactamase (ESβL)-producing Pseudomonas aeruginosa isolated from burn wound infections. Essential oils and their potential for utilization. Microb. Pathog. 2018, 116, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Zhang, Y.; Lemos, B.; Ren, H. Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. Sci. Rep. 2017, 7, srep46687. [Google Scholar] [CrossRef] [PubMed]
- Mahesh, K.; Varma, M.; Sen, P. Double-peak signal features in microfluidic impedance flow cytometry enable sensitive measurement of cell membrane capacitance. Lab Chip 2020, 20, 4296–4309. [Google Scholar] [CrossRef] [PubMed]
- Wolff, C.M.; Singer, D.; Schmidt, A.; Bekeschus, S. Immune and inflammatory responses of human macrophages, dendritic cells, and T-cells in presence of micro-and nanoplastic of different types and sizes. J. Hazard. Mater. 2023, 459, 132194. [Google Scholar] [CrossRef]
- Yin, K.; Wang, Y.; Zhao, H.; Wang, D.; Guo, M.; Mu, M.; Liu, Y.; Nie, X.; Li, B.; Li, J.; et al. A comparative review of microplastics and nanoplastics: Toxicity hazards on digestive, reproductive and nervous system. Sci. Total. Environ. 2021, 774, 145758. [Google Scholar] [CrossRef]
- Shi, W.; Sun, S.; Han, Y.; Tang, Y.; Zhou, W.; Du, X.; Liu, G. Microplastics impair olfactory-mediated behaviors of goldfish Carassius auratus. J. Hazard. Mater. 2020, 409, 125016. [Google Scholar] [CrossRef] [PubMed]
- Protyusha, G.B.; Kavitha, B.; Robin, R.S.; Nithin, A.; Ineyathendral, T.R.; Shivani, S.S.; Anandavelu, I.; Sivasamy, S.; Samuel, V.D.; Purvaja, R. Microplastics in oral healthcare products (OHPs) and their environmental health risks and mitigation measures. Environ. Pollut. 2024, 343, 123118. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; He, L.; Zhu, B.; Li, J.; Li, J. Advances in polymeric materials for dental applications. Polym. Chem. 2016, 8, 807–823. [Google Scholar] [CrossRef]
- Miyazaki, T.; Nakamura, T.; Matsumura, H.; Ban, S.; Kobayashi, T. Current status of zirconia restoration. J. Prosthodont. Res. 2013, 57, 236–261. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Song, S.; Min, R.; Liu, X.; Zhang, G. Advances in chemical removal and degradation technologies for microplastics in the aquatic environment: A review. Mar. Pollut. Bull. 2024, 201, 116202. [Google Scholar] [CrossRef] [PubMed]
- Laorenza, Y.; Chonhenchob, V.; Bumbudsanpharoke, N.; Jittanit, W.; Sae-Tan, S.; Rachtanapun, C.; Chanput, W.P.; Charoensiddhi, S.; Srisa, A.; Promhuad, K.; et al. Polymeric Packaging Applications for Seafood Products: Packaging-Deterioration Relevance, Technology and Trends. Polymers 2022, 14, 3706. [Google Scholar] [CrossRef]
- Flaws, J.; Damdimopoulou, P.; Patisaul, H.B.; Gore, A.; Raetzman, L.; Vandenberg, L.N. Plastics, EDCs and Health; Endocrine Society: Washington, DC, USA, 2020. [Google Scholar]
- Nicholson, J.W. Progress in eradicating amalgam from restorative dentistry. Balk. J. Dent. Med. 2023, 27, 63–72. [Google Scholar] [CrossRef]
- Correa, M.; Peres, M.; Peres, K.; Horta, B.; Barros, A.; Demarco, F. Amalgam or composite resin? Factors influencing the choice of restorative material. J. Dent. 2012, 40, 703–710. [Google Scholar] [CrossRef] [PubMed]
- Wataha, J.C. Predicting clinical biological responses to dental materials. Dent. Mater. 2012, 28, 23–40. [Google Scholar] [CrossRef] [PubMed]
- Mulligan, S.; Hatton, P.V.; Martin, N. Resin-based composite materials: Elution and pollution. Br. Dent. J. 2022, 232, 644–652. [Google Scholar] [CrossRef]
- Kutralam-Muniasamy, G.; Shruti, V.C.; Pérez-Guevara, F.; Roy, P.D. Microplastic diagnostics in humans: “The 3Ps” Progress, problems, and prospects. Sci. Total Environ. 2023, 856, 159164. [Google Scholar] [CrossRef]
- Shah, I.A.; Hossain, F.; Akther, N.; Zhou, Y.; Khan, M.S.; Al-Shaeli, M.; Bacha, M.S.; Ihsanullah, I. Personal protective equipment (PPE) disposal during COVID-19: An emerging source of microplastic and microfiber pollution in the environment. Sci. Total. Environ. 2022, 860, 160322. [Google Scholar]
- Chiang, H.K.; Patel, M.; Lesczyszyn, D.J.; Demerjian, G.G. Dental Sleep Appliance Therapy for the Treatment of Obstructive Sleep Apnea. In Dental Sleep Medicine: A Clinical Guide; Springer International Publishing: Cham, Switzerland, 2022; pp. 233–266. [Google Scholar]
- Aspinall, S.R.; Parker, J.K.; Khutoryanskiy, V.V. Oral care product formulations, properties and challenges. Colloids Surf. B Biointerfaces 2021, 200, 111567. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Lv, X.; He, J.; Zhang, L.; Li, B.; Zhang, X.; Liu, S.; Zhang, Y. Chronic exposure to polystyrene nanoplastics induces intestinal mechanical and immune barrier dysfunction in mice. Ecotoxicol. Environ. Saf. 2023, 269, 115749. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Yan, Z.; Shen, R.; Wang, M.; Huang, Y.; Ren, H.; Zhang, Y.; Lemos, B. Microplastics release phthalate esters and cause aggravated adverse effects in the mouse gut. Environ. Int. 2020, 143, 105916. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.J.; Kim, J.E.; Lee, S.J.; Gong, J.E.; Jin, Y.J.; Seo, S.; Lee, J.H.; Hwang, D.Y. Inflammatory response in the mid colon of ICR mice treated with polystyrene microplastics for two weeks. Lab. Anim. Res. 2021, 37, 31. [Google Scholar] [CrossRef]
- Liang, Y.; Liu, D.; Zhan, J.; Liu, X.; Li, P.; Ma, X.; Hou, H.; Wang, P. Polystyrene microplastics induce kidney injury via gut barrier dysfunction and C5a/C5aR pathway activation. Environ. Pollut. 2023, 342, 122909. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Ding, Y.; Cheng, X.; Sheng, D.; Xu, Z.; Rong, Q.; Wu, Y.; Zhao, H.; Ji, X.; Zhang, Y. Polyethylene microplastics affect the distribution of gut microbiota and inflammation development in mice. Chemosphere 2019, 244, 125492. [Google Scholar] [CrossRef]
- Sun, H.; Chen, N.; Yang, X.; Xia, Y.; Wu, D. Effects induced by polyethylene microplastics oral exposure on colon mucin release, inflammation, gut microflora composition and metabolism in mice. Ecotoxicol. Environ. Saf. 2021, 220, 112340. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Chen, T.; Liu, J.; Hou, Y.; Tan, Q.; Zhang, X.; Li, Z.; Farooq, T.H.; Yan, W.; Li, Y. Intestinal flora variation reflects the short-term damage of microplastic to the intestinal tract in mice. Ecotoxicol. Environ. Saf. 2022, 246, 114194. [Google Scholar] [CrossRef]
- Kim, Y.-N.; Yoon, J.-H.; Kim, K.-H.J. Microplastic contamination in soil environment—A review. Soil Sci. Annu. 2020, 71, 300–308. [Google Scholar] [CrossRef]
- Ivleva, N.P. Chemical Analysis of Microplastics and Nanoplastics: Challenges, Advanced Methods, and Perspectives. Chem. Rev. 2021, 121, 11886–11936. [Google Scholar] [CrossRef]
- Cabernard, L.; Roscher, L.; Lorenz, C.; Gerdts, G.; Primpke, S. Comparison of Raman and Fourier Transform Infrared Spectroscopy for the Quantification of Microplastics in the Aquatic Environment. Environ. Sci. Technol. 2018, 52, 13279–13288. [Google Scholar] [CrossRef] [PubMed]
- Ramos, L. Critical overview of selected contemporary sample preparation techniques. J. Chromatogr. A 2012, 1221, 84–98. [Google Scholar] [CrossRef] [PubMed]
- Sorolla-Rosario, D.; Llorca-Porcel, J.; Pérez-Martínez, M.; Lozano-Castelló, D.; Bueno-López, A. Microplastics’ analysis in water: Easy handling of samples by a new Thermal Extraction Desorption-Gas Chromatography-Mass Spectrometry (TED-GC/MS) methodology. Talanta 2022, 253, 123829. [Google Scholar] [CrossRef]
- Santos, L.H.; Insa, S.; Arxé, M.; Buttiglieri, G.; Rodríguez-Mozaz, S.; Barceló, D. Analysis of microplastics in the environment: Identification and quantification of trace levels of common types of plastic polymers using pyrolysis-GC/MS. MethodsX 2023, 10, 102143. [Google Scholar] [CrossRef] [PubMed]
- Laborda, F.; Trujillo, C.; Lobinski, R. Analysis of microplastics in consumer products by single particle-inductively coupled plasma mass spectrometry using the carbon-13 isotope. Talanta 2020, 221, 121486. [Google Scholar] [CrossRef]
- Müller, A.; Goedecke, C.; Eisentraut, P.; Piechotta, C.; Braun, U. Microplastic analysis using chemical extraction followed by LC-UV analysis: A straightforward approach to determine PET content in environmental samples. Environ. Sci. Eur. 2020, 32, 85. [Google Scholar] [CrossRef]
- Xu, J.-L.; Thomas, K.V.; Luo, Z.; Gowen, A.A. FTIR and Raman imaging for microplastics analysis: State of the art, challenges and prospects. Trends Anal. Chem. 2019, 119, 115629. [Google Scholar] [CrossRef]
- Chen, G.; Fu, Z.; Yang, H.; Wang, J. An overview of analytical methods for detecting microplastics in the atmosphere. Trends Anal. Chem. 2020, 130, 115981. [Google Scholar] [CrossRef]
- Damaj, S.; Trad, F.; Goevert, D.; Wilkesmann, J. Bridging the Gaps between Microplastics and Human Health. Microplastics 2024, 3, 46–66. [Google Scholar] [CrossRef]
- Mariano, S.; Tacconi, S.; Fidaleo, M.; Rossi, M.; Dini, L. Micro and Nanoplastics Identification: Classic Methods and Innovative Detection Techniques. Front. Toxicol. 2021, 3, 636640. [Google Scholar] [CrossRef] [PubMed]
- Dini, L.; Panzarini, E.; Mariano, S.; Passeri, D.; Reggente, M.; Rossi, M.; Vergallo, C. Microscopies at the Nanoscale for Nano-Scale Drug Delivery Systems. Curr. Drug Targets 2015, 16, 1512–1530. [Google Scholar] [CrossRef]
- Rocha-Santos, T.; Duarte, A.C. A critical overview of the analytical approaches to the occurrence, the fate and the behavior of microplastics in the environment. TrAC Trends Anal. Chem. 2015, 65, 47–53. [Google Scholar] [CrossRef]
- Song, Y.K.; Hong, S.H.; Jang, M.; Han, G.M.; Rani, M.; Lee, J.; Shim, W.J. A comparison of microscopic and spectroscopic identification methods for analysis of microplastics in environmental samples. Mar. Pollut. Bull. 2015, 93, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Blanco, I.; Ingrao, C.; Siracusa, V. Life-cycle assessment in the polymeric sector: A comprehensive review of application experiences on the Italian scale. Polymers 2020, 12, 1212. [Google Scholar] [CrossRef] [PubMed]
- Moni, S.M.; Mahmud, R.; High, K.; Carbajales-Dale, M. Life cycle assessment of emerging technologies: A review. J. Ind. Ecol. 2020, 24, 52–63. [Google Scholar] [CrossRef]
- Jiao, H.; Ali, S.S.; Alsharbaty, M.H.M.; Elsamahy, T.; Abdelkarim, E.; Schagerl, M.; Al-Tohamy, R.; Sun, J. A critical review on plastic waste life cycle assessment and management: Challenges, research gaps, and future perspectives. Ecotoxicol. Environ. Saf. 2024, 271, 115942. [Google Scholar] [CrossRef] [PubMed]
- Askham, C.; Pauna, V.H.; Boulay, A.-M.; Fantke, P.; Jolliet, O.; Lavoie, J.; Booth, A.M.; Coutris, C.; Verones, F.; Weber, M.; et al. Generating environmental sampling and testing data for micro- and nanoplastics for use in life cycle impact assessment. Sci. Total. Environ. 2022, 859, 160038. [Google Scholar] [CrossRef] [PubMed]
- Goermer, M.; Lehmann, A.; Finkbeiner, M. Life-LCA: Assessing the environmental impacts of a human being—Challenges and perspectives. Int. J. Life Cycle Assess. 2020, 25, 141–156. [Google Scholar] [CrossRef]
- Vieira, D.R.; Calmon, J.L.; Coelho, F.Z. Life cycle assessment (LCA) applied to the manufacturing of common and ecological concrete: A review. Constr. Build. Mater. 2016, 124, 656–666. [Google Scholar] [CrossRef]
- Reale, F.; Cinelli, M.; Sala, S. Towards a research agenda for the use of LCA in the impact assessment of policies. Int. J. Life Cycle Assess. 2017, 22, 1477–1481. [Google Scholar] [CrossRef]
- Sonnemann, G.; Gemechu, E.D.; Sala, S.; Schau, E.M.; Allacker, K.; Pant, R.; Adibi, N.; Valdivia, S. Life Cycle Thinking and the Use of LCA in Policies Around the World. In Life Cycle Assessment: Theory and Practice; Hauschild, M.Z., Rosenbaum, R.K., Olsen, S.I., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 429–463. [Google Scholar]
- Howard, I.A.; Busko, D.; Gao, G.; Wendler, P.; Madirov, E.; Turshatov, A.; Moesslein, J.; Richards, B.S. Sorting plastics waste for a circular economy: Perspectives for lanthanide luminescent markers. Resour. Conserv. Recycl. 2024, 205, 107557. [Google Scholar] [CrossRef]
- de Macedo, M.B.; Nóbrega Gomes Júnior, M.; de Oliveira, T.R.P.; Giacomoni, M.H.; Imani, M.; Zhang, K.; Lago, C.A.F.D.; Mendiondo, E.M. Low Impact Development practices in the context of United Nations Sustainable Development Goals: A new concept, lessons learned and challenges. Crit. Rev. Environ. Sci. Technol. 2022, 52, 2538–2581. [Google Scholar] [CrossRef]
- Sassanelli, C.; Rosa, P.; Rocca, R.; Terzi, S. Circular economy performance assessment methods: A systematic literature review. J. Clean. Prod. 2019, 229, 440–453. [Google Scholar] [CrossRef]
- Cecon, V.S.; Munshi, M.; Mukta, S.; Vorst, K.L.; Curtzwiler, G.W. Utilization of Ultrasonication as a Method of Reducing Organic and Inorganic Contamination in Post-Consumer Plastic Film Waste. Macromol. Mater. Eng. 2024, 2400310. [Google Scholar] [CrossRef]
- Arena, U.; Mastellone, M.L.; Perugini, F. Life Cycle assessment of a plastic packaging recycling system. Int. J. Life Cycle Assess. 2003, 8, 92–98. [Google Scholar] [CrossRef]
- Gallego-Schmid, A.; Mendoza, J.M.F.; Azapagic, A. Improving the environmental sustainability of reusable food containers in Europe. Sci. Total Environ. 2018, 628–629, 979–989. [Google Scholar] [CrossRef] [PubMed]
- Amadei, A.M.; Sanyé-Mengual, E.; Sala, S. Modeling the EU plastic footprint: Exploring data sources and littering potential. Resour. Conserv. Recycl. 2021, 178, 106086. [Google Scholar] [CrossRef]
- Vázquez-Morillas, A.; Alvarez-Zeferino, J.C.; Cruz-Salas, A.A.; Martínez-Salvador, C.; Tapia-Fuentes, J.; Araiza, J.P.H.-L.; Beltrán-Villavicencio, M.; Espinosa-Valdemar, R.M.; Rosillo-Pantoja, I.; Velasco-Pérez, M. Inventories of plastic pollution sources, flows and hotspots as a baseline for national action plans: The experience of Mexico. Sci. Total. Environ. 2024, 957, 177338. [Google Scholar] [CrossRef]
- Pilapitiya, P.N.T.; Ratnayake, A.S. The world of plastic waste: A review. Clean. Mater. 2024, 11, 100220. [Google Scholar] [CrossRef]
- Atlason, R.; Giacalone, D.; Parajuly, K. Product design in the circular economy: Users’ perception of end-of-life scenarios for electrical and electronic appliances. J. Clean. Prod. 2017, 168, 1059–1069. [Google Scholar] [CrossRef]
- Kobayashi, H. Strategic evolution of eco-products: A product life cycle planning methodology. Res. Eng. Des. 2005, 16, 1–16. [Google Scholar] [CrossRef]
- Belioka, M.P.; Achilias, D.S. How plastic waste management affects the accumulation of microplastics in waters: A review for transport mechanisms and routes of microplastics in aquatic environments and a timeline for their fate and occurrence (past, present, and future). Water Emerg. Contam. Nanoplastics 2024, 3, 14. [Google Scholar] [CrossRef]
- Heller, M.C.; Mazor, M.H.; A Keoleian, G. Plastics in the US: Toward a material flow characterization of production, markets and end of life. Environ. Res. Lett. 2020, 15, 094034. [Google Scholar] [CrossRef]
- Ryberg, M.W.; Hauschild, M.Z.; Wang, F.; Averous-Monnery, S.; Laurent, A. Global environmental losses of plastics across their value chains. 2019, 151, 104459.
- Kawecki, D.; Nowack, B. Polymer-Specific Modeling of the Environmental Emissions of Seven Commodity Plastics as Macro- and Microplastics. Environ. Sci. Technol. 2019, 53, 9664–9676. [Google Scholar] [CrossRef] [PubMed]
- ISO 14040:2006; Environmental Management—Life Cycle Assessment: Requirements and Guidelines. ISO: Geneva, Switzerland, 2006.
- ISO 14040:1997; Environmental Management—Life Cycle Assessment: Principles and Framework. ISO: Geneva, Switzerland, 1997.
- Ott, D.; Goyal, S.; Reuss, R.; Gutzeit, H.O.; Liebscher, J.; Dautz, J.; Degieter, M.; de Steur, H.; Zannini, E. LCA as decision support tool in the food and feed sector: Evidence from R&D case studies. Environ. Syst. Decis. 2022, 43, 129–141. [Google Scholar]
- Mihai, F.-C.; Gündoğdu, S.; Markley, L.A.; Olivelli, A.; Khan, F.R.; Gwinnett, C.; Gutberlet, J.; Reyna-Bensusan, N.; Llanquileo-Melgarejo, P.; Meidiana, C.; et al. Plastic Pollution, Waste Management Issues, and Circular Economy Opportunities in Rural Communities. Sustainability 2021, 14, 20. [Google Scholar] [CrossRef]
- Hunt, R.G.; Franklin, W.E.; Hunt, R.G. LCA—How it came about—Personal reflections on the origin and the development of LCA in the USA. Int. J. Life Cycle Assess. 1996, 1, 4–7. [Google Scholar] [CrossRef]
- Kiemel, S.; Rietdorf, C.; Schutzbach, M.; Miehe, R. How to Simplify Life Cycle Assessment for Industrial Applications—A Comprehensive Review. Sustainability 2022, 14, 15704. [Google Scholar] [CrossRef]
- Jacquemin, L.; Pontalier, P.-Y.; Sablayrolles, C. Life cycle assessment (LCA) applied to the process industry: A review. Int. J. Life Cycle Assess. 2012, 17, 1028–1041. [Google Scholar] [CrossRef]
- Arena, M.; Azzone, G.; Conte, A. A streamlined LCA framework to support early decision making in vehicle development. J. Clean. Prod. 2013, 41, 105–113. [Google Scholar] [CrossRef]
- Zanghelini, G.M.; Cherubini, E.; Soares, S.R. How multi-criteria decision analysis (MCDA) is aiding life cycle assessment (LCA) in results interpretation. J. Clean. Prod. 2018, 172, 609–622. [Google Scholar] [CrossRef]
- Fred-Ahmadu, O.H.; Ahmadu, F.O.; Adedapo, A.E.; Oghenovo, I.; Ogunmodede, O.T.; Benson, N.U. Microplastics and chemical contamination in aquaculture ecosystems: The role of climate change and implications for food safety—A review. Environ. Sci. Eur. 2024, 36, 181. [Google Scholar] [CrossRef]
- Toussaint, B.; Raffael, B.; Angers-Loustau, A.; Gilliland, D.; Kestens, V.; Petrillo, M.; Rio-Echevarria, I.M.; Van den Eede, G. Review of micro- and nanoplastic contamination in the food chain. Food Addit. Contam. Part A 2019, 36, 639–673. [Google Scholar] [CrossRef] [PubMed]
- Golden, C.D.; Allison, E.H.; Cheung, W.W.L.; Dey, M.M.; Halpern, B.S.; McCauley, D.J.; Smith, M.; Vaitla, B.; Zeller, D.; Myers, S.S. Nutrition: Fall in fish catch threatens human health. Nature 2016, 534, 317–320. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Pan, H.; Chu, P.; Huo, D. Impact of plastic pollution on outdoor recreation in the existence of bearing capacity and perspective management. Environ. Res. 2022, 214, 113819. [Google Scholar] [CrossRef] [PubMed]
- Ryan, P.G. The transport and fate of marine plastics in South Africa and adjacent oceans. S. Afr. J. Sci. 2020, 116, 34–42. [Google Scholar] [CrossRef]
- Kumar, R.; Verma, A.; Shome, A.; Sinha, R.; Sinha, S.; Jha, P.K.; Kumar, R.; Kumar, P.; Shubham; Das, S.; et al. Impacts of Plastic Pollution on Ecosystem Services, Sustainable Development Goals, and Need to Focus on Circular Economy and Policy Interventions. Sustainability 2021, 13, 9963. [Google Scholar] [CrossRef]
- Aparcana, S. Approaches to formalization of the informal waste sector into municipal solid waste management systems in low- and middle-income countries: Review of barriers and success factors. Waste Manag. 2017, 61, 593–607. [Google Scholar] [CrossRef] [PubMed]
- Kaza, S.; Yao, L.C.; Bhada-Tata, P.; Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; World Bank: Washington, DC, USA, 2018. [Google Scholar]
- Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Plastic waste inputs from land into the ocean. Science 2015, 347, 768–771. [Google Scholar] [CrossRef] [PubMed]
- Neo, E.R.K.; Soo, G.C.Y.; Tan, D.Z.L.; Cady, K.; Tong, K.T.; Low, J.S.C. Life cycle assessment of plastic waste end-of-life for India and Indonesia. Resour. Conserv. Recycl. 2021, 174, 105774. [Google Scholar] [CrossRef]
- Krishna, V. Characterization and compositional analysis of municipal solid waste in developing and developed world—An insight. In Solid Waste Management for Resource-Efficient Systems; Elsevier: Amsterdam, The Netherlands, 2024; pp. 3–27. [Google Scholar]
- Abubakar, I.R.; Maniruzzaman, K.M.; Dano, U.L.; AlShihri, F.S.; AlShammari, M.S.; Ahmed, S.M.S.; Al-Gehlani, W.A.G.; Alrawaf, T.I. Environmental Sustainability Impacts of Solid Waste Management Practices in the Global South. Int. J. Environ. Res. Public Health 2022, 19, 12717. [Google Scholar] [CrossRef] [PubMed]
- Poyai, T.; Pongpunpurt, P.; Leknoi, U.; Painmanakul, P.; Chawaloesphonsiya, N. Plastic waste management in urban areas: Key takeaways from the “Send Plastic Home” project in Bangkok, Thailand. Process. Saf. Environ. Prot. 2024, 190, 1222–1232. [Google Scholar] [CrossRef]
- Pucino, M.; Boucher, J.; Bouchet, A.; Paruta, P.; Zgola, M.; Pucino, M.; Paruta, P.; Bouchet, A.; Zgola, M. Plastic Pollution Hotspotting and Shaping Action: Regional Results from Eastern and Southern Africa, the Mediterranean, and Southeast Asia; International Union for the Conservation of Nature: Gland, Switzerland, 2020. [Google Scholar]
- Li, W. Community decisionmaking participation in development. Ann. Tour. Res. 2006, 33, 132–143. [Google Scholar] [CrossRef]
- EC. Closing the Loop—An EU Action Plan for the Circular Economy. 2015. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52015DC0614 (accessed on 2 December 2015).
- CIEL. Plastic Threatens Human Health at a Global Scale. Plastic Pollution Coalition February 2019. 2019. Available online: https://www.plasticpollutioncoalition.org/blog/2019/2/20/reportplastic-threatens-human-health-at-a-global-scale (accessed on 20 February 2019).
- Beghetto, V.; Gatto, V.; Samiolo, R.; Scolaro, C.; Brahimi, S.; Facchin, M.; Visco, A. Plastics today: Key challenges and EU strategies towards carbon neutrality: A review. Environ. Pollut. 2023, 334, 122102. [Google Scholar] [CrossRef] [PubMed]
- Parashar, N.; Hait, S. Plastics in the time of COVID-19 pandemic: Protector or polluter? Sci. Total. Environ. 2020, 759, 144274. [Google Scholar] [CrossRef] [PubMed]
- Rupani, P.F.; Nilashi, M.; Abumalloh, R.A.; Asadi, S.; Samad, S.; Wang, S. Coronavirus pandemic (COVID-19) and its natural environmental impacts. Int. J. Environ. Sci. Technol. 2020, 17, 4655–4666. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Han, J. Unflushable or missing toilet paper, the dilemma for developing communities during the COVID-19 episode. Environ. Chem. Lett. 2020, 19, 711–717. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.L.P.; Prata, J.C.; Walker, T.R.; Duarte, A.C.; Ouyang, W.; Barcelò, D.; Rocha-Santos, T. Increased plastic pollution due to COVID-19 pandemic: Challenges and recommendations. Chem. Eng. J. 2020, 405, 126683. [Google Scholar] [CrossRef] [PubMed]
- Ilyas, S.; Srivastava, R.R.; Kim, H. Disinfection technology and strategies for COVID-19 hospital and bio-medical waste management. Sci. Total Environ. 2020, 749, 141652. [Google Scholar] [CrossRef] [PubMed]
- Aldaco, R.; Hoehn, D.; Laso, J.; Margallo, M.; Ruiz-Salmón, J.; Cristobal, J.; Kahhat, R.; Villanueva-Rey, P.; Bala, A.; Batlle-Bayer, L.; et al. Food waste management during the COVID-19 outbreak: A holistic climate, economic and nutritional approach. Sci. Total. Environ. 2020, 742, 140524. [Google Scholar] [CrossRef] [PubMed]
- Wuyts, W.; Marin, J.; Brusselaers, J.; Vrancken, K. Circular economy as a COVID-19 cure? Resour. Conserv. Recycl. 2020, 162, 105016. [Google Scholar] [CrossRef]
- Van der Meulen, M.D.; De Vriese, L.; Lee, J.; Maes, T.; Van Dalfsen, J.A.; Huvet, A.; Soudant, P.; Robbens, J.; Vethaak, A.D. Socio-Economic Impact of Microplastics in the 2 Seas, Channel and France Manche Region. An Initial Risk Assessment; MICRO Interreg Project IVa: Newry, Northern Ireland, 2014. [Google Scholar]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Wang, Z.; Lv, J.; Gu, F.; Yang, J.; Guo, J. Environmental and economic performance of an integrated municipal solid waste treatment: A Chinese case study. Sci. Total Environ. 2019, 709, 136096. [Google Scholar] [CrossRef] [PubMed]
- Salieri, B.; Stoudmann, N.; Hischier, R.; Som, C.; Nowack, B. How Relevant Are Direct Emissions of Microplastics into Freshwater from an LCA Perspective? Sustainability 2021, 13, 9922. [Google Scholar] [CrossRef]
- Demetrious, A.; Verghese, K.; Stasinopoulos, P.; Crossin, E. Comparison of alternative methods for managing the residual of material recovery facilities using life cycle assessment. Resour. Conserv. Recycl. 2018, 136, 33–45. [Google Scholar] [CrossRef]
- Allegrini, E.; Maresca, A.; Olsson, M.E.; Holtze, M.S.; Boldrin, A.; Astrup, T.F. Quantification of the resource recovery potential of municipal solid waste incineration bottom ashes. Waste Manag. 2014, 34, 1627–1636. [Google Scholar] [CrossRef]
- Moody, C.M.; Townsend, T.G. A comparison of landfill leachates based on waste composition. Waste Manag. 2017, 63, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Aslam, B.; Maqsoom, A.; Tahir, M.D.; Ullah, F.; Rehman, M.S.U.; Albattah, M. Identifying and Ranking Landfill Sites for Municipal Solid Waste Management: An Integrated Remote Sensing and GIS Approach. Buildings 2022, 12, 605. [Google Scholar] [CrossRef]
- Bernat, K. Post-Consumer Plastic Waste Management: From Collection and Sortation to Mechanical Recycling. Energies 2023, 16, 3504. [Google Scholar] [CrossRef]
- Prata, J.C.; Silva, A.L.P.; da Costa, J.P.; Mouneyrac, C.; Walker, T.R.; Duarte, A.C.; Rocha-Santos, T. Solutions and Integrated Strategies for the Control and Mitigation of Plastic and Microplastic Pollution. Int. J. Environ. Res. Public Health 2019, 16, 2411. [Google Scholar] [CrossRef] [PubMed]
- Oosterhuis, F.; Papyrakis, E.; Boteler, B. Economic instruments and marine litter control. Ocean Coast. Manag. 2014, 102, 47–54. [Google Scholar] [CrossRef]
- Nawab, J.; Khan, H.; Ghani, J.; Zafar, M.I.; Khan, S.; Toller, S.; Fatima, L.; Hamza, A. New insights into the migration, distribution and accumulation of micro-plastic in marine environment: A critical mechanism review. Chemosphere 2023, 330, 138572. [Google Scholar] [CrossRef]
- Chang, M. Reducing microplastics from facial exfoliating cleansers in wastewater through treatment versus consumer product decisions. Mar. Pollut. Bull. 2015, 101, 330–333. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo-Ruz, V.; Thiel, M. Distribution and abundance of small plastic debris on beaches in the SE Pacific (Chile): A study supported by a citizen science project. Mar. Environ. Res. 2013, 87–88, 12–18. [Google Scholar] [CrossRef] [PubMed]
- van der Velde, T.; Milton, D.A.; Lawson, T.J.; Wilcox, C.; Lansdell, M.; Davis, G.; Perkins, G.; Hardesty, B.D. Comparison of marine debris data collected by researchers and citizen scientists: Is citizen science data worth the effort? Biol. Conserv. 2017, 208, 127–138. [Google Scholar] [CrossRef]
- Singh, M.; Singh, M.; Singh, S.K. Tackling municipal solid waste crisis in India: Insights into cutting-edge technologies and risk assessment. Sci. Total Environ. 2024, 917, 170453. [Google Scholar] [CrossRef]
- Vollmer, I.; Jenks, M.J.F.; Roelands, M.C.P.; White, R.J.; van Harmelen, T.; de Wild, P.; van der Laan, G.P.; Meirer, F.; Keurentjes, J.T.F.; Weckhuysen, B.M. Beyond Mechanical Recycling: Giving New Life to Plastic Waste. Angew. Chem. Int. Ed. 2020, 59, 15402–15423. [Google Scholar] [CrossRef] [PubMed]
- Hann, S.; Sherrington, C.; Jamieson, O.; Hickman, M.; Kershaw, P.; Bapasola, A.; Cole, G. Investigating Options for Reducing Releases in the Aquatic Environment of Microplastics Emitted by (but not Intentionally Added in) Products; Report for DG Environment of the European Commission; ICF: London, UK, 2018; Volume 335, Available online: https://coilink.org/20.500.12592/86w8cc (accessed on 13 December 2024).
- Al Mamun, A.; Prasetya, T.A.E.; Dewi, I.R.; Ahmad, M. Microplastics in human food chains: Food becoming a threat to health safety. Sci. Total. Environ. 2022, 858, 159834. [Google Scholar] [CrossRef] [PubMed]
- Keoleian, G.A. The application of life cycle assessment to design. J. Clean. Prod. 1993, 1, 143–149. [Google Scholar] [CrossRef]
- Sharma, V.S.; Sharma, V.L.N. E-Waste to Wealth: Turning a Global Concern into an Economic Opportunity. In From Waste to Wealth; Springer Nature: Singapore, 2024; pp. 797–824. [Google Scholar]
- Singh, N.; Adhikari, D. AI in inventory management: Applications, Challenges, and opportunities. Int. J. Res. Appl. Sci. Eng. Technol. 2023, 11, 2049–2053. [Google Scholar] [CrossRef]
- Ziani, K.; Ioniță-Mîndrican, C.-B.; Mititelu, M.; Neacșu, S.M.; Negrei, C.; Moroșan, E.; Drăgănescu, D.; Preda, O.-T. Microplastics: A Real Global Threat for Environment and Food Safety: A State of the Art Review. Nutrients 2023, 15, 617. [Google Scholar] [CrossRef] [PubMed]
- Romera-Castillo, C.; Lucas, A.; Mallenco-Fornies, R.; Briones-Rizo, M.; Calvo, E.; Pelejero, C. Abiotic plastic leaching contributes to ocean acidification. Sci. Total. Environ. 2022, 854, 158683. [Google Scholar] [CrossRef]
- Corella-Puertas, E.; Hajjar, C.; Lavoie, J.; Boulay, A.-M. MarILCA characterization factors for microplastic impacts in life cycle assessment: Physical effects on biota from emissions to aquatic environments. J. Clean. Prod. 2023, 418, 138197. [Google Scholar] [CrossRef]
- Schwarz, A.; Herlaar, S.; Cohen, Q.; Quik, J.; Golkaram, M.; Urbanus, J.; van Emmerik, T.; Huijbregts, M. Microplastic aquatic impacts included in Life Cycle Assessment. Resour. Conserv. Recycl. 2024, 209, 107787. [Google Scholar] [CrossRef]
PPE | Main Component | Degradability | Toxicity (g/L) | References |
Surgical masks | Polyurethane | Biodegradable | 7.93 | [11] |
Medical gloves | Polyvinyl chloride | Non-biodegradable | 8.8 | [12] |
Medical gloves | Butyronitrile | Biodegradable | 33 | [13] |
Face masks | Polyethylene terephthalate | Biodegradable | 0.8 | [14] |
Surgical masks | Acrylonitrile | Non-biodegradable | 68.9 | [15] |
Surgical masks | Polyethylene | Non-biodegradable | 0.13 | [16] |
Surgical masks | Polypropylene | Biodegradable | 0.2 | [17] |
Surgical masks | Polystyrene | Non-biodegradable | 0.3 | [18] |
Surgical masks | Butyronitrile | Biodegradable | 33 | [19] |
Protective eyeglasses | Polycarbonate | Non-biodegradable | 0.007 | [20] |
Soil Type | MP Type | Concentration | Impact of MPs | References |
---|---|---|---|---|
Sandy soil | PET, PA, PP, PE, PS, and PES | 0.4% (w/w) |
| [68] |
Sandy loam soil | PA, PE, PS, PBS, PHB, and PLA | 2% (w/w) |
| [69] |
Udalfs soil | PET | 0.5% (w/w) |
| [70] |
Loamy sand soil | LDPE | 15 g/m2 |
| [71] |
Sandy loam soil | PA, PE, PS, PBS, PHB, and PLA | 0.2% (w/w) |
| [69] |
MP Type | Organisms | Concentration | Impact of MPs | References |
---|---|---|---|---|
PHB | Gammarus fossarum (Koch, 1836) | 100,000 particles/individual |
| [84] |
PHB | Daphnia magna (Straus, 1820) | 106.7 mg/mL |
| [85] |
PLA | Clarias gariepinus (Burchell, 1822) | 0.04 g/pellet |
| [86] |
PLA | Chlorella vulgaris (Beijerinck 1890) | 100 mg/L |
| [87] |
PLA | Mytilus galloprovincialis (Lamarck, 1819) | 80 g/L |
| [88] |
PHB | Lates calcarifer (Bloch, 1790) | 0.5 µg/mL |
| [89] |
PLA | Danio rerio (Hamilton, 1822) | 25 mg/L |
| [90] |
PLA | Artemia franciscana (Kellogg, 1906) | 1 mg/L |
| [91] |
MP Type | Concentration | Exposure Route | Impact of MPs | References |
---|---|---|---|---|
PS | 5 mg/kg/d | Oral gavage |
| [126] |
PE | 100 mg/kg/d | Oral gavage |
| [127] |
PS | 10–100 µg/mL | Oral gavage |
| [128] |
PS | 2 mg/kg/d | Oral gavage |
| [129] |
PE | 200 μg/g | Food |
| [130] |
PE | 0.2 μg/g/d | Oral gavage |
| [131] |
PE, PS, PP, PVC, and PET | 20 mg/mL | Oral gavage |
| [132] |
Method | Advantages | Disadvantages | References |
---|---|---|---|
Raman spectroscopy |
|
| [142,143] |
FTIR |
|
| [142,144] |
Transmission electron microscopy |
|
| [144,145] |
Scanning electron microscopy |
|
| [146] |
Pyrolysis–gas chromatography– mass spectroscopy |
|
| [142] |
Stereo microscopy |
|
| [147] |
Fluorescence microscopy |
|
| [144] |
LCA Software | Software Platform | Key Information |
---|---|---|
Athena Impact Estimator (www.calculatelca.com) |
|
|
BeCost (http://virtual.vtt.fi/virtual/proj6/environ/ohjelmat_e.html) |
|
|
Caala (www.caala.de) |
|
|
COCON (https://www.cocon-bim.com) |
|
|
Eco-Quantum (www.iva.uva.nl) |
|
|
ECOSOFT (www.ibo.at/en/ecosoft.html) |
|
|
ELODIE (https://info.cype.com/fr/software/elodie-by-cype/) |
|
|
Envest® (https://clarityenv.com.au/envest/) |
|
|
EQUER (www.izuba.fr/logicial/equer) |
|
|
eToolLCD (www.etoollcd.com) |
|
|
One Click LCA (www.oneclicklca.com) |
|
|
Tally (www.choosetally.com) |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, S.S.; Alsharbaty, M.H.M.; Al-Tohamy, R.; Khalil, M.A.; Schagerl, M.; Al-Zahrani, M.; Sun, J. Microplastics as an Emerging Potential Threat: Toxicity, Life Cycle Assessment, and Management. Toxics 2024, 12, 909. https://doi.org/10.3390/toxics12120909
Ali SS, Alsharbaty MHM, Al-Tohamy R, Khalil MA, Schagerl M, Al-Zahrani M, Sun J. Microplastics as an Emerging Potential Threat: Toxicity, Life Cycle Assessment, and Management. Toxics. 2024; 12(12):909. https://doi.org/10.3390/toxics12120909
Chicago/Turabian StyleAli, Sameh S., Mohammed Hussein M. Alsharbaty, Rania Al-Tohamy, Maha A. Khalil, Michael Schagerl, Majid Al-Zahrani, and Jianzhong Sun. 2024. "Microplastics as an Emerging Potential Threat: Toxicity, Life Cycle Assessment, and Management" Toxics 12, no. 12: 909. https://doi.org/10.3390/toxics12120909
APA StyleAli, S. S., Alsharbaty, M. H. M., Al-Tohamy, R., Khalil, M. A., Schagerl, M., Al-Zahrani, M., & Sun, J. (2024). Microplastics as an Emerging Potential Threat: Toxicity, Life Cycle Assessment, and Management. Toxics, 12(12), 909. https://doi.org/10.3390/toxics12120909