The Potential of Satellite Imagery for Surveying Whales
Abstract
1. Introduction
2. Considerations and Challenges Inherent to Satellite Images
3. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nelson, H.K.; Work, E., Jr. Appraising Changes in Continental Migratory Bird Habitat; Progress Report; Bureau of Sport Fisheries and Wildlife Northern Prairie Wildlife Research Center, Jamestown, North Dakota and Goddard Space Flight Center: Greenbelt, MD, USA, 1973. [Google Scholar]
- Reeves, H.M.; Cooch, F.G.; Munro, R.E. Monitoring arctic habitat and goose production by satellite imagery. J. Wildl. Manag. 1976, 40, 532–541. [Google Scholar] [CrossRef]
- Löffler, E.; Margules, C. Wombats detected from space. Remote Sens. Environ. 1980, 9, 47–56. [Google Scholar] [CrossRef]
- Laliberte, A.S.; Ripple, W.J. Automated wildlife counts from remotely sensed imagery. Wildl. Soc. Bull. 2003, 31, 362–371. [Google Scholar]
- Yang, Z.; Wang, T.; Skidmore, A.K.; de Leeuw, J.; Said, M.Y.; Freer, J. Spotting East African mammals in open savannah from space. PLoS ONE 2014, 9, e115989. [Google Scholar] [CrossRef] [PubMed]
- Duporge, I.; Isupova, O.; Reece, S.; Macdonald, D.W.; Wang, T. Using very-high-resolution satellite imagery and deep learning to detect and count African elephants in heterogeneous landscapes. Remote Sens. Ecol. Conserv. 2020. [Google Scholar] [CrossRef]
- Stapleton, S.; LaRue, M.; Lecomte, N.; Atkinson, S.; Garshelis, D.; Porter, C.; Atwood, T. Polar bears from space: Assessing satellite imagery as a tool to track arctic wildlife. PLoS ONE 2014, 9, e101513. [Google Scholar] [CrossRef]
- Moxley, J.H.; Bogomolni, A.; Hammill, M.O.; Moore, K.M.T.; Polito, M.J.; Sette, L.; Sharp, W.B.; Waring, G.T.; Gilbert, J.R.; Halpin, P.N.; et al. Google haul out: Earth observation imagery and digital aerial surveys in coastal wildlife management and abundance estimation. BioScience 2017, 67, 760–768. [Google Scholar] [CrossRef]
- Fretwell, P.T.; Scofield, P.; Phillips, R.A. Using super-high resolution satellite imagery to census threatened albatrosses. Ibis 2017, 159, 481–490. [Google Scholar] [CrossRef]
- Abileah, R. Marine mammal census using space satellite imagery. US Navy J. Underw. Acoust. 2002, 52, 709–724. [Google Scholar]
- Fretwell, P.T.; Staniland, I.J.; Forcada, J. Whales from space: Counting southern right whales by satellite. PLoS ONE 2014, 9, e88655. [Google Scholar] [CrossRef]
- Cubaynes, H.C.; Fretwell, P.T.; Bamford, C.; Gerrish, L.; Jackson, J.A. Whales from space: Four mysticete species described using new VHR satellite imagery. Mar. Mammal Sci. 2019, 35, 466–491. [Google Scholar] [CrossRef]
- Viquerat, S.; Herr, H. Mid-summer abundance estimates of fin whales balaenoptera physalus around the south orkney islands and elephant island. Endanger. Species Res. 2017, 32, 515–524. [Google Scholar] [CrossRef]
- Hammond, P.S.; Lacey, C.; Gilles, A.; Viquerat, S.; Börjesson, P.; Herr, H.; MacLeod, K.; Ridoux, V.; Santos, M.B.; Scheidat, M.; et al. Estimates of Cetacean Abundance in European Atlantic Waters in Summer 2016 from the SCANS-III Aerial and Shipboard Surveys; Wageningen Marine Research: Yerseke, The Netherlands, 2017; p. 40. [Google Scholar]
- Kaschner, K.; Tittensor, D.P.; Ready, J.; Gerrodette, T.; Worm, B. Current and future patterns of global marine mammal biodiversity. PLoS ONE 2011, 6, e19653. [Google Scholar] [CrossRef]
- Kaschner, K.; Quick, N.J.; Jewell, R.; Williams, R.; Harris, C.M. Global coverage of cetacean line-transect surveys: Status quo, data gaps and future challenges. PLoS ONE 2012, 7, e44075. [Google Scholar] [CrossRef] [PubMed]
- Redfern, J.V.; Moore, T.J.; Fiedler, P.C.; de Vos, A.; Brownell, R.L., Jr.; Forney, K.A.; Becker, E.A.; Ballance, L.T. Predicting cetacean distributions in data-poor marine ecosystems. Divers. Distrib. 2017, 23, 394–408. [Google Scholar] [CrossRef]
- Mannocci, L.; Roberts, J.J.; Miller, D.L.; Halpin, P.N. Extrapolating cetacean densities to quantitatively assess human impacts on populations in the high seas. Conserv. Biol. 2017, 31, 601–614. [Google Scholar] [CrossRef]
- Reynolds, J.E., III; Marsh, H.; Ragen, T.J. Marine mammal conservation. Endanger. Species Res. 2009, 7, 23–28. [Google Scholar] [CrossRef]
- Brandt, M.; Tucker, C.J.; Kariryaa, A.; Rasmussen, K.; Abel, C.; Small, J.; Chave, J.; Rasmussen, L.V.; Hiernaux, P.; Diouf, A.A.; et al. An unexpectedly large count of trees in the West African Sahara and Sahel. Nature 2020, 587, 78–82. [Google Scholar] [CrossRef]
- Xue, Y.; Wang, T.; Skidmore, A.K. Automatic counting of large mammals from very high resolution panchromatic satellite imagery. Remote Sens. 2017, 9, 878. [Google Scholar] [CrossRef]
- LaRue, M.A.; Stapleton, S.; Anderson, M. Feasibility of using high-resolution satellite imagery to assess vertebrate wildlife populations. Conserv. Biol. 2017, 31, 213–220. [Google Scholar] [CrossRef]
- Leaper, R.; Fretwell, P. Results of a Pilot Study on the Use of Satellite Imagery to Detect Blue Whales off the South Coast of Sri Lanka. Paper SC/66a/HIM/2 Presented to the IWC Scientific Committee (unpublished). 2015, p. 9. Available online: https://archive.iwc.int/pages/search.php?search=!collection216&bc_from=themes (accessed on 30 December 2020).
- Jerlov, N.G. Marine Optics; Elsevier Science: Amsterdam, The Netherlands, 1976; pp. 157–161. [Google Scholar]
- Buckland, S.T.; Anderson, D.R.; Burnham, K.P.; Laake, J.L.; Borchers, D.L.; Thomas, L. Introduction to Distance Sampling Estimating Abundance of Biological Populations, 1st ed.; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Teilmann, J.; Christiansen, C.T.; Kjellerup, S.; Dietz, R.; Nachman, G. Geographic, seasonal, and diurnal surface behavior of harbor porpoises. Mar. Mammal Sci. 2013, 29, 1–17. [Google Scholar] [CrossRef]
- Bamford, C.; Kelly, N.; Dalla Rosa, L.; Cade, D.; Fretwell, P.; Trathan, P.; Cubaynes, H.; Mesquita, A.; Gerrish, L.; Friedlaender, A.; et al. A comparison of baleen whale density estimates derived from overlapping satellite imagery and a shipborne survey. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Borowicz, A.; Le, H.; Humphries, G.; Nehls, G.; Höschle, C.; Kosarev, V.; Lynch, H.J. Aerial-trained deep learning networks for surveying cetaceans from satellite imagery. PLoS ONE 2019, 14. [Google Scholar] [CrossRef] [PubMed]
- Guirado, E.; Tabik, S.; Rivas, M.L.; Alcaraz-Segura, D.; Herrera, F. Whale counting in satellite and aerial images with deep learning. Sci. Rep. 2019, 9, 14259. [Google Scholar] [CrossRef] [PubMed]
- Bowler, E.; Fretwell, P.T.; French, G.; Mackiewicz, M. Using deep learning to count albatrosses from space: Assessing results in light of ground truth uncertainty. Remote Sens. 2020, 12, 2026. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Höschle, C.; Cubaynes, H.C.; Clarke, P.J.; Humphries, G.; Borowicz, A. The Potential of Satellite Imagery for Surveying Whales. Sensors 2021, 21, 963. https://doi.org/10.3390/s21030963
Höschle C, Cubaynes HC, Clarke PJ, Humphries G, Borowicz A. The Potential of Satellite Imagery for Surveying Whales. Sensors. 2021; 21(3):963. https://doi.org/10.3390/s21030963
Chicago/Turabian StyleHöschle, Caroline, Hannah C. Cubaynes, Penny J. Clarke, Grant Humphries, and Alex Borowicz. 2021. "The Potential of Satellite Imagery for Surveying Whales" Sensors 21, no. 3: 963. https://doi.org/10.3390/s21030963
APA StyleHöschle, C., Cubaynes, H. C., Clarke, P. J., Humphries, G., & Borowicz, A. (2021). The Potential of Satellite Imagery for Surveying Whales. Sensors, 21(3), 963. https://doi.org/10.3390/s21030963