Thermal Transport in Extremely Confined Metallic Nanostructures: TET Characterization
Abstract
1. Introduction
2. TET Technique
3. Differential TET Technique
4. Summary and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tom, T.E.; Ros, N.; Lopez-Pinto, J.M.; Asensi, J.; Andreu, J.; Bertomeu, J.; Puigdollers, V.C. Influence of Co-Sputtered Ag:Al Ultra-Thin Layers in Transparent V2O5/Ag:Al/AZO Hole-Selective Electrodes for Silicon Solar Cells. Materials 2020, 13, 4905. [Google Scholar] [CrossRef]
- Jilani, S.F.; Falade, O.; Wildsmith, T.; Reip, P.; Alomainy, A. A 60-GHz Ultra-Thin and Flexible Metasurface for Frequency-Selective Wireless Applications. Appl. Sci. Basel 2019, 9, 945. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Liu, G.; Huang, Z.; Liu, X.; Fu, G. Ultra-broadband perfect solar absorber by an ultra-thin refractory titanium nitride meta-surface. Sol. Energy Mater. Sol. Cells 2018, 179, 346–352. [Google Scholar] [CrossRef]
- Wang, Y.H.; Qiu, Y.; Ameri, S.; Jang, H.; Dai, Z.; Huang, Y.; Lu, N.S. Low-cost, mu m-thick, tape-free electronic tattoo sensors with minimized motion and sweat artifacts. NPJ Flex. Electron. 2018, 2, 6. [Google Scholar] [CrossRef]
- Pan, C.F.; Markvicka, E.; Malakooti, M.; Yan, J.; Hu, L.; Matyjaszewski, K.; Majidi, C. A Liquid-Metal-Elastomer Nanocomposite for Stretchable Dielectric Materials. Adv. Mater. 2019, 31, e1900663. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.W.; Jin, S.; Jin, H.; Du, Z.; Zhu, Y.; Cao, A.; Ji, H.; Wan, L. Robust Expandable Carbon Nanotube Scaffold for Ultrahigh-Capacity Lithium-Metal Anodes. Adv. Mater. 2018, 30, e1800884. [Google Scholar] [CrossRef]
- Guerin, H.; Yoshihira, M.; Kura, H.; Ogawa, T.; Sato, T.; Maki, H. Coulomb blockade phenomenon in ultra-thin gold nanowires. J. Applied Physics 2012, 111, 054304. [Google Scholar] [CrossRef]
- Kim, Y.J.; Kumar, S.; Lee, C.; Koo, B.; Chung, J.; Kim, W. Influence of the thickness on structural, magnetic and electrical properties of La0. 7Ca0.3MnO3 thin film. Curr. Appl. Phys. 2010, 10, 821–824. [Google Scholar] [CrossRef]
- Franz, R.; Wiedemann, G. Ueber die Wrme-Leitungsfhigkeit der Metalle. Annalen der Physik 1853.
- Lorenz, L. Ueber das Leitungsvermögen der Metalle für Wärme und Electricität. Ann. Der Phys. 2010, 249, 422–447. [Google Scholar] [CrossRef]
- Sondheimer, E.H. The Mean Free Path of Electrons in Metals. Adv. Phys. 2001, 50, 499–537. [Google Scholar] [CrossRef]
- Zhang, X.; Xie, H.; Fujii, M.; Ago, H.; Takahashi, K.; Ikuta, T.; Abe, H.; Shimizu, T. Thermal and electrical conductivity of a suspended platinum nanofilm. Appl. Phys. Lett. 2005, 86, 1259. [Google Scholar] [CrossRef]
- Beloborodov, I.; Lopatin, A.; Hekking, F. Thermal transport in granular metals. Europhys. Lett. 2005, 69, 435–441. [Google Scholar] [CrossRef]
- Tripathi, V.; Loh, Y. Optical conductivity of a granular metal at not very low temperatures. arXiv 2006, arXiv:cond-mat/0601138. [Google Scholar]
- Fuchs, K. The conductivity of thin metallic films according to the electron theory of metals. Math. Proc. Camb. Philos. Soc. 2008, 34, 100–108. [Google Scholar] [CrossRef]
- Stojanovic, N.D.; Maithripala, J.M.; Berg, M.; Holtz. Thermal conductivity in metallic nanostructures at high temperature: Electrons, phonons, the Wiedemann-Franz law. Phys. Rev. 2010, 82, 075418. [Google Scholar] [CrossRef]
- Tzou, D.Y. A Unified Field Approach for Heat Conduction From Macro- to Micro-Scales. Journal of Heat Transfer 1995, 117, 8–16. [Google Scholar] [CrossRef]
- Da, Y.T. The generalized lagging response in small-scale and high-rate heating. Int. J. Heat Mass Transf. 1995, 38, 3231–3240. [Google Scholar]
- Duquesne, J.Y.; Fournier, D.; Fretigny, C. Analytical solutions of the heat diffusion equation for 3 omega method geometry. J. Appl. Phys. 2010, 108, 4067. [Google Scholar] [CrossRef]
- Sheng, L.; Xing, D.; Wang, Z. Transport theory in metallic films: Crossover from the classical to the quantum regime. Phys. Review. B Condens. Matter 1995, 51, 7325–7328. [Google Scholar] [CrossRef]
- Soffer, S.B. Statistical Model for the Size Effect in Electrical Conduction. J. Appl. Phys. 1967, 38, 1710–1715. [Google Scholar] [CrossRef]
- Namba, Y. Resistivity and Temperature Coefficient of Thin Metal Films with Rough Surface. Jpn. J. Appl. Phys. 1970, 9, 1326–1329. [Google Scholar] [CrossRef]
- Gurrum, S.P.; Joshi, Y.; King, W.; Ramakrishna, K.; Gall, M. A Compact Approach to On-Chip Interconnect Heat Conduction Modeling Using the Finite Element Method. J. Electron. Packag. 2008, 130, 031001. [Google Scholar] [CrossRef]
- Gurrum, S.P.; Joshi, Y.; King, W.; Ramakrishna, K. Numerical simulation of electron transport through constriction in a metallic thin film. Electron Device Lett. IEEE 2015, 25, 696–698. [Google Scholar] [CrossRef]
- Lu, L.; Yi, W.; Zhang, D. 3 omega method for specific heat and thermal conductivity measurements. Rev. Sci. Instrum. 2002, 72, 2996. [Google Scholar] [CrossRef]
- Dames, C.; Chen, G. 1ω, 2ω, and 3ω methods for measurements of thermal properties. Rev. Sci. Instrum. 2005, 76, 124902. [Google Scholar] [CrossRef]
- Choi, T.Y.; Poulikakos, D.; Tharian, J.; Sennhauser, U. Measurement of thermal conductivity of individual multiwalled carbon nanotubes by the 3-ω method. Appl. Phys. Lett. 2005, 87, 56. [Google Scholar] [CrossRef]
- Hu, X.J.; Padilla, A.; Xu, J.; Fisher, T.; Goodson, K. 3-Omega Measurements of Vertically Oriented Carbon Nanotubes on Silicon. J. Heat Transf. 2006, 128, 1109–1113. [Google Scholar] [CrossRef]
- Pezarini, R.R.; Bernabe, H.; Sato, F.; Malacarne, L.; Astrath, N.; Rohling, J.; Medina, A.; Reis, R.; Gandra, F. On the use of photothermal techniques to study NiTi phase transitions. Mater. Res. Express 2014, 1, 026502. [Google Scholar] [CrossRef]
- Astrath, F.B.G.; Astrath, N.; Shen, J.; Zhou, J.; Baesso, M. A composite photothermal technique for the measurement of thermal properties of solids. J. Applied Physics 2008, 104. [Google Scholar] [CrossRef]
- Bourgoin, J.P.; Allogho, G.; Hache, A. Thermal conduction in thin films measured by optical surface thermal lensing. J. Appl. Phys. 2010, 108, 223. [Google Scholar] [CrossRef]
- Liu, J.; Wang, X. Characterization of thermal transport in one-dimensional microstructures using Johnson noise electro-thermal technique. Appl. Phys. A Mater. Sci. Process. 2015, 119, 871–879. [Google Scholar] [CrossRef]
- Liu, G.Q.; Lin, H.; Tang, X.; Bergler, K.; Wang, X. Characterization of Thermal Transport in One-dimensional Solid Materials. Jove-J. Vis. Exp. 2014, 83, e51144. [Google Scholar] [CrossRef]
- Deng, C.H.; Cong, T.; Xie, Y.; Wang, R.; Wang, T.; Pan, L.; Wang, X. In situ investigation of annealing effect on thermophysical properties of single carbon nanocoil. Int. J. Heat Mass Transf. 2020, 151, 119416. [Google Scholar] [CrossRef]
- Guillou, J.; Lavadiya, D.; Munro, T.; Fronk, T.; Ban, H. From lignocellulose to biocomposite: Multi-level modelling and experimental investigation of the thermal properties of kenaf fiber reinforced composites based on constituent materials. Appl. Therm. Eng. 2018, 128, 1372–1381. [Google Scholar] [CrossRef]
- Wang, H.; Sen, M. Analysis of the 3-omega method for thermal conductivity measurement. Int. J. Heat and Mass Transf. 2009, 52, 2102–2109. [Google Scholar] [CrossRef]
- Ghukasyan, A.; Oliveira, P.; Goktas, N.; LaPierre, R. Thermal Conductivity of GaAs Nanowire Arrays Measured by the 3 omega Method. Nanomaterials 2022, 12, 1288. [Google Scholar] [CrossRef] [PubMed]
- Qiu, L.; Zhu, N.; Zou, H.; Feng, Y.; Zhang, X.; Tang, D. Advances in thermal transport properties at nanoscale in China. Int. J. Heat Mass Transf. 2018, 125, 413–433. [Google Scholar] [CrossRef]
- Nakamura, F.; Taketoshi, N.; Yagi, T.; Baba, T. Observation of thermal transfer across a Pt thin film at a low temperature using a femtosecond light pulse thermoreflectance method. Meas. Sci. Technol. 2011, 22, 500–502. [Google Scholar] [CrossRef]
- Wang, H.-D.; Ma, W.-G.; Zhang, X.; Wang, W.; Guo, Z.-Y. Theoretical and experimental study on the heat transport in metallic nanofilms heated by ultra-short pulsed laser. Int. J. Heat Mass Transf. 2011, 54, 967–974. [Google Scholar] [CrossRef]
- Jiang, P.Q.; Qian, X.; Yang, R. Tutorial: Time-domain thermoreflectance (TDTR) for thermal property characterization of bulk and thin film materials. J. Appl. Phys. 2018, 124, 161103. [Google Scholar] [CrossRef]
- Liu, J.; Yoon, B.; Kuhlmann, E.; Tian, M.; Zhu, J.; George, S.; Lee, Y.; Yang, R. Ultralow Thermal Conductivity of Atomic/Molecular Layer-Deposited Hybrid Organic-Inorganic Zincone Thin Films. Nano Lett. 2013, 13, 5594–5599. [Google Scholar] [CrossRef]
- Ma, W.G.; Zhang, X. Study of the thermal, electrical and thermoelectric properties of metallic nanofilms. Int. J. Heat Mass Transf. 2013, 58, 639–651. [Google Scholar] [CrossRef]
- Boiko, B.T.; Pugachev, A.; Bratsychin, V. Method for the determination of the thermophysical properties of evaporated thin films. Thin Solid Film. 1973, 17, 157–161. [Google Scholar] [CrossRef]
- Guo, J.Q.; Wang, X.; Wang, T. Thermal characterization of microscale conductive and nonconductive wires using transient electrothermal technique. J. Appl. Phys. 2007, 101, 063537. [Google Scholar] [CrossRef]
- Lin, H.; Dong, H.; Xu, S.; Wang, X.; Zhang, J.; Wang, Y. Thermal transport in graphene fiber fabricated by wet-spinning method. Mater. Lett. 2016, 183, 147–150. [Google Scholar] [CrossRef]
- Hunter, N.; Karamati, A.; Xie, Y.; Lin, H.; Wang, X. Laser Photoreduction of Graphene Aerogel Microfibers: Dynamic Electrical and Thermal Behaviors. ChemPhysChem 2022, e202200417. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Zobeiri, H.; Lin, H.; Xie, D.; Yue, Y.; Wang, X. Coherency between thermal and electrical transport of partly reduced graphene paper. Carbon. 2021, 178, 92–102. [Google Scholar] [CrossRef]
- Lin, H.; Hunter, N.; Zobeiri, H.; Yue, Y.; Wang, X. Ultra-high thermal sensitivity of graphene microfiber. Carbon 2023, 203, 620–629. [Google Scholar] [CrossRef]
- Liu, G.Q.; Huang, X.; Wang, Y.; Zhang, Y.; Wang, X. Thermal transport in single silkworm silks and the behavior under stretching. Soft Matter 2012, 8, 9792–9799. [Google Scholar] [CrossRef]
- Cheng, Z.; Han, M.; Yuan, P.; Xu, S.; Cola, B.; Wang, X. Strongly anisotropic thermal and electrical conductivities of a self-assembled silver nanowire network. Rsc Adv. 2016, 6, 90674–90681. [Google Scholar] [CrossRef]
- Feng, X.; Wang, X. Thermophysical properties of free-standing micrometer-thick Poly(3-hexylthiophene) films. Thin Solid Film. 2011, 519, 5700–5705. [Google Scholar] [CrossRef]
- Liu, X.; Dong, H.; Li, Y. Characterization of Thermal Conductivity of Carbon Fibers at Temperatures as Low as 10 K. Int. J. Thermophys. 2018, 39, 97. [Google Scholar] [CrossRef]
- Liu, X.; Dong, H.; Li, Y.; Mei, N. Thermal Conductivity and Raman Spectra of Carbon Fibers. Int. J. Thermophys. 2017, 38, 1–9. [Google Scholar] [CrossRef]
- Lin, H.; Liu, X.; Kou, A.; Xu, S.; Dong, H. 2019-One-Dimensional Thermal Characterization at the Micro Nanoscale Review of the TET Technique. Int. J. Thermophys. 2019, 40, 108. [Google Scholar] [CrossRef]
- Lin, H.; Xu, S.; Wang, X.; Mei, N. Thermal and Electrical Conduction in Ultrathin Metallic Films: 7 nm down to Sub-Nanometer Thickness. Small 2013, 9, 2585–2594. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Xu, Z.; Xu, S.; Cheng, Z.; Hashemi, N.; Deng, C.; Wang, X. The defect level and ideal thermal conductivity of graphene uncovered by residual thermal reffusivity at the 0 K limit. Nanoscale 2015, 7, 10101–10110. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Wang, X.; Xie, H. Promoted electron transport and sustained phonon transport by DNA down to 10 K. Polymer 2014, 55, 6373–6380. [Google Scholar] [CrossRef]
- Lin, H.; Xu, S.; Wang, X.; Mei, N. Significantly reduced thermal diffusivity of free-standing two-layer graphene in graphene foam. Nanotechnology 2013, 24, 415706. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Xu, S.; Zhang, Y.; Wang, X. Electron transport and bulk-like behavior of Wiedemann-Franz law for sub-7 nm-thin iridium films on silkworm silk. Acs Appl. Mater Interfaces 2014, 6, 11341–11347. [Google Scholar] [CrossRef]
- Lin, H.; Xu, S.; Li, C.; Dong, H.; Wang, X. Thermal and electrical conduction in 6.4 nm thin gold films. Nanoscale 2013, 5, 4652–4656. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Chen, R.; Mu, Y.; Liu, S.; Zhang, J.; Lin, H. Thermal and Electrical Properties of 3.2 nm Thin Gold Films Coated on Alginate Fiber. J. Therm. Sci. Eng. Appl. 2017, 10, 011012. [Google Scholar] [CrossRef]
- Liu, J.; Wang, T.; Xu, S.; Yuan, P.; Xu, X.; Wang, X. Thermal conductivity of giant mono- to few-layered CVD graphene supported on an organic substrate. Nanoscale 2016, 8, 10298–10309. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, H.; Shen, F.; Xu, J.; Zhang, L.; Xu, S.; Liu, N.; Luo, S. Thermal Transport in Extremely Confined Metallic Nanostructures: TET Characterization. Nanomaterials 2023, 13, 140. https://doi.org/10.3390/nano13010140
Lin H, Shen F, Xu J, Zhang L, Xu S, Liu N, Luo S. Thermal Transport in Extremely Confined Metallic Nanostructures: TET Characterization. Nanomaterials. 2023; 13(1):140. https://doi.org/10.3390/nano13010140
Chicago/Turabian StyleLin, Huan, Fuhua Shen, Jinbo Xu, Lijun Zhang, Shen Xu, Na Liu, and Siyi Luo. 2023. "Thermal Transport in Extremely Confined Metallic Nanostructures: TET Characterization" Nanomaterials 13, no. 1: 140. https://doi.org/10.3390/nano13010140
APA StyleLin, H., Shen, F., Xu, J., Zhang, L., Xu, S., Liu, N., & Luo, S. (2023). Thermal Transport in Extremely Confined Metallic Nanostructures: TET Characterization. Nanomaterials, 13(1), 140. https://doi.org/10.3390/nano13010140