Towards High-Performance Inverted Mesoporous Perovskite Solar Cell by Using Bathocuproine (BCP)
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kannan, N.; Vakeesan, D. Solar energy for future world—A review. Renew. Sustain. Energy Rev. 2016, 62, 1092–1105. [Google Scholar] [CrossRef]
- Freitag, M.; Teuscher, J.; Saygili, Y.; Zhang, X.; Giordano, F.; Liska, P.; Hua, J.; Zakeeruddin, S.M.; Moser, J.-E.; Grätzel, M.; et al. Dye-sensitized solar cells for efficient power generation under ambient lighting. Nat. Photonics 2017, 11, 372–378. [Google Scholar] [CrossRef]
- Chen, B.; Yang, Z.; Jia, Q.; Ball, R.J.; Zhu, Y.; Xia, Y. Emerging applications of metal-organic frameworks and derivatives in solar cells: Recent advances and challenges. Mater. Sci. Eng. R Rep. 2023, 152, 100714. [Google Scholar] [CrossRef]
- Rühle, S. Tabulated values of the Shockley–Queisser limit for single junction solar cells. Sol. Energy 2016, 130, 139–147. [Google Scholar] [CrossRef]
- Ehrler, B.; Alarcón-Lladó, E.; Tabernig, S.W.; Veeken, T.; Garnett, E.; Polman, A. Photovoltaics Reaching for the Shockley–Queisser Limit. ACS Energy Lett. 2020, 5, 3029–3033. [Google Scholar] [CrossRef]
- Xu, Y.; Xiong, S.; Jiang, S.; Yang, J.; Li, D.; Wu, H.; You, X.; Zhang, Y.; Ma, Z.; Xu, J.; et al. Synchronous modulation of defects and buried interfaces for highly efficient inverted perovskite solar cells. Adv. Energy Mater. 2023, 13, 2203505. [Google Scholar] [CrossRef]
- Chen, H.; Liu, C.; Xu, J.; Maxwell, A.; Zhou, W.; Yang, Y.; Zhou, Q.; Bati, A.S.; Wan, H.; Wang, Z.; et al. Improved charge extraction in inverted perovskite solar cells with dual-site-binding ligands. Science 2024, 384, 189–193. [Google Scholar] [CrossRef]
- Bai, S.; Da, P.; Li, C.; Wang, Z.; Yuan, Z.; Fu, F.; Kawecki, M.; Liu, X.; Sakai, N.; Wang, J.T.-W.; et al. Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature 2019, 571, 245–250. [Google Scholar] [CrossRef]
- Tan, S.; Huang, T.; Yavuz, I.; Wang, R.; Yoon, T.W.; Xu, M.; Xing, Q.; Park, K.; Lee, D.-K.; Chen, C.-H. Stability-limiting heterointerfaces of perovskite photovoltaics. Nature 2022, 605, 268–273. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, J.; Zhang, P.; Liu, D.; Zhang, T.; Ji, L.; Gu, X.; Chen, Z.D.; Li, S. Stitching triple cation perovskite by a mixed anti-solvent process for high performance perovskite solar cells. Nano Energy 2017, 39, 616–625. [Google Scholar] [CrossRef]
- Yoon, S.; Ha, M.-W.; Kang, D.-W. PCBM-blended chlorobenzene hybrid anti-solvent engineering for efficient planar perovskite solar cells. J. Mater. Chem. C 2017, 5, 10143–10151. [Google Scholar] [CrossRef]
- Mahmud, M.A.; Duong, T.; Yin, Y.; Pham, H.T.; Walter, D.; Peng, J.; Wu, Y.; Li, L.; Shen, H.; Wu, N. Double-sided surface passivation of 3D perovskite film for high-efficiency mixed-dimensional perovskite solar cells. Adv. Funct. Mater. 2020, 30, 1907962. [Google Scholar] [CrossRef]
- Zuo, X.; Kim, B.; Liu, B.; He, D.; Bai, L.; Wang, W.; Xu, C.; Song, Q.; Jia, C.; Zang, Z.; et al. Passivating buried interface via self-assembled novel sulfonium salt toward stable and efficient perovskite solar cells. Chem. Eng. J. 2022, 431, 133209. [Google Scholar] [CrossRef]
- Yang, X.; Luo, D.; Xiang, Y.; Zhao, L.; Anaya, M.; Shen, Y.; Wu, J.; Yang, W.; Chiang, Y.H.; Tu, Y.; et al. Buried interfaces in halide perovskite photovoltaics. Adv. Mater. 2021, 33, 2006435. [Google Scholar] [CrossRef]
- Luo, C.; Zheng, G.; Gao, F.; Wang, X.; Zhan, C.; Gao, X.; Zhao, Q. Engineering the buried interface in perovskite solar cells via lattice-matched electron transport layer. Nat. Photonics 2023, 17, 856–864. [Google Scholar] [CrossRef]
- Zhang, B.; Oh, J.; Sun, Z.; Cho, Y.; Jeong, S.; Chen, X.; Sun, K.; Li, F.; Yang, C.; Chen, S. Buried guanidinium passivator with favorable binding energy for perovskite solar cells. ACS Energy Lett. 2023, 8, 1848–1856. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, Q.; Liu, G.; Chen, Y.; Guo, Z.; Li, N.; Niu, X.; Qiu, Z.; Zhou, W.; Huang, Z.; et al. Improved fatigue behaviour of perovskite solar cells with an interfacial starch–polyiodide buffer layer. Nat. Photonics 2023, 17, 1066–1073. [Google Scholar] [CrossRef]
- Chen, S.; Dai, X.; Xu, S.; Jiao, H.; Zhao, L.; Huang, J. Stabilizing perovskite-substrate interfaces for high-performance perovskite modules. Science 2021, 373, 902–907. [Google Scholar] [CrossRef]
- Fei, C.; Li, N.; Wang, M.; Wang, X.; Gu, H.; Chen, B.; Zhang, Z.; Ni, Z.; Jiao, H.; Xu, W.; et al. Lead-chelating hole-transport layers for efficient and stable perovskite minimodules. Science 2023, 380, 823–829. [Google Scholar] [CrossRef]
- Li, W.; Zheng, H.; Ye, C.; Wu, T.; Fan, M.; Feng, J. Effect of the intermolecular hydrogen bond between carbazole and N, N-dimethylformamide/isopropanolamine on the solubility of carbazole. Energy Fuels 2012, 26, 6316–6322. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, H.; Stoumpos, C.C.; Ren, J.; Hou, Q.; Li, X.; Li, J.; He, H.; Lin, H.; Wang, J.; et al. Thiazole-induced surface passivation and recrystallization of CH3NH3PbI3 films for perovskite solar cells with ultrahigh fill factors. ACS Appl. Mater. Interfaces 2018, 10, 42436–42443. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wei, T.; Shai, X.; Song, Q.; Zeng, C.; He, D.; Zhang, H.; Chen, J. Improving Photovoltaic Performance and Stability of Perovskite Solar Cells via Molecular Bridge Strategy. Adv. Opt. Mater. 2023, 11, 2300684. [Google Scholar] [CrossRef]
- Jiang, Q.; Chu, Z.; Wang, P.; Yang, X.; Liu, H.; Wang, Y.; Yin, Z.; Wu, J.; Zhang, X.; You, J. Planar-structure perovskite solar cells with efficiency beyond 21%. Adv. Mater. 2017, 29, 1703852. [Google Scholar] [CrossRef]
- Peng, W.; Mao, K.; Cai, F.; Meng, H.; Zhu, Z.; Li, T.; Yuan, S.; Xu, Z.; Feng, X.; Xu, J.; et al. Reducing nonradiative recombination in perovskite solar cells with a porous insulator contact. Science 2023, 379, 683–690. [Google Scholar] [CrossRef]
- Jiang, Q.; Tong, J.; Xian, Y.; Kerner, R.A.; Dunfield, S.P.; Xiao, C.; Scheidt, R.A.; Kuciauskas, D.; Wang, X.; Hautzinger, M.P.; et al. Surface reaction for efficient and stable inverted perovskite solar cells. Nature 2022, 611, 278–283. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.-M.; Hua, Y.-I.; Wang, Z.-Q. Study on chromaticity improvement of white OLED with BCP hole-blocking layer. J. Optoelectron. Laser 2006, 17, 1177. [Google Scholar]
- Kim, D.-E.; Kim, W.-S.; Kim, B.-S.; Lee, B.-J.; Kwon, Y.-S. Characteristics of white OLED using Zn (phen) as a yellowish green emitting layer and BCP as a hole blocking layer. Colloids Surf. A Physicochem. Eng. Asp. 2008, 313, 320–323. [Google Scholar] [CrossRef]
- Snaith, H.J.; Abate, A.; Ball, J.M.; Eperon, G.E.; Leijtens, T.; Noel, N.K.; Stranks, S.D.; Wang, J.T.-W.; Wojciechowski, K.; Zhang, W. Anomalous hysteresis in perovskite solar cells. The J. Phys. Chem. Lett. 2014, 5, 1511–1515. [Google Scholar] [CrossRef]
- Zhao, Y.; Ma, F.; Qu, Z.; Yu, S.; Shen, T.; Deng, H.-X.; Chu, X.; Peng, X.; Yuan, Y.; Zhang, X. Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science 2022, 377, 531–534. [Google Scholar] [CrossRef]
- Im, S.; Heo, J.; Han, H.; Kim, D.; Ahn, T. 18.1% hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells. Energy Environ. Sci. 2015, 8, 1602–1608. [Google Scholar]
- Yu, B.; Tang, F.; Yang, Y.; Huang, J.; Wu, S.; Lu, F.; Duan, W.; Lambertz, A.; Ding, K.; Mai, Y. Impermeable Atomic Layer Deposition for Sputtering Buffer Layer in Efficient Semi-Transparent and Tandem Solar Cells via Activating Unreactive Substrate. Adv. Mater. 2023, 35, 2202447. [Google Scholar] [CrossRef] [PubMed]
- Guan, L.; Jiao, N.; Guo, Y. Trap-state passivation by nonvolatile small molecules with carboxylic acid groups for efficient planar perovskite solar cells. J. Phys. Chem. C 2019, 123, 14223–14228. [Google Scholar] [CrossRef]
- Yi, J.; Zhuang, J.; Ma, Z.; Guo, Z.; Zhou, W.; Zhao, S.; Zhang, H.; Luo, X.; Li, H. Regulated perovskite crystallinity via green mixed antisolvent for efficient perovskite solar cells. Org. Electron. 2019, 69, 69–76. [Google Scholar] [CrossRef]
- Yu, Y.; Yang, S.; Lei, L.; Cao, Q.; Shao, J.; Zhang, S.; Liu, Y. Ultrasmooth perovskite film via mixed anti-solvent strategy with improved efficiency. ACS Appl. Mater. Interfaces 2017, 9, 3667–3676. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Xu, W.; Tang, F.; Yu, B.; Zhang, C.; Ma, N.; Lu, F.; Yang, Y.; Shen, K.; Duan, W.; et al. Minimizing the Ohmic Resistance of Wide-Bandgap Perovskite for Semitransparent and Tandem Solar Cells. Solar RRL 2023, 7, 2200877. [Google Scholar] [CrossRef]
- Liu, C.; Huang, L.; Zhou, X.; Wang, X.; Yao, J.; Liu, Z.; Liu, S.F.; Ma, W.; Xu, B. An in-situ defect passivation through a green anti-solvent approach for high-efficiency and stable perovskite solar cells. Sci. Bull. 2021, 66, 1419–1428. [Google Scholar] [CrossRef]
- Zhang, W.; Li, Y.; Liu, X.; Tang, D.; Li, X.; Yuan, X. Ethyl acetate green antisolvent process for high-performance planar low-temperature SnO2-based perovskite solar cells made in ambient air. Chem. Eng. J. 2020, 379, 122298. [Google Scholar] [CrossRef]
- Wang, M.; Fu, Q.; Yan, L.; Guo, P.; Zhou, L.; Wang, G.; Zheng, Z.; Luo, W. Improving the performance and reproducibility of inverted planar perovskite solar cells using tetraethyl orthosilicate as the antisolvent. ACS Appl. Mater. Interfaces 2019, 11, 3909–3916. [Google Scholar] [CrossRef]
- Lee, H.B.; Jeon, M.K.; Kumar, N.; Tyagi, B.; Kang, J.W. Boosting the efficiency of SnO2-triple cation perovskite system beyond 20% using nonhalogenated antisolvent. Adv. Funct. Mater. 2019, 29, 1903213. [Google Scholar] [CrossRef]
BCP Doping Ration | JSC (mA cm−2) | VOC (V) | FF | PCE (%) | |
---|---|---|---|---|---|
0 | Average | 21.22 ± 0.10 | 1.14 ± 0.00 | 0.74 ± 0.00 | 16.93 ± 0.48 |
Best cell | 21.86 | 1.15 | 0.755 | 18.03 | |
0.75% | Average | 21.41 ± 0.10 | 1.14 ± 0.00 | 0.74 ± 0.00 | 17.34 ± 0.47 |
Best cell | 21.94 | 1.16 | 0.758 | 18.85 | |
1% | Average | 21.57 ± 0.19 | 1.15 ± 0.00 | 0.75 ± 0.00 | 17.96 ± 0.54 |
Best cell | 22.27 | 1.17 | 0.763 | 19.61 | |
1.25% | Average | 22.06 ± 0.11 | 1.16 ± 0.00 | 0.76 ± 0.00 | 19.33 ± 0.48 |
Best cell | 22.72 | 1.18 | 0.80 | 20.78 | |
1.5% | Average | 21.46 ± 0.06 | 1.14 ± 0.00 | 0.73 ± 0.00 | 17.82 ± 0.16 |
Best cell | 21.89 | 1.16 | 0.75 | 18.61 | |
1.75% | Average | 21.35 ± 0.09 | 1.14 ± 0.00 | 0.70 ± 0.00 | 16.63 ± 0.43 |
Best cell | 21.77 | 1.16 | 0.74 | 17.88 |
Sample | Scan Direction | JSC (mA cm−2) | VOC (V) | FF | PCE (%) | Hysteresis Index (%) |
---|---|---|---|---|---|---|
With 1.25% BCP | Reverse | 22.23 | 1.17 | 0.80 | 20.78 | 1.6 |
Forward | 22.30 | 1.17 | 0.78 | 20.45 | ||
Control | Reverse | 20.80 | 1.12 | 0.77 | 17.57 | 5.5 |
Forward | 21.03 | 1.11 | 0.73 | 16.61 |
Sample | A1 | τ1 (ns) | A2 | τ2 (ns) | τave (ns) |
---|---|---|---|---|---|
With 1.25% BCP | 1.9 | 52.9 | 0.2 | 367.8 | 178 |
Control | 3.5 | 29.1 | 0.1 | 257.2 | 75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Y.; Lu, F.; Ai, X.; Lei, J.; Bai, Y.; Wei, Z.; Chen, Z. Towards High-Performance Inverted Mesoporous Perovskite Solar Cell by Using Bathocuproine (BCP). Molecules 2024, 29, 4009. https://doi.org/10.3390/molecules29174009
Wei Y, Lu F, Ai X, Lei J, Bai Y, Wei Z, Chen Z. Towards High-Performance Inverted Mesoporous Perovskite Solar Cell by Using Bathocuproine (BCP). Molecules. 2024; 29(17):4009. https://doi.org/10.3390/molecules29174009
Chicago/Turabian StyleWei, Yongjun, Feiping Lu, Xinqi Ai, Ju Lei, Yong Bai, Zhiang Wei, and Ziyin Chen. 2024. "Towards High-Performance Inverted Mesoporous Perovskite Solar Cell by Using Bathocuproine (BCP)" Molecules 29, no. 17: 4009. https://doi.org/10.3390/molecules29174009
APA StyleWei, Y., Lu, F., Ai, X., Lei, J., Bai, Y., Wei, Z., & Chen, Z. (2024). Towards High-Performance Inverted Mesoporous Perovskite Solar Cell by Using Bathocuproine (BCP). Molecules, 29(17), 4009. https://doi.org/10.3390/molecules29174009