Metabolic Profiling and Cold-Starvation Stress Response of Oxygen-Tolerant Lactobacillus gasseri Strains Cultured in Batch Bioreactor
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strains
2.2. Batch bioreactor cultivation
2.3. Bacterial Growth Monitoring
2.4. HPLC Analysis
2.5. Tolerance to Cold-Starvation Stress
2.6. Comparative in Silico Analysis
2.7. Data Analysis
3. Results
3.1. Growth Parameters and Metabolite Production
3.2. Survival of the Cells Under Cold-Starvation Stress
3.3. Comparative in Silico Analysis
4. Discussion
Author Contributions
Conflicts of Interest
References
- Zotta, T.; Parente, E.; Ricciardi, A. Aerobic metabolism in the genus Lactobacillus: Impact on stress response and potential application in the food industry. J. Appl. Microbiol. 2017, 122, 857–869. [Google Scholar] [CrossRef] [PubMed]
- Sonomoto, K.; Atsushi, Y. Oxidative stress and oxygen metabolism in lactic acid bacteria. In Lactic Acid Bacteria and Bifidobacteria; Caister Academic Press: Poole, UK, 2011. [Google Scholar]
- Pedersen, M.B.; Gaudu, P.; Lechardeur, D.; Petit, M.A.; Gruss, A. Aerobic respiration metabolism in lactic acid bacteria and uses in biotechnology. Annu. Rev. Food. Sci. Technol. 2012, 3, 37–58. [Google Scholar] [CrossRef] [PubMed]
- Ianniello, R.G.; Zheng, J.; Zotta, T.; Ricciardi, A.; Ganzle, M.G. Biochemical analysis of respiratory metabolism in the heterofermentative Lactobacillus spicheri and Lactobacillus reuteri. J. Appl. Microbiol. 2015, 119, 763–775. [Google Scholar] [CrossRef] [PubMed]
- Zotta, T.; Ricciardi, A.; Ianniello, R.G.; Parente, E.; Reale, A.; Rossi, F.; Iacumin, L.; Comi, G.; Coppola, R. Assessment of aerobic and respiratory growth in the Lactobacillus casei group. PLoS ONE 2014, 9, e99189. [Google Scholar] [CrossRef] [PubMed]
- Ricciardi, A.; Ianniello, R.G.; Parente, E.; Zotta, T. Modified chemically defined medium for enhanced respiratory growth of Lactobacillus casei and Lactobacillus plantarum groups. J. Appl. Microbiol. 2015, 119, 776–785. [Google Scholar] [CrossRef] [PubMed]
- Brooijmans, J.W.; de Vos, W.M.; Hugenholtz, J. Lactobacillus plantarum electron transport chain. Appl. Environ. Microbiol. 2009, 75, 3580–3585. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.; Van der Veen, S.; Nakajima, H.; Abee, T. Effect of respiration and manganese on oxidative stress resistance of Lactobacillus plantarum WCFS1. Microbiology 2012, 158, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Zotta, T.; Ricciardi, A.; Guidone, A.; Sacco, M.; Muscariello, L. Inactivation of ccpA and aeration affect growth, metabolite production and stress tolerance Lactobacillus plantarum WCFS1. Int. J. Food Microbiol. 2012, 155, 51–59. [Google Scholar] [CrossRef]
- Zotta, T.; Ianniello, R.G.; Guidone, A.; Parente, E.; Ricciardi, A. Selection of mutants tolerant of oxidative stress from respiratory cultures of Lactobacillus plantarum C17. J. Appl. Microbiol. 2014, 116, 632–643. [Google Scholar] [CrossRef]
- Reale, A.; Di Renzo, T.; Zotta, T.; Preziuso, M.; Boscaino, F.; Rocco, I.; Livia, V.S.; Patrizio, T.; Raffaele, C. Effect of respirative coltures of Lactobacillus casei on model sourdough fermentation. LWT Food. Sci. Technol. 2016, 73, 622–629. [Google Scholar] [CrossRef]
- Reale, A.; Ianniello, R.G.; Ciocia, F.; di Renzo, T.; Boscaino, B.; Ricciardi, A.; Coppola, R.; Parente, E.; Zotta, T.; McSweeney, P.L.H. Effect of respirative and catalase-positive Lactobacillus casei adjuncts on the production and quality of Cheddar-type cheese. Int. Dairy. J. 2016, 63, 78–87. [Google Scholar] [CrossRef]
- Neeser, J.; Granato, D.; Rouret, M.; Servin, A.; Teneberg, S.; Karlsson, K. Lactobacillus johnsonii La1 shares carbohydrate binding specificities with several enterophatogenic bacteria. Glycobiol. 2000, 10, 1193–1199. [Google Scholar] [CrossRef] [PubMed]
- Sakai, F.; Hosoya, F.; Ono-Ohmachi, A.; Ukibe, K.; Ogawa, A.; Moriya, T.; Kadooka, Y.; Shiozaki, T.; Nakagawa, H.; Nakayama, Y.; et al. Lactobacillus gasseri SBT2055 Induces TGF-b expression in dendritic cells and activates TLR2 signal to produce IgA in the small intestine. PLoS ONE 2014, 9, 1–11. [Google Scholar] [CrossRef]
- Holzapfel, W.H.; Wood, B.J.B. The genus Lactobacillus. In Biodiversity and Taxonomy; Wiley: New York, NY, USA, 2014. [Google Scholar]
- Hertzberger, R.Y.; Pridmore, R.D.; Gysler, C.; Kleerebezem, M.; de Mattos, M. Oxygen relieves the CO2 and acetate dependency of Lactobacillus johnsonii NCC 533. PLoS ONE 2013, 8, e57235. [Google Scholar] [CrossRef] [PubMed]
- Hertzberger, R.Y.; Arents, J.; Dekker, H.; Pridmore, R.D.; Gysler, C.; Kleerebezem, M.; de Mattos, M.J. H2O2 production in species of the Lactobacillus acidophilus group: A central role for a novel NADH dependent flavin reductase. Appl. Environ. Microbiol. 2014, 80, 2229–2239. [Google Scholar] [CrossRef]
- Maresca, D.; Zotta, T.; Mauriello, G. Adaptation to aerobic environment of Lactobacillus johnsonii/gasseri strains. Front. Microbiol. 2018, 9, 157. [Google Scholar] [CrossRef] [PubMed]
- Maresca, D.; De Filippis, F.; Tytgat, H.L.P.; de Vos, W.M.; Mauriello, G. Draft genome sequences of the aerobic strains Lactobacillus gasseri AL3 and AL5. Genome Announc. 2017, 5, e00213–e00217. [Google Scholar] [CrossRef] [PubMed]
- Duwat, P.; Sourice, S.; Cesselin, B.; Lamberet, G.; Vido, K.; Gaudu, P. Respiration capacity of the fermenting bacterium Lactococcus lactis and its positive effects on growth and survival. J. Bacteriol. 2001, 183, 4509–4516. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, M.B.; Garrigues, C.; Tuphile, K.; Brun, C.; Vido, K.; Bennedsen, M.; Møllgaard, H.; Gaudu, P.; Gruss, A. Impact of aeration and heme-activated respiration on Lactococcus lactis gene expression: Identification of a heme-responsive operon. J. Bacteriol. 2008, 190, 4903–4911. [Google Scholar] [CrossRef] [PubMed]
- Guidone, A.; Ianniello, R.G.; Ricciardi, A.; Zotta, T.; Parente, E. Aerobic metabolism and oxidative stress tolerance in the Lactobacillus plantarum group. World J. Microbiol. Biotechnol. 2013, 29, 1713–1722. [Google Scholar] [CrossRef]
- Rezaiki, L.; Cesseli, B.; Yamamoto, Y.; Vido, K.; West, E.; Gaudu, P. Respiration metabolism reduces oxidative and acid stress to improve long-term survival of Lactococcus lactis. Mol. Microbiol. 2004, 53, 1331–1342. [Google Scholar] [CrossRef] [PubMed]
- Cesselin, B.; Derré-Bobillot, A.; Fernandez, A.; Lamberet, G.; Lachardeur, D.; Yamamoto, Y. Respiration, a strategy to avoid oxidative stress in Lactococcus lactis, is regulated by the heme status. Jpn. J. Lact. Acid Bact. 2010, 21, 10–15. [Google Scholar] [CrossRef][Green Version]
- Kang, T.S.; Korber, D.R.; Tanaka, T. Influence of oxygen on NADH recycling and oxidative stress resistance systems in Lactobacillus panis PM1. AMB Express. 2013, 3, 10–13. [Google Scholar] [CrossRef]
- Mortera, P.; Pudlik, A.; Magni, C.; Alarcon, S.; Lolkema, J.S. Ca2+ Citrate uptake and metabolism in Lactobacillus casei ARCC 334. Appl. Environ. Microbiol. 2013, 79, 4603–4612. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, S.; Sivaraman, C. Bacterial citrate lyase. J. Biosci. 1984, 6, 379–401. [Google Scholar] [CrossRef]
- Kanao, T.; Fukui, T.; Atomi, H.; Imanaka, T. Kinetic and biochemical analyses on the reaction mechanism of a bacterial ATP-citrate lyase. Eur. J. Biochem. 2002, 269, 3409–3416. [Google Scholar] [CrossRef] [PubMed]
- Quintans, N.G.; Blancato, V.; Repizo, G.; Magni, C.; López1, P. Citrate metabolism and aroma compound production in lactic acid bacteria; Research Signpost: Irvine, CA, USA, 2008; ISBN 978-81-308-0250-3. [Google Scholar]
- Teysset, C.M.; de La Torre, F.; Garel, J.R. Increased production of hydrogen peroxide by Lactobacillus delbrueckii subsp. bulgaricus upon aeration: Involvement of an NADH oxidase in oxidative stress. Appl. Environ. Microbiol. 2000, 66, 262–267. [Google Scholar] [CrossRef] [PubMed]
Group | Genes | Strains | ||
---|---|---|---|---|
AL3 | AL5 | DSM 20243T | ||
Aerobic metabolism | pox (pyruvate oxidase) | + | + | + |
ack (acetate kinase) | + | + | + | |
lox (lactate oxidase) | + | + | − | |
nox (NADH oxidase) | + | + | − | |
lao (L-amino acid oxidase) | + | − | − | |
Respiratory metabolism | ndh (NADH dehydrogenase) | + | + | + |
ubiE (ubiquinone/menaquinone biosynthesis methyltrasferase) | + | + | + | |
cydABCD (cytochrome bd-I oxidase operon) | + | + | + | |
Stress response | npr (NADH peroxidase) | + | + | + |
gor (glutathione reductase) | + | + | + | |
gop (glutathione peroxidase) | − | − | − | |
GshA (γ-glutamylcystiene synthetase) | + | + | − | |
GshB (glutathione synthetase) | − | − | − | |
GshF (bifunctional glutamate-cysteine ligase/glutathione synthetase) | − | − | − | |
TrxR (thioredoxin reductase) | + | + | + | |
TrxP (thioredoxin peroxidase) | + | + | + | |
SOD (superoxide dismutase) | + | + | − | |
Kat (catalase) | − | − | − | |
MnKat (Manganese-catalase) | − | − | − | |
KatG (catalase-peroxidase) | − | − | − | |
Dps (DNA binding protein from starved cells) | + | + | + | |
Partial tricarboxylic acid (TCA) cycle | CitD (gamma subunits of citrate lyase) | + | + | − |
CitE (beta subunits of citrate lyase) | + | + | − | |
CitF (alpha subunits of citrate lyase) | + | + | − | |
CitP (citrate permease) | + | + | − | |
AOD (oxaloacetate decarboxylase) | − | − | − | |
PYC (pyruvate carboxylase) | − | − | − | |
MDH (malate dehydrogenase) | + | + | + | |
FH (fumarate hydratase) | + | + | + | |
SDH (succinate dehydrogenase) | + | + | − |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maresca, D.; De Filippis, F.; Robertiello, A.; Mauriello, G. Metabolic Profiling and Cold-Starvation Stress Response of Oxygen-Tolerant Lactobacillus gasseri Strains Cultured in Batch Bioreactor. Microorganisms 2019, 7, 200. https://doi.org/10.3390/microorganisms7070200
Maresca D, De Filippis F, Robertiello A, Mauriello G. Metabolic Profiling and Cold-Starvation Stress Response of Oxygen-Tolerant Lactobacillus gasseri Strains Cultured in Batch Bioreactor. Microorganisms. 2019; 7(7):200. https://doi.org/10.3390/microorganisms7070200
Chicago/Turabian StyleMaresca, Diamante, Francesca De Filippis, Alessandro Robertiello, and Gianluigi Mauriello. 2019. "Metabolic Profiling and Cold-Starvation Stress Response of Oxygen-Tolerant Lactobacillus gasseri Strains Cultured in Batch Bioreactor" Microorganisms 7, no. 7: 200. https://doi.org/10.3390/microorganisms7070200
APA StyleMaresca, D., De Filippis, F., Robertiello, A., & Mauriello, G. (2019). Metabolic Profiling and Cold-Starvation Stress Response of Oxygen-Tolerant Lactobacillus gasseri Strains Cultured in Batch Bioreactor. Microorganisms, 7(7), 200. https://doi.org/10.3390/microorganisms7070200