Eugenol Nanoparticles in Dental Composites: Literature Review of Antimicrobial, Anti-Inflammatory, and Clinical Applications
Abstract
:1. Introduction
- Surveying the evidence on the dual therapeutic properties and accompanying limitations of eugenol.
- Exploring nano-encapsulation as a strategy to preserve both therapeutic and mechanical functions.
- Highlighting the clinical implications for high-risk groups with recurrent caries or periodontal disease.
- Filling gaps and structurally guiding the orthogonal research direction on formulating more effective NPs.
2. Methodology
3. Problem Addressed
3.1. Caries Recurrence and Secondary Infections
3.2. Inflammation and Tissue Irritation
3.3. Limitations of Existing Antibacterial Approaches
4. Innovative Design
4.1. Why Eugenol?
4.2. The Integration of Nanoparticles
4.3. Regulated Release Process
4.4. Dual Functionality
5. Advantages and Potential Applications
5.1. Clinical Advantages
- Eugenol NPs exhibit a broad spectrum of antimicrobial properties, not only against S. mutans but also against a range of oral pathogens. Hence, the suggested model will improve the overall oral health of individuals undergoing restorative procedures.
- The flaws in the design of dental restorative materials leading to micro-cracks and leakages can be overcome with the help of this model, where NPs can form protective barriers and eugenol can further reduce the risk of microbial infiltration around restorations. Eugenol’s antimicrobial action can also minimize dental restoration material degradation and enhance their structural integrity.
- The sustained antimicrobial action of NPs incorporating eugenol can ensure controlled and prolonged release, ensuring continuous antibacterial protection. The sustained release mechanisms will also help in minimizing the fluoride dependence that is used in traditional composites to prevent secondary caries.
- Also, these models will not require frequent reapplication, which will decrease the associated treatment cost and improve patient comfort.
- A significant decrease in post-operative sensitivity and inflammation can be expected with the use of this model due to the anti-inflammatory, analgesic, and wound healing properties associated with eugenol. Eugenol can desensitize nerve endings and hence prevent post-procedure discomfort and dentin hypersensitivity. It also reduces oxidative stress and enhances fibroblast activity, both of which support tissue regeneration and promote recovery.
5.2. Environmental and Biocompatibility Benefits
- ➢
- Unlike the synthetic antimicrobial agents used in medicinal applications, eugenol is biocompatible, which reduces the risk of cytotoxicity. Encapsulation techniques further minimize the cytotoxicity to human cells while maintaining efficacy against pathogenic bacteria.
- ➢
- The mechanism of action of eugenol on bacterial cells is by the disruption of membranes rather than by affecting DNA. This lowers the likelihood of oral pathogens developing antimicrobial resistance.
- ➢
- Eugenol nanoparticles can be bio-fabricated using plant extracts. The incorporation of biodegradable polymer carriers such as chitosan, PLA, or PCL further encourages the potential for green synthesis, which helps in reducing the environmental impact of medical waste.
5.3. Wider Applications
- The temporary restoration materials such as zinc oxide cements can be mixed with eugenol NPs and applied before permanent restorations are placed in the oral cavity. Similarly, they can be used in endodontic sealers used in root canal treatments [93]. Moreover, like amalgam and composite restorations, improper installation of orthodontic appliances such as brackets, aligners, and retainers can lead to bacterial accumulation [89]. Hence, eugenol NPs will prove to be extremely useful.
- Unlike the common cases of secondary caries caused by S. mutans, the elderly population is more susceptible to fungal infections caused by Candida albicans. Similarly, immune-compromised individuals are at increased risk of oral infections caused by uncommon pathogens [92]. The broad-spectrum activity of eugenol NPs can be extremely beneficial under these circumstances.
- The traditional fluoride-based sealants can be mixed with eugenol NPs. This approach will extend the antibacterial and anti-inflammatory property model to one which entails an overall dental package by additionally preventing demineralization due to metabolic acids [87].
- The common dental varnish side effects, especially those containing fluorides, include temporary discoloration, a burning sensation, tooth sensitivity, and gum irritation. The eugenol NPs’ anesthetic, soothing, antimicrobial, and anti-inflammatory effects may prove helpful in preventing these side effects [87].
- The eugenol NPs also have the potential to replace traditional irrigation solutions such as chlorhexidine or sodium hypochlorite, which are associated with tissue irritation or cytotoxic effects [94].
6. Challenges and Future Directions
6.1. Challenges
6.2. Future Research Directions
- Firstly, as described before in this review, the NP synthesis methods should be optimized to improve factors such as the stability, bioavailability, and sustained release kinetics of eugenol. One of the approaches to achieve these parameters is to employ eco-friendly synthesis methods that utilize plant-derived biopolymers or bio-fabrication techniques.
- Research is also necessary to optimize extended-release functions in the suggested model that can prevent oxidative damage. This can be achieved by using core–shell structures or layered NPs to encapsulate polymerized and stabilized eugenol.
- Further research also requires much focus on improving the dispersion of NPs in the composite matrices to prevent the premature leaching of bioactive agents like eugenol. This can be achieved by modifying NP surfaces with biocompatible coatings made of silica, chitosan, polymeric shells, or other biocompatible materials.
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rathee, M.; Sapra, A. Dental caries 2023. In StatPearls; StatPearls Publishing: Petersburg, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK551699/ (accessed on 8 May 2025).
- World Health Organization. Global Oral Health Status Report: Towards Universal Health Coverage for Oral Health by 2030. Available online: https://www.who.int/publications/i/item/9789240061484 (accessed on 8 May 2025).
- Kazeminia, M.; Abdi, A.; Shohaimi, S.; Jalali, R.; Vaisi-Raygani, A.; Salari, N.; Mohammadi, M. Dental Caries in Primary and Permanent Teeth in Children’s Worldwide, 1995 to 2019: A Systematic Review and Meta-Analysis. Head Face Med. 2020, 16, 22. [Google Scholar] [CrossRef] [PubMed]
- Frencken, J.E.; Sharma, P.; Stenhouse, L.; Green, D.; Laverty, D.; Dietrich, T. Global Epidemiology of Dental Caries and Severe Periodontitis—A Comprehensive Review. J. Clin. Periodontol. 2017, 44, 94–105. [Google Scholar] [CrossRef] [PubMed]
- Shoaee, S.; Ghasemi, E.; Sofi-Mahmudi, A.; Shamsoddin, E.; Tovani-Palone, M.R.; Roshani, S.; Heydari, M.-H.; Yoosefi, M.; Masinaei, M.; Azadnaejafabadi, S.; et al. Global, Regional, and National Burden and Quality of Care Index (QCI) of Oral Disorders: A Systematic Analysis of the Global Burden of Disease Study 1990–2017. BMC Oral Health 2024, 24, 116. [Google Scholar] [CrossRef]
- Meier, T.; Deumelandt, P.; Christen, O.; Stangl, G.I.; Riedel, K.; Langer, M. Global Burden of Sugar-Related Dental Diseases in 168 Countries and Corresponding Health Care Costs. J. Dent. Res. 2017, 96, 845–854. [Google Scholar] [CrossRef]
- Mjör, I.A.; Toffentti, F. Secondary Caries: A Literature Review with Case Reports. Quintessence Int. 2000, 31, 165–179. [Google Scholar]
- Mjör, I.A. The Location of Clinically Diagnosed Secondary Caries. Quintessence Int. 1998, 29, 5. [Google Scholar]
- Feng, X. Cause of Secondary Caries and Prevention. Hua Xi Kou Qiang Yi Xue Za Zhi = Huaxi Kouqiang Yixue Zazhi West China J. Stomatol. 2014, 32, 107–110. [Google Scholar]
- Ozer, L.; Thylstrup, A. What is Known About Caries in Relation to Restorations as a Reason for Replacement? A Review. Adv. Dent. Res. 1995, 9, 394–402. [Google Scholar] [CrossRef]
- Ferracane, J.L. Models of Caries Formation around Dental Composite Restorations. J. Dent. Res. 2017, 96, 364–371. [Google Scholar] [CrossRef]
- Nedeljkovic, I.; De Munck, J.; Vanloy, A.; Declerck, D.; Lambrechts, P.; Peumans, M.; Teughels, W.; Van Meerbeek, B.; Van Landuyt, K.L. Secondary Caries: Prevalence, Characteristics, and Approach. Clin. Oral Investig. 2020, 24, 683–691. [Google Scholar] [CrossRef]
- Wen, P.Y.F.; Chen, M.X.; Zhong, Y.J.; Dong, Q.Q.; Wong, H.M. Global Burden and Inequality of Dental Caries, 1990 to 2019. J. Dent. Res. 2022, 101, 392–399. [Google Scholar] [CrossRef] [PubMed]
- Alenezi, A.; Alkhudhayri, O.; Altowaijri, F.; Aloufi, L.; Alharbi, F.; Alrasheed, M.; Almutairi, H.; Alanazi, A.; Yehya, M.; Al Asmari, D. Secondary Caries in Fixed Dental Prostheses: Long-Term Clinical Evaluation. Clin. Exp. Dent. Res. 2023, 9, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Aas, J.A.; Paster, B.J.; Stokes, L.N.; Olsen, I.; Dewhirst, F.E. Defining the Normal Bacterial Flora of the Oral Cavity. J. Clin. Microbiol. 2005, 43, 5721–5732. [Google Scholar] [CrossRef]
- Chen, X.; Daliri, E.B.-M.; Kim, N.; Kim, J.-R.; Yoo, D.; Oh, D.-H. Microbial Etiology and Prevention of Dental Caries: Exploiting Natural Products to Inhibit Cariogenic Biofilms. Pathogens 2020, 9, 569. [Google Scholar] [CrossRef]
- Hao, Y.; Huang, X.; Zhou, X.; Li, M.; Ren, B.; Peng, X.; Cheng, L. Influence of Dental Prosthesis and Restorative Materials Interface on Oral Biofilms. Int. J. Mol. Sci. 2018, 19, 3157. [Google Scholar] [CrossRef]
- Rimondini, L.; Cochis, A.; Varoni, E.; Azzimonti, B.; Carrassi, A. Biofilm Formation on Implants and Prosthetic Dental Materials. In Handbook of Bioceramics and Biocomposites; Antoniac, I.V., Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 1–37. ISBN 978-3-319-09230-0. [Google Scholar]
- Metz, I.; Rothmaier, K.; Pitchika, V.; Crispin, A.; Hickel, R.; Garcia-Godoy, F.; Bücher, K.; Kühnisch, J. Risk Factors for Secondary Caries in Direct Composite Restorations in Primary Teeth. Int. J. Paediatr. Dent. 2015, 25, 451–461. [Google Scholar] [CrossRef]
- Nurul Syamimi binti Mohd Azlan Sunil, I.; Nasim, I.; Duraisamy, R. Association between Composite Restoration in Anterior Teeth and Secondary Caries. Indian J. Forensic. Med. Toxicol. 2020, 14, 5981–5988. [Google Scholar]
- Alansy, A.S.; Saeed, T.A.; Guo, Y.; Yang, Y.; Liu, B.; Fan, Z. Antibacterial Dental Resin Composites: A Narrative Review. Open J. Stomatol. 2022, 12, 147–165. [Google Scholar] [CrossRef]
- Zalega, M.; Bociong, K. Antibacterial Agents Used in Modifications of Dental Resin Composites: A Systematic Review. Appl. Sci. 2024, 14, 3710. [Google Scholar] [CrossRef]
- Campaner, M.; Takamiya, A.S.; Bitencourt, S.B.; Mazza, L.C.; De Oliveira, S.H.P.; Shibayama, R.; Barão, V.A.R.; Sukotjo, C.; Pesqueira, A.A. Cytotoxicity and Inflammatory Response of Different Types of Provisional Restorative Materials. Arch. Oral Biol. 2020, 111, 104643. [Google Scholar] [CrossRef]
- Bationo, R.; Rouamba, A.; Diarra, A.; Beugré-Kouassi, M.L.A.; Beugré, J.; Jordana, F. Cytotoxicity Evaluation of Dental and Orthodontic Light-Cured Composite Resins. Clin. Exp. Dent. Res. 2021, 7, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, N.; Navaneethan, R. Cytotoxicity Evaluation of Various Composite Resin Materials: An In Vitro Study. Cureus 2024, 16, e56169. [Google Scholar] [CrossRef]
- Farrugia, C.; Camilleri, J. Antimicrobial Properties of Conventional Restorative Filling Materials and Advances in Antimicrobial Properties of Composite Resins and Glass Ionomer Cements—A Literature Review. Dent. Mater. 2015, 31, e89–e99. [Google Scholar] [CrossRef]
- Spatafora, G.; Li, Y.; He, X.; Cowan, A.; Tanner, A.C.R. The Evolving Microbiome of Dental Caries. Microorganisms 2024, 12, 121. [Google Scholar] [CrossRef]
- Malekipour, M.R.; Hosseini, N.; Jafari, N.; Mazdak, A.; Mazaheri, P.; Shirani, F. A Comparative Study of Fracture Resistance of Endodontically Treated Compromised Teeth with Different Post Systems: An In Vitro Study. TODENTJ 2023, 17, e187421062303140. [Google Scholar] [CrossRef]
- Askar, H.; Krois, J.; Göstemeyer, G.; Bottenberg, P.; Zero, D.; Banerjee, A.; Schwendicke, F. Secondary Caries: What Is It, and How Can It Be Controlled, Detected, and Managed? Clin. Oral Investig. 2020, 24, 1869–1876. [Google Scholar] [CrossRef]
- Hollanders, A.C.C.; Kuper, N.K.; Opdam, N.J.M.; Huysmans, M.C.D.N.J.M. Preventieve Tandheelkunde 5. Secundaire Cariës. Ned. Tijdschr. Tandheelkd 2017, 124, 257–263. [Google Scholar] [CrossRef]
- Kidd, E.A.; Toffenetti, F.; Mjör, I.A. Secondary Caries. Int. Dent. J. 1992, 42, 127–138. [Google Scholar]
- Ansari, Z.J.; Haghi, H.V. Secondary Caries in the Posterior Teeth of Patients Presenting to the Department of Operative Dentistry, Shahid Beheshti Dental School. J. Dent. Sch. 2015, 32, 125–131. [Google Scholar]
- Algarni, A.A. Antibacterial Agents for Composite Resin Restorative Materials: Current Knowledge and Future Prospects. Cureus 2024, 16, 3. [Google Scholar] [CrossRef]
- Dionyopoulos, P.; Kotsanos, N.; Koliniotou-Koubia, E.; Papadogiannis, Y. Secondary Caries Formation In Vitro around Fluoride-Releasing Restorations. Oper. Dent. 1994, 19, 183. [Google Scholar]
- Tarle, Z. Bioactive Dental Composite Materials. Rad Hrvat. Akad. Znan. I Umjetnosti. Med. Znanosti 2018, 533, 83–99. [Google Scholar] [CrossRef]
- Dionysopoulos, D. The Effect of Fluoride-Releasing Restorative Materials on Inhibition of Secondary Caries Formation. Fluoride 2014, 47, 258–265. [Google Scholar]
- Kamakua, S. Tooth and Tooth-Supporting Structures. In Advances in Metallic Biomaterials: Tissues, Materials, and Biological Reactions; Elsevier: Amsterdam, The Netherlands, 2015; pp. 99–122. [Google Scholar]
- Thompson, V.P.; Silva, N.R.F.A. Structure and Properties of Enamel and Dentin. In Non-Metallic Biomaterials for Tooth Repair and Replacement; Woodhead Publishing: Sawston, UK, 2013; pp. 3–19. [Google Scholar]
- Rittman, B.R. Teeth and Their Associated Tissues. Microsc. Today 2000, 8, 18–21. [Google Scholar] [CrossRef]
- Brudevold, F.; Steadman, L.T.; Smith, F.A. Inorganic and Organic Components of Tooth Structure. Ann. N. Y. Acad. Sci. 1960, 85, 110–132. [Google Scholar] [CrossRef]
- Park, S.H.; Ye, L.; Love, R.M.; Farges, J.-C.; Yumoto, H. Inflammation of the Dental Pulp. Mediators Inflamm. 2015, 2015, 980196. [Google Scholar] [CrossRef]
- Farges, J.-C.; Alliot-Licht, B.; Renard, E.; Ducret, M.; Gaudin, A.; Smith, A.J.; Cooper, P.R. Dental Pulp Defence and Repair Mechanisms in Dental Caries. Mediat. Inflamm. 2015, 2015, 230251. [Google Scholar] [CrossRef]
- Kawashima, N.; Okiji, T. Characteristics of Inflammatory Mediators in Dental Pulp Inflammation and the Potential for Their Control. Front. Dent. Med. 2024, 5, 1426887. [Google Scholar] [CrossRef]
- Sabeti, M.A.; Nikghalb, K.D.; Pakzad, R.; Fouad, A.F. Expression of Selected Inflammatory Mediators with Different Clinical Characteristics of Pulpal Inflammation. J. Endod. 2024, 50, 336–343. [Google Scholar] [CrossRef]
- Jain, N.; Gupta, A. An Insight into Neurophysiology of Pulpal Pain: Facts and Hypotheses. Korean J. Pain 2013, 26, 347–355. [Google Scholar] [CrossRef]
- Vilela, H.S.; Resende, M.C.A.; Trinca, R.B.; Scaramucci, T.; Sakae, L.O.; Braga, R.R. Glass Ionomer Cement with Calcium-Releasing Particles: Effect on Dentin Mineral Content and Mechanical Properties. Dent. Mater. 2024, 40, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Pushpalatha, C.; Dhareshwar, V.; Sowmya, S.V.; Augustine, D.; Vinothkumar, T.S.; Renugalakshmi, A.; Shaiban, A.; Kakti, A.; Bhandi, S.H.; Dubey, A.; et al. Modified Mineral Trioxide Aggregate—A Versatile Dental Material: An Insight on Applications and Newer Advancements. Front. Bioeng. Biotechnol. 2022, 10, 941826. [Google Scholar] [CrossRef] [PubMed]
- Soares, D.G.; Basso, F.G.; Scheffel, D.L.; Giro, E.M.; de Souza Costa, C.A.; Hebling, J. Biocompatibility of a Restorative Resin-Modified Glass Ionomer Cement Applied in Very Deep Cavities Prepared in Human Teeth. Gen. Dent. 2016, 64, 33–40. [Google Scholar] [PubMed]
- Tabari, M.; Seyed Majidi, M.; Hamzeh, M.; Ghoreishi, S. Biocompatibility of Mineral Trioxide Aggregate Mixed with Different Accelerators: An Animal Study. J. Dent. 2020, 21, 48–55. [Google Scholar] [CrossRef]
- Neves, S.O.; Magalhães, L.M.D.; Corrêa, J.D.; Dutra, W.O.; Gollob, K.J.; Silva, T.A.; Horta, M.C.R.; Souza, P.E.A. Composite-Derived Monomers Affect Cell Viability and Cytokine Expression in Human Leukocytes Stimulated with Porphyromonas gingivalis. J. Appl. Oral Sci. 2019, 27, e20180529. [Google Scholar] [CrossRef]
- Yang, L.-C.; Chang, Y.-C.; Yeh, K.-L.; Huang, F.-M.; Su, N.-Y.; Kuan, Y.-H. Protective Effect of Rutin on Triethylene Glycol Dimethacrylate-Induced Toxicity through the Inhibition of Caspase Activation and Reactive Oxygen Species Generation in Macrophages. Int. J. Mol. Sci. 2022, 23, 11773. [Google Scholar] [CrossRef]
- Goldberg, N.B.; Goldberg, A.F.; Gergans, G.A.; Taschini, P.; Molnar, Z.V.; Loga, S. A Rabbit Lung Model for Testing Reaction to Inhaled Dental Restorative Particles. Chest 1992, 101, 829–832. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, L.; Bai, R.; Zhuang, Z.; Zhang, Y.; Yu, T.; Peng, L.; Xin, T.; Chen, S.; Han, B. Recent Progress in Antimicrobial Strategies for Resin-Based Restoratives. Polymers 2021, 13, 1590. [Google Scholar] [CrossRef]
- Chladek, G.; Barszczewska-Rybarek, I.; Chrószcz-Porębska, M.; Mertas, A. The Effect of Quaternary Ammonium Polyethylenimine Nanoparticles on Bacterial Adherence, Cytotoxicity, and Physical and Mechanical Properties of Experimental Dental Composites. Sci. Rep. 2023, 13, 17497. [Google Scholar] [CrossRef]
- Engel, A.-S.; Kranz, H.T.; Schneider, M.; Tietze, J.P.; Piwowarcyk, A.; Kuzius, T.; Arnold, W.; Naumova, E.A. Biofilm Formation on Different Dental Restorative Materials in the Oral Cavity. BMC Oral Health 2020, 20, 162. [Google Scholar] [CrossRef]
- Worthington, H.V.; Khangura, S.; Seal, K.; Mierzwinski-Urban, M.; Veitz-Keenan, A.; Sahrmann, P.; Schmidlin, P.R.; Davis, D.; Iheozor-Ejiofor, Z.; Rasines Alcaraz, M.G. Direct Composite Resin Fillings Versus Amalgam Fillings for Permanent Posterior Teeth. Cochrane Database Syst. Rev. 2021. [Google Scholar] [CrossRef]
- Mallineni, S.K.; Sakhamuri, S.; Kotha, S.L.; AlAsmari, A.R.G.M.; AlJefri, G.H.; Almotawah, F.N.; Mallineni, S.; Sajja, R. Silver Nanoparticles in Dental Applications: A Descriptive Review. Bioengineering 2023, 10, 327. [Google Scholar] [CrossRef]
- Wang, K.; Wang, S.; Yin, J.; Yang, Q.; Yu, Y.; Chen, L. Long-Term Application of Silver Nanoparticles in Dental Restoration Materials: Potential Toxic Injury to the CNS. J. Mater. Sci. Mater. Med. 2023, 34, 52. [Google Scholar] [CrossRef] [PubMed]
- Zia, S.; Islam Aqib, A.; Muneer, A.; Fatima, M.; Atta, K.; Kausar, T.; Zaheer, C.; Ahmad, I.; Saeed, M.; Shafique, A. Insights into Nanoparticles-Induced Neurotoxicity and Cope-Up Strategies. Front. Neurosci. 2023, 17, 1127460. [Google Scholar] [CrossRef] [PubMed]
- Akter, M.; Sikder, M.T.; Rahman, M.M.; Ullah, A.K.M.A.; Hossain, K.F.B.; Banik, S.; Hosokawa, T.; Saito, T.; Kurasaki, M. A Systematic Review on Silver Nanoparticles-Induced Cytotoxicity: Physicochemical Properties and Perspectives. J. Adv. Res. 2018, 9, 1–16. [Google Scholar] [CrossRef]
- Pereira-Cenci, T.; Cenci, M.S.; Fedorowicz, Z.; Azevedo, M. Antibacterial Agents in Composite Restorations for the Prevention of Dental Caries. Cochrane Database Syst. Rev. 2014, 2014, CD007819. [Google Scholar] [CrossRef]
- Alshahrani, F.A.; AlToraibily, F.; Alzaid, M.; Mahrous, A.A.; Al Ghamdi, M.A.; Gad, M.M. An Updated Review of Salivary pH Effects on Polymethyl Methacrylate (PMMA)-Based Removable Dental Prostheses. Polymers 2022, 14, 3387. [Google Scholar] [CrossRef]
- Abuljadayel, R.; Mushayt, A.; Al Mutairi, T.; Sajini, S. Evaluation of Bioactive Restorative Materials’ Color Stability: Effect of Immersion Media and Thermocycling. Cureus 2023, 15, e43038. [Google Scholar] [CrossRef]
- Zhou, W.; Liu, S.; Zhou, X.; Hannig, M.; Rupf, S.; Feng, J.; Peng, X.; Cheng, L. Modifying Adhesive Materials to Improve the Longevity of Resinous Restorations. Int. J. Mol. Sci. 2019, 20, 723. [Google Scholar] [CrossRef]
- Lima, L.A.; Lima, F.R.L.; Silva, P.G.B.; Rodrigues, L.K.A. Enhancing antimicrobial, physical, and mechanical properties of restorative dental materials through metallic nanoparticle incorporation: A systematic review and meta-analysis. Discov. Mater. 2025, 5, 29. [Google Scholar] [CrossRef]
- Zhu, J.; Chu, W.; Luo, J.; Yang, J.; He, L.; Li, J. Dental materials for oral microbiota dysbiosis: An update. Front. Cell. Infect. Microbiol. 2022, 12, 900918. [Google Scholar] [CrossRef] [PubMed]
- Vindenes, H.K.; Lin, H.; Shigdel, R.; Ringel-Kulka, T.; Real, F.G.; Svanes, C.; Bertelsen, R.J. Exposure to antibacterial chemicals is associated with altered composition of oral microbiome. Front. Microbiol. 2022, 13, 790496. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Ma, Q.; Shi, J.; Wang, X.; Ye, D.; Liang, J.; Zou, J. Cariogenic microbiota and emerging antibacterial materials to combat dental caries: A literature review. Pathogens 2025, 14, 111. [Google Scholar] [CrossRef]
- Pu, X.M.; Sun, Z.Z.; Hou, Z.Q.; Yang, Y.; Yao, Q.Q.; Zhang, Q.Q. Fabrication of chitosan/hydroxylapatite composite rods with a layer-by-layer structure for fracture fixation. J. Biomed. Mater. Res. B Appl. Biomater. 2012, 100, 1179–1189. [Google Scholar] [CrossRef]
- Jakubovics, N.S.; Kolenbrander, P.E. The road to ruin: The formation of disease-associated oral biofilms. Oral Dis. 2010, 16, 729–739. [Google Scholar] [CrossRef]
- Hojo, K.; Nagaoka, S.; Ohshima, T.; Maeda, N. Bacterial interactions in dental biofilm development. J. Dent. Res. 2009, 88, 982–990. [Google Scholar] [CrossRef]
- Jakubovics, N.S. Intermicrobial interactions as a driver for community composition and stratification of oral biofilms. J. Mol. Biol. 2015, 427, 3662–3675. [Google Scholar] [CrossRef]
- Love, R.M. Biofilm–substrate interaction: From initial adhesion to complex interactions and biofilm maturity. Endod. Top. 2010, 22, 50–57. [Google Scholar] [CrossRef]
- Montoya, C.; Roldan, L.; Yu, M.; Valliani, S.; Ta, C.; Yang, M.; Orrego, S. Smart dental materials for antimicrobial applications. Bioact. Mater. 2023, 24, 1–19. [Google Scholar] [CrossRef]
- Nisar, M.F.; Khadim, M.; Rafiq, M.; Chen, J.; Yang, Y.; Wan, C.C. Pharmacological properties and health benefits of eugenol: A comprehensive review. Oxid. Med. Cell. Longev. 2021, 2021, 2497354. [Google Scholar] [CrossRef]
- Tavvabi-Kashani, N.; Hasanpour, M.; Baradaran Rahimi, V.; Vahdati-Mashhadian, N.; Askari, V.R. Pharmacodynamic, pharmacokinetic, toxicity, and recent advances in eugenol’s potential benefits against natural and chemical noxious agents: A mechanistic review. Toxicon 2024, 238, 107607. [Google Scholar] [CrossRef] [PubMed]
- Jafri, H.; Khan, M.S.A.; Ahmad, I. In vitro efficacy of eugenol in inhibiting single and mixed-biofilms of drug-resistant strains of Candida albicans and Streptococcus mutans. Phytomedicine 2019, 54, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.-S.; Li, Y.; Cao, X.; Cui, Y. The effect of eugenol on the cariogenic properties of Streptococcus mutans and dental caries development in rats. Exp. Ther. Med. 2013, 5, 1667–1670. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Zhu, X.; Cao, P.; Wei, S.; Lu, Y. Antibacterial and antibiofilm activities of eugenol from essential oil of Syzygium aromaticum (L.) Merr. & L.M. Perry (clove) leaf against periodontal pathogen Porphyromonas gingivalis. Microb. Pathog. 2017, 113, 396–402. [Google Scholar] [CrossRef]
- Hu, Q.; Zhou, M.; Wei, S. Progress on the antimicrobial activity research of clove oil and eugenol in the food antisepsis field. J. Food Sci. 2018, 83, 1476–1483. [Google Scholar] [CrossRef]
- Kowalewska, A.; Majewska-Smolarek, K. Eugenol-based polymeric materials—Antibacterial activity and applications. Antibiotics 2023, 12, 1570. [Google Scholar] [CrossRef]
- Damasceno, R.O.S.; Pinheiro, J.L.S.; Rodrigues, L.H.M.; Gomes, R.C.; Duarte, A.B.S.; Emídio, J.J.; Diniz, L.R.L.; De Sousa, D.P. Anti-inflammatory and antioxidant activities of eugenol: An update. Pharmaceuticals 2024, 17, 1505. [Google Scholar] [CrossRef]
- He, L.-H.; Purton, D.G.; Swain, M.V. A suitable base material for composite resin restorations: Zinc oxide eugenol. J. Dent. 2010, 38, 290–295. [Google Scholar] [CrossRef]
- Harvey, B.G.; Sahagun, C.M.; Guenthner, A.J.; Groshens, T.J.; Cambrea, L.R.; Reams, J.T.; Mabry, J.M. A high-performance renewable thermosetting resin derived from eugenol. ChemSusChem 2014, 7, 1964–1969. [Google Scholar] [CrossRef]
- Donovan, B.R.; Cobb, J.S.; Hoff, E.F.T.; Patton, D.L. Thiol–ene adhesives from clove oil derivatives. RSC Adv. 2014, 4, 61927–61935. [Google Scholar] [CrossRef]
- Da Silva, F.F.M.; Monte, F.J.Q.; De Lemos, T.L.G.; Do Nascimento, P.G.G.; De Medeiros Costa, A.K.; De Paiva, L.M.M. Eugenol derivatives: Synthesis, characterization, and evaluation of antibacterial and antioxidant activities. Chem. Cent. J. 2018, 12, 34. [Google Scholar] [CrossRef] [PubMed]
- Abdou, A.; Elmakssoudi, A.; El Amrani, A.; JamalEddine, J.; Dakir, M. Recent advances in chemical reactivity and biological activities of eugenol derivatives. Med. Chem. Res. 2021, 30, 1011–1030. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications, and toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- Priyadarsini, S.; Mukherjee, S.; Mishra, M. Nanoparticles used in dentistry: A review. J. Oral Biol. Craniofac. Res. 2018, 8, 58–67. [Google Scholar] [CrossRef]
- Malik, S.; Waheed, Y. Emerging applications of nanotechnology in dentistry. Dent. J. 2023, 11, 266. [Google Scholar] [CrossRef]
- Basavegowda, N.; Baek, K.-H. Combination strategies of different antimicrobials: An efficient and alternative tool for pathogen inactivation. Biomedicines 2022, 10, 2219. [Google Scholar] [CrossRef]
- Abdal Dayem, A.; Hossain, M.; Lee, S.; Kim, K.; Saha, S.; Yang, G.-M.; Choi, H.; Cho, S.-G. The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. Int. J. Mol. Sci. 2017, 18, 120. [Google Scholar] [CrossRef]
- Malarkodi, C.; Rajeshkumar, S.; Paulkumar, K.; Vanaja, M.; Gnanajobitha, G.; Annadurai, G. Biosynthesis and antimicrobial activity of semiconductor nanoparticles against oral pathogens. Bioinorg. Chem. Appl. 2014, 2014, 347167. [Google Scholar] [CrossRef]
- Biswal, A.K.; Misra, P.K. Biosynthesis and characterization of silver nanoparticles for prospective application in food packaging and biomedical fields. Mater. Chem. Phys. 2020, 250, 123014. [Google Scholar] [CrossRef]
- Yaqoob, A.A.; Ahmad, H.; Parveen, T.; Ahmad, A.; Oves, M.; Ismail, I.M.I.; Qari, H.A.; Umar, K.; Mohamad Ibrahim, M.N. Recent advances in metal-decorated nanomaterials and their various biological applications: A review. Front. Chem. 2020, 8, 341. [Google Scholar] [CrossRef]
- Pramod, K.; Aji Alex, M.R.; Singh, M.; Dang, S.; Ansari, S.H.; Ali, J. Eugenol nanocapsule for enhanced therapeutic activity against periodontal infections. J. Drug Target 2016, 24, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Shi, Z.; Neoh, K.G.; Kang, E.T. Antioxidant and antibacterial activities of eugenol and carvacrol-grafted chitosan nanoparticles. Biotechnol. Bioeng. 2009, 104, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Srour, A.; Jaber, A.; Yassin, A.; Srour, Z.; Harajli, Z.; Isber, S.; Malaeb, W. Synthesis and characterization of ZnO nanoparticles for dental applications: Improving the mechanical properties of the temporary dental filling materials. J. Mater. Res. 2025, 40, 637–647. [Google Scholar] [CrossRef]
- Vilela, A.P.; Ferreira, L.; Biscaia, P.B.; Silva, K.L.D.; Beltrame, F.L.; Camargo, G.D.A.; Rezende, M.; Nadal, J.M.; Novatski, A.; Manfron, J.; et al. Preparation, characterization, and stability study of eugenol-loaded Eudragit RS100 nanocapsules for dental sensitivity reduction. Braz. Arch. Biol. Technol. 2023, 66, e23230300. [Google Scholar] [CrossRef]
- Sereda, G.; Ahammadullah, A.; Wijewantha, N.; Solano, Y.A. Acid-triggered release of eugenol and fluoride by desensitizing macro- and nanoparticles. J. Funct. Biomater. 2023, 14, 42. [Google Scholar] [CrossRef]
- Alrahlah, A.; Al-Odayni, A.B.; Saeed, W.S.; Abduh, N.A.; Khan, R.; Alshabib, A.; De Vera, M.A.T. Influence of Eugenol and Its Novel Methacrylated Derivative on the Polymerization Degree of Resin-Based Composites. Polymers 2023, 15, 1124. [Google Scholar] [CrossRef]
- Fujisawa, S.; Atsumi, T.; Satoh, K.; Kadoma, Y.; Ishihara, M.; Okada, N.; Sakagami, H. Radical generation, radical-scavenging activity, and cytotoxicity of eugenol-related compounds. Vitr. Mol. Toxicol. 2000, 13, 269–280. [Google Scholar]
- Hotz, P.; Schlatter, D.; Lussi, A. The modification of the polymerization of composite materials by eugenol-containing temporary fillings. Schweiz. Monatsschr. Zahnmed. 1992, 102, 1461–1466. [Google Scholar]
- Al Wazzan, K.A.; Al Harbi, A.A.; Hammad, I.A. The effect of eugenol-containing temporary cement on the bond strength of two resin composite core materials to dentin. J. Prosthodont. 1997, 6, 37–42. [Google Scholar] [CrossRef]
- Garcia, I.M.; Leitune, V.C.; Ibrahim, M.S.; Melo, M.A.S.; Faus Matoses, V.; Sauro, S.; Collares, F.M. Determining the effects of eugenol on the bond strength of resin-based restorative materials to dentin: A meta-analysis of the literature. Appl. Sci. 2020, 10, 1070. [Google Scholar] [CrossRef]
- Chiluka, L.; Shastry, Y.M.; Gupta, N.; Reddy, K.M.; Prashanth, N.B.; Sravanthi, K. An in vitro study to evaluate the effect of eugenol-free and eugenol-containing temporary cements on the bond strength of resin cement and considering time as a factor. J. Int. Soc. Prev. Community Dent. 2017, 7, 202–207. [Google Scholar] [CrossRef]
- Wongsorachai, R.N.; Thanatvarakorn, O.; Prasansuttiporn, T.; Jittidecharaks, S.; Hosaka, K.; Foxton, R.M.; Nakajima, M. Effect of polymerization accelerator on bond strength to eugenol-contaminated dentin. J. Adhes. Dent. 2018, 20, 541–547. [Google Scholar] [PubMed]
- De Moura, I.; Rabello, T.; Pereira, K. A influência do eugenol nos procedimentos adesivos. Rev. Bras. Odontol. 2013, 70, 28–32. [Google Scholar]
- Da Rosa, L.; Ribeiro, J.; Pinto, L.; Gonçalves, L.; De Oliveira Rocha, R.; Soares, F. No adverse effect of eugenol-based temporary materials on bonding to dentin after 14 days: A systematic review and meta-analysis of in vitro studies. Int. J. Adhes. Adhes. 2023, 124, 103398. [Google Scholar] [CrossRef]
- Rojo, L.; Vázquez, B.; Deb, S.; Román, S. Eugenol derivatives immobilized in auto-polymerizing formulations as an approach to avoid inhibition interferences and improve biofunctionality in dental and orthopedic cements. Acta Biomater. 2009, 5, 1616–1625. [Google Scholar] [CrossRef]
- Rojo, L.; Vázquez, B.; Parra, J.; Bravo, L.; Deb, S.; Román, S. From natural products to polymeric derivatives of “eugenol”: A new approach for preparation of dental composites and orthopedic bone cements. Biomacromolecules 2006, 7, 2751–2761. [Google Scholar] [CrossRef]
- Beketova, A.; Tzanakakis, E.; Vouvoudi, E.; Anastasiadis, K.; Rigos, A.; Pandoleon, P.; Bikiaris, D.; Tzoutzas, I.; Kontonasaki, E. Zirconia Nanoparticles as Reinforcing Agents for Contemporary Dental Luting Cements: Physicochemical Properties and Shear Bond Strength to Monolithic Zirconia. Int. J. Mol. Sci. 2023, 24, 2067. [Google Scholar] [CrossRef]
- Agustinisari, I.; Mulia, K.; Nasikin, M. The Effect of Eugenol and Chitosan Concentration on the Encapsulation of Eugenol Using Whey Protein–Maltodextrin Conjugates. Appl. Sci. 2020, 10, 3205. [Google Scholar] [CrossRef]
- Jabbari, N.; Eftekhari, Z.; Roodbari, N.; Parivar, K. Evaluation of Encapsulated Eugenol by Chitosan Nanoparticles on the Aggressive Model of Rheumatoid Arthritis. Int. Immunopharmacol. 2020, 85, 106554. [Google Scholar] [CrossRef]
- Eleleemy, M.; Amin, B.H.; Nasr, M.; Sammour, O.A. A succinct review on the therapeutic potential and delivery systems of Eugenol. Arch. Pharm. Sci. Ain Shams Univ. 2020, 4, 290–311. [Google Scholar] [CrossRef]
- Talón, E.; Lampi, A.; Vargas, M.; Chiralt, A.; Jouppila, K.; González-Martínez, C. Encapsulation of eugenol by spray-drying using whey protein isolate or lecithin: Release kinetics, antioxidant and antimicrobial properties. Food Chem. 2019, 295, 588–598. [Google Scholar] [CrossRef] [PubMed]
- Sahlan, M.; Tejamaya, M.; Arbianti, R.; Baruji, T.; Adawiyah, R.; Hermansyah, H. The effects of nano-casein encapsulation and productions of a controlled-release on eugenol containing bio-pesticide toxicity. Key Eng. Mater. 2021, 874, 115–127. [Google Scholar] [CrossRef]
- Ferrando-Magraner, E.; Bellot-Arcís, C.; Paredes-Gallardo, V.; Almerich-Silla, J.M.; García-Sanz, V.; Fernández-Alonso, M.; Montiel-Company, J.M. Antibacterial properties of nanoparticles in dental restorative materials. A systematic review and meta-analysis. Medicina 2020, 56, 55. [Google Scholar] [CrossRef]
- Fu, Y.; Kao, W.J. Drug Release Kinetics and Transport Mechanisms of Non-Degradable and Degradable Polymeric Delivery Systems. Expert Opin. Drug Deliv. 2010, 7, 429–444. [Google Scholar] [CrossRef]
- Silva, C.G.; Yudice, E.D.C.; Campini, P.A.L.; Rosa, D.S. The Performance Evaluation of Eugenol and Linalool Microencapsulated by PLA on Their Activities against Pathogenic Bacteria. Mater. Today Chem. 2021, 21, 100493. [Google Scholar] [CrossRef]
- Díez-Pascual, A.; Rahdar, A. LbL Nano-Assemblies: A Versatile Tool for Biomedical and Healthcare Applications. Nanomaterials 2022, 12, 949. [Google Scholar] [CrossRef]
- Veneranda, M.; Hu, Q.; Wang, T.; Luo, Y.; Castro, K.; Madariaga, J.M. Formation and Characterization of Zein-Caseinate-Pectin Complex Nanoparticles for Encapsulation of Eugenol. LWT 2018, 89, 596–603. [Google Scholar] [CrossRef]
- Sánchez-Arribas, N.; Guzmán, E.; Lucia, A.; Toloza, A.C.; Velarde, M.G.; Ortega, F.; Rubio, R.G. Environmentally Friendly Platforms for Encapsulation of an Essential Oil: Fabrication, Characterization and Application in Pests Control. Colloids Surf. A Physicochem. Eng. Asp. 2018, 555, 473–481. [Google Scholar] [CrossRef]
- Tonyali, B.; McDaniel, A.; Amamcharla, J.; Trinetta, V.; Yucel, U. Release Kinetics of Cinnamaldehyde, Eugenol, and Thymol from Sustainable and Biodegradable Active Packaging Films. Food Packag. Shelf Life 2020, 24, 100484. [Google Scholar] [CrossRef]
- Xu, Z.; Liang, G.; Jin, L.; Wang, Z.; Xing, C.; Jiang, Q.; Zhang, Z. Synthesis of sodium caseinate–calcium carbonate microspheres and their mineralization to bone-like apatite. J. Cryst. Growth 2014, 395, 116–122. [Google Scholar] [CrossRef]
- Karimi, M.; Sahandi Zangabad, P.; Ghasemi, A.; Amiri, M.; Bahrami, M.; Malekzad, H.; Ghahramanzadeh Asl, H.; Mahdieh, Z.; Bozorgomid, M.; Ghasemi, A.; et al. Temperature-Responsive Smart Nanocarriers for Delivery of Therapeutic Agents: Applications and Recent Advances. ACS Appl. Mater. Interfaces 2016, 8, 21107–21133. [Google Scholar] [CrossRef] [PubMed]
- Ulanowska, M.; Olas, B. Biological Properties and Prospects for the Application of Eugenol—A Review. IJMS 2021, 22, 3671. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Herrera, A.; Pozos-Guillén, A.; Ruiz-Rodríguez, S.; Garrocho-Rangel, A.; Vértiz-Hernández, A.; Escobar-García, D.M. Effect of 4-Allyl-1-Hydroxy-2-Methoxybenzene (Eugenol) on Inflammatory and Apoptosis Processes in Dental Pulp Fibroblasts. Mediat. Inflamm. 2016, 2016, 9371403. [Google Scholar] [CrossRef]
- Gronwald, B.; Kozłowska, L.; Kijak, K.; Lietz-Kijak, D.; Skomro, P.; Gronwald, K.; Gronwald, H. Nanoparticles in Dentistry—Current Literature Review. Coatings 2023, 13, 102. [Google Scholar] [CrossRef]
- Zafar, M.S.; Alnazzawi, A.A.; Alrahabi, M.; Fareed, M.A.; Najeeb, S.; Khurshid, Z. Nanotechnology and Nanomaterials in Dentistry. In Advanced Dental Biomaterials; Elsevier: Amsterdam, The Netherlands, 2019; pp. 477–505. ISBN 978-0-08-102476-8. [Google Scholar]
- Chen, Z.; Chu, Z.; Jiang, Y.; Xu, L.; Qian, H.; Wang, Y.; Wang, W. Recent Advances on Nanomaterials for Antibacterial Treatment of Oral Diseases. Mater. Today Bio. 2023, 20, 100635. [Google Scholar] [CrossRef]
- Swimberghe, R.C.D.; Coenye, T.; De Moor, R.J.G.; Meire, M.A. Biofilm Model Systems for Root Canal Disinfection: A Literature Review. Int. Endod. J. 2019, 52, 604–628. [Google Scholar] [CrossRef]
- Anil, A.; Ibraheem, W.I.; Meshni, A.A.; Preethanath, R.S.; Anil, S. Nano-Hydroxyapatite (nHAp) in the Remineralization of Early Dental Caries: A Scoping Review. IJERPH 2022, 19, 5629. [Google Scholar] [CrossRef]
- Satou, R.; Odaka, K.; Sako, R.; Ando, M.; Sugihara, N. Improving Enamel Acid Resistance by an Intraoral Fluoride-Release Device Incorporating Cationic Hydroxy Cellulose Gel Using 3D Printer Molding. Materials 2024, 17, 5731. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamal, F.Z.; Ciobica, A.; Dascalescu, G.; Rammali, S.; Aalaoui, M.E.; Lefter, R.; Vata, I.; Burlui, V.; Novac, B. Eugenol Nanoparticles in Dental Composites: Literature Review of Antimicrobial, Anti-Inflammatory, and Clinical Applications. Microorganisms 2025, 13, 1148. https://doi.org/10.3390/microorganisms13051148
Kamal FZ, Ciobica A, Dascalescu G, Rammali S, Aalaoui ME, Lefter R, Vata I, Burlui V, Novac B. Eugenol Nanoparticles in Dental Composites: Literature Review of Antimicrobial, Anti-Inflammatory, and Clinical Applications. Microorganisms. 2025; 13(5):1148. https://doi.org/10.3390/microorganisms13051148
Chicago/Turabian StyleKamal, Fatima Zahra, Alin Ciobica, Gabriel Dascalescu, Said Rammali, Mohamed El Aalaoui, Radu Lefter, Ioana Vata, Vasile Burlui, and Bogdan Novac. 2025. "Eugenol Nanoparticles in Dental Composites: Literature Review of Antimicrobial, Anti-Inflammatory, and Clinical Applications" Microorganisms 13, no. 5: 1148. https://doi.org/10.3390/microorganisms13051148
APA StyleKamal, F. Z., Ciobica, A., Dascalescu, G., Rammali, S., Aalaoui, M. E., Lefter, R., Vata, I., Burlui, V., & Novac, B. (2025). Eugenol Nanoparticles in Dental Composites: Literature Review of Antimicrobial, Anti-Inflammatory, and Clinical Applications. Microorganisms, 13(5), 1148. https://doi.org/10.3390/microorganisms13051148