CRISPR-Cas-Based Pen-Side Diagnostic Tests for Anaplasma marginale and Babesia bigemina
Abstract
1. Introduction
2. Materials and Methods
2.1. Bioinformatics Analysis
2.2. CRISPR RNA (crRNA) and RPA/PCR Primer Design
2.3. DNA Preparation
2.4. PCR and RPA Pre-Amplification of msp5 and RAP1a Gene
2.5. CRISPR-Cas12a Detection
2.6. Flow Cytometry Assay
2.7. Lateral Flow Strip Assay
3. Results
3.1. The Single crRNA (crRNA1)/CRISPR-Cas12a Assay Is Highly Specific
3.2. The Single crRNA (crRNA 1)/CRISPR-Cas12a Assay Demonstrates Fair Sensitivity
3.3. The Dual crRNA/CRISPR-Cas12a Assay Is Highly Specific
3.4. The Dual crRNA/CRISPR-Cas12a Assay Demonstrates Enhanced Sensitivity
3.5. Developing a Field Deployable-Based Lateral Flow-Based Assay
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muriuki, R.; Ndichu, M.; Githigia, S.; Svitek, N. Novel CRISPR-Cas-powered pen-side test for East Coast fever. Int. J. Parasitol. 2024, 54, 507–521. [Google Scholar] [CrossRef] [PubMed]
- Wagner, G.G.; Holman, P.; Waghela, S. Babesiosis and heartwater: Threats without boundaries. Vet. Clin. N. Am. Food Anim. Pract. 2002, 18, 417–430. [Google Scholar] [CrossRef] [PubMed]
- Moumouni, P.F.A.; Aboge, G.O.; Terkawi, M.A.; Masatani, T.; Cao, S.; Kamyingkird, K.; Jirapattharasate, C.; Zhou, M.; Wang, G.; Liu, M.; et al. Molecular detection and characterization of Babesia bovis, Babesia bigemina, Theileria species and Anaplasma marginale isolated from cattle in Kenya. Parasit. Vectors 2015, 8, 496. [Google Scholar] [CrossRef]
- M’ghirbi, Y.; Bèji, M.; Oporto, B.; Khrouf, F.; Hurtado, A.; Bouattour, A. Anaplasma marginale and A. phagocytophilum in cattle in Tunisia. Parasit. Vectors 2016, 9, 556. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Jyoti; Haque, M.; Singh, N.K.; Rath, S.S. Molecular detection of Anaplasma marginale infection in carrier cattle. Ticks Tick. Borne. Dis. 2012, 3, 55–58. [Google Scholar] [CrossRef]
- Brown, C.G. Dynamics and impact of tick-borne diseases of cattle. Trop. Anim. Health Prod. 1997, 29, 1S–3S. [Google Scholar] [CrossRef]
- Kanyari, P.W.; Kagira, J. The role of parasitic diseases as causes of mortality in cattle in a high potential area of central Kenya: A quantitative analysis. Onderstepoort J. Vet. Res. 2000, 67, 157–161. [Google Scholar] [PubMed]
- Nyabongo, L.; Kanduma, E.G.; Bishop, R.P.; Machuka, E.; Njeri, A.; Bimenyimana, A.V.; Nkundwanayo, C.; Odongo, D.O.; Pelle, R. Prevalence of tick-transmitted pathogens in cattle reveals that Theileria parva, Babesia bigemina and Anaplasma marginale are endemic in Burundi. Parasit. Vectors 2021, 14, 6. [Google Scholar] [CrossRef] [PubMed]
- Gachohi, J.M.; Ngumi, P.N.; Kitala, P.M.; Skilton, R.A. Estimating seroprevalence and variation to four tick-borne infections and determination of associated risk factors in cattle under traditional mixed farming system in Mbeere District. Kenya Prev. Vet. Med. 2010, 95, 208–223. [Google Scholar] [CrossRef]
- Knowles, D.; de Echaide, S.T.; Palmer, G.; McGuire, T.; Stiller, D.; McElwain, T. Antibody against an Anaplasma marginale MSP5 epitope common to tick and erythrocyte stages identifies persistently infected cattle. J. Clin. Microbiol. 1996, 34, 2225–2230. [Google Scholar] [CrossRef] [PubMed]
- Goff, W.L.; Johnson, W.C.; Molloy, J.B.; Jorgensen, W.K.; Waldron, S.J.; Figueroa, J.V.; Matthee, O.; Adams, D.S.; McGuire, T.C.; Pino, I.; et al. Validation of a competitive enzyme-linked immunosorbent assay for detection of Babesia bigemina antibodies in cattle. Clin. Vaccine Immunol. 2008, 15, 1316–1321. [Google Scholar] [CrossRef]
- Oura, C.A.L.; Bishop, R.P.; Wampande, E.M.; Lubega, G.W.; Tait, A. Application of a reverse line blot assay to the study of haemoparasites in cattle in Uganda. Int. J. Parasitol. 2004, 34, 603–613. [Google Scholar] [CrossRef] [PubMed]
- Terkawi, M.A.; Huyen, N.X.; Shinuo, C.; Inpankaew, T.; Maklon, K.; Aboulaila, M.; Ueno, A.; Goo, Y.-K.; Yokoyama, N.; Jittapalapong, S.; et al. Molecular and serological prevalence of Babesia bovis and Babesia bigemina in water buffaloes in the northeast region of Thailand. Vet. Parasitol. 2011, 178, 201–207. [Google Scholar] [CrossRef]
- Ybañez, A.P.; Sivakumar, T.; Battsetseg, B.; Battur, B.; Altangerel, K.; Matsumoto, K.; Yokoyama, N.; Inokuma, H. Specific molecular detection and characterization of Anaplasma marginale in Mongolian cattle. J. Vet. Med. Sci. 2013, 75, 399–406. [Google Scholar] [CrossRef]
- Ibrahim, H.M.; Moumouni, P.F.A.; Mohammed-Geba, K.; Sheir, S.K.; Hashem, I.S.; Cao, S.; Terkawi, M.A.; Kamyingkird, K.; Nishikawa, Y.; Suzuki, H.; et al. Molecular and serological prevalence of Babesia bigemina and Babesia bovis in cattle and water buffalos under small-scale dairy farming in Beheira and Faiyum Provinces. Egypt Vet. Parasitol. 2013, 198, 187–192. [Google Scholar] [CrossRef]
- Watthanadirek, A.; Junsiri, W.; Minsakorn, S.; Poolsawat, N.; Srionrod, N.; Khumpim, P.; Chawengkirttikul, R.; Anuracpreeda, P. Molecular and recombinant characterization of major surface protein 5 from Anaplasma marginale. Acta Trop. 2021, 220, 105933. [Google Scholar] [CrossRef] [PubMed]
- Bacanelli, G.M.; Ramos, C.A.N.; Araújo, F.R. Molecular diagnosis of Anaplasma marginale in cattle: Quantitative evaluation of a real-time PCR (Polymerase Chain Reaction) based on msp5 gene. Pesqui. Veterinária Bras. 2014, 34, 29–33. [Google Scholar] [CrossRef]
- Chen, J.S.; Ma, E.; Harrington, L.B.; Da Costa, M.; Tian, X.; Palefsky, J.M.; Doudna, J.A. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 2018, 360, 436–439. [Google Scholar] [CrossRef]
- Liang, Y.; Lin, H.; Zou, L.; Zhao, J.; Li, B.; Wang, H.; Lu, J.; Sun, J.; Yang, X.; Deng, X.; et al. CRISPR-Cas12a-Based Detection for the Major SARS-CoV-2 Variants of Concern. Microbiol. Spectr. 2021, 9, e0101721. [Google Scholar] [CrossRef] [PubMed]
- Patchsung, M.; Jantarug, K.; Pattama, A.; Aphicho, K.; Suraritdechachai, S.; Meesawat, P.; Sappakhaw, K.; Leelahakorn, N.; Ruenkam, T.; Wongsatit, T.; et al. Clinical validation of a Cas13-based assay for the detection of SARS-CoV-2 RNA. Nat. Biomed. Eng. 2020, 4, 1140–1149. [Google Scholar] [CrossRef]
- Sutipatanasomboon, A.; Wongsantichon, J.; Sakdee, S.; Naksith, P.; Watthanadirek, A.; Anuracpreeda, P.; Blacksell, S.D.; Saisawang, C. RPA-CRISPR/Cas12a assay for the diagnosis of bovine Anaplasma marginale infection. Sci. Rep. 2024, 14, 7820. [Google Scholar] [CrossRef] [PubMed]
- Kovalchuk, S.N.; Babii, A.V.; Arkhipova, A.L. Real-time PCR assay with an endogenous internal amplification control for detection and quantification of Anaplasma marginale in bovine blood, Ticks Tick. Borne. Dis. 2020, 11, 101334. [Google Scholar] [CrossRef]
- Carelli, G.; Decaro, N.; Lorusso, A.; Elia, G.; Lorusso, E.; Mari, V.; Ceci, L.; Buonavoglia, C. Detection and quantification of Anaplasma marginale DNA in blood samples of cattle by real-time PCR. Vet. Microbiol. 2007, 124, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Chaisi, M.E.; Baxter, J.R.; Hove, P.; Choopa, C.N.; Oosthuizen, M.C.; Brayton, K.A.; Khumalo, Z.T.; Mutshembele, A.M.; Mtshali, M.S.; Collins, N.E. Comparison of three nucleic acid-based tests for detecting Anaplasma marginale and Anaplasma centrale in cattle. Onderstepoort J. Vet. Res. 2017, 84, e1–e9. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Aboge, G.O.; Terkawi, M.A.; Yu, L.; Kamyingkird, K.; Luo, Y.; Li, Y.; Goo, Y.-K.; Yamagishi, J.; Nishikawa, Y.; et al. Molecular detection and identification of Babesia bovis and Babesia bigemina in cattle in northern Thailand. Parasitol. Res. 2012, 111, 1259–1266. [Google Scholar] [CrossRef]
- Buling, A.; Criado-Fornelio, A.; Asenzo, G.; Benitez, D.; Barba-Carretero, J.C.; Florin-Christensen, M. A quantitative PCR assay for the detection and quantification of Babesia bovis and B. bigemina. Vet. Parasitol. 2007, 147, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Yokoyama, N.; Fujisaki, K.; Suzuki, H.; Xuan, X.; Igarashi, I.; Herbas, M.S.; Iseki, H. Development of TaqMan-based real-time PCR assays for diagnostic detection of Babesia bovis and Babesia bigemina. Am. J. Trop. Med. Hyg. 2007, 77, 837–841. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Li, Q.; Wang, S.; Chen, X.; Du, A. Rapid and sensitive detection of Babesia bovis and Babesia bigemina by loop-mediated isothermal amplification combined with a lateral flow dipstick. Vet. Parasitol. 2016, 219, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Lizarazo-Zuluaga, A.P.; Carvajal-Gamez, B.I.; Wilkowsky, S.; Cravero, S.; Trangoni, M.; Mosqueda, J. Development and standardization of a Loop-mediated isothermal amplification (LAMP) test for the detection of Babesia bigemina. Front. Vet. Sci. 2022, 9, 1056355. [Google Scholar] [CrossRef]
- Zeng, M.; Ke, Y.; Zhuang, Z.; Qin, C.; Li, L.Y.; Sheng, G.; Li, Z.; Meng, H.; Ding, X. Harnessing Multiplex crRNA in the CRISPR/Cas12a System Enables an Amplification-Free DNA Diagnostic Platform for ASFV Detection. Anal. Chem. 2022, 94, 10805–10812. [Google Scholar] [CrossRef] [PubMed]
- Jain, P.; Rananaware, S.; Vesco, E.; Shoemaker, G.; Anekar, S.; Sandoval, L.S.; Meister, K.; Macaluso, N.; Nguyen, L. Programmable RNA detection with CRISPR-Cas12a. Res. Sq. 2023, preprint. [Google Scholar] [CrossRef]
- Jiang, Y.; Hu, M.; Liu, A.-A.; Lin, Y.; Liu, L.; Yu, B.; Zhou, X.; Pang, D.-W. Detection of SARS-CoV-2 by CRISPR/Cas12a-Enhanced Colorimetry. ACS Sens. 2021, 6, 1086–1093. [Google Scholar] [CrossRef] [PubMed]
- Huyen, D.T.; Reboud, J.; Quyen, D.T.; Cooper, J.M.; Velavan, T.P.; Trung, N.T.; Song, L.H. An isothermal CRISPR- based lateral flow assay for detection of Neisseria meningitidis. Ann. Clin. Microbiol. Antimicrob. 2024, 23, 28. [Google Scholar] [CrossRef]
- Tang, C.; Wu, J.; Chen, Q.; Wang, Y. CRISPR-Cas Detection Coupled with Isothermal Amplification of Bursaphelenchus xylophilus. Plant Dis. 2023, 107, 1703–1713. [Google Scholar] [CrossRef] [PubMed]
- Arizti-Sanz, J.; Freije, C.A.; Stanton, A.C.; Petros, B.A.; Boehm, C.K.; Siddiqui, S.; Shaw, B.M.; Adams, G.; Kosoko-Thoroddsen, T.-S.F.; Kemball, M.E.; et al. Streamlined inactivation, amplification, and Cas13-based detection of SARS-CoV-2. Nat. Commun. 2020, 11, 5921. [Google Scholar] [CrossRef] [PubMed]
- Fozouni, P.; Son, S.; Derby, M.D.d.L.; Knott, G.J.; Gray, C.N.; D’ambrosio, M.V.; Zhao, C.; Switz, N.A.; Kumar, G.R.; Stephens, S.I.; et al. Amplification-free detection of SARS-CoV-2 with CRISPR-Cas13a and mobile phone microscopy. Cell 2021, 184, 323–333.e9. [Google Scholar] [CrossRef] [PubMed]
- Joung, J.; Ladha, A.; Saito, M.; Kim, N.-G.; Woolley, A.E.; Segel, M.; Barretto, R.P.; Ranu, A.; Macrae, R.K.; Faure, G.; et al. Detection of SARS-CoV-2 with SHERLOCK One-Pot Testing. N. Engl. J. Med. 2020, 383, 1492–1494. [Google Scholar] [CrossRef] [PubMed]
- Xiong, E.; Jiang, L.; Tian, T.; Hu, M.; Yue, H.; Huang, M.; Lin, W.; Jiang, Y.; Zhu, D.; Zhou, X. Simultaneous Dual-Gene Diagnosis of SARS-CoV-2 Based on CRISPR/Cas9-Mediated Lateral Flow Assay. Angew. Chem. Int. Ed. 2021, 60, 5307–5315. [Google Scholar] [CrossRef]
- Li, C.; Lin, N.; Feng, Z.; Lin, M.; Guan, B.; Chen, K.; Liang, W.; Wang, Q.; Li, M.; You, Y.; et al. CRISPR/Cas12a Based Rapid Molecular Detection of Acute Hepatopancreatic Necrosis Disease in Shrimp. Front. Vet. Sci. 2022, 8, 819681. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Tian, T.; Sun, J.; Hu, M.; Wang, X.; Xiong, E.; Cheng, M.; Bao, Y.; Lin, W.; Jiang, J.; et al. Universal and Naked-Eye Gene Detection Platform Based on the Clustered Regularly Interspaced Short Palindromic Repeats/Cas12a/13a System. Anal. Chem. 2020, 92, 4029–4037. [Google Scholar] [CrossRef]
- Jiao, J.; Kong, K.; Han, J.; Song, S.; Bai, T.; Song, C.; Wang, M.; Yan, Z.; Zhang, H.; Zhang, R.; et al. Field detection of multiple RNA viruses/viroids in apple using a CRISPR/Cas12a-based visual assay. Plant Biotechnol. J. 2021, 19, 394–405. [Google Scholar] [CrossRef] [PubMed]
CRISPR RNA | Sequence | Length |
---|---|---|
msp5 crRNA 1 | rUrArA rUrUrU rCrUrA rCrUrAr rArGrU rGrUrA rGrArU rCrArG rCrArA rArArU rCrGrG rCrGrA rGrArG rGrU | 41 |
msp5 crRNA 2 | rUrArA rUrUrU rCrUrA rCrUrA rArGrU rGrUrA rGrArU rGrArU rGrCrG rArGrA rArUrU rCrArG rArUrG rCrU | 41 |
RAP1a crRNA 1 | rUrArA rUrUrU rCrUrA rCrUrA rArGrU rGrUrA rGrArU rUrUrG rUrUrA rGrCrU rUrGrU rUrGrA rArGrA rArG | 41 |
RAP1a crRNA 2 | rUrArA rUrUrU rCrUrA rCrUrA rArGrU rGrUrA rGrArU rGrGrU rArUrC rCrArG rArArG rGrCrG rUrUrG rArA | 41 |
Primer | Sequence | Length |
---|---|---|
msp5 F1 | GCCGTGTTCCTGGGGTACTCCTATGTGAACAA | 32 |
msp5 R1 | AGACGCGGAGGCTATGCCCTCACTTACAACTT | 32 |
msp5 F2 | CTGTTGATCCGAAAAATGACACCGTAGCCAAGC | 33 |
msp5 R2 | CTTGTAGTTTTCAACCAGGCTCTTTATGTCTGC | 33 |
RAP1a F1 | GACGCTGCCTTCATGCTTTTCAGGGAAAGTGA | 32 |
RAP1a R1 | ACAACGTAGTCATGTAGAAGTACTGCGATGCG | 32 |
RAP1a F2 | GACCGTTGACTTTACGGCGGCTAAGTTCTTCA | 32 |
RAP1a R2 | CATCATGTACTCGCCGTAGCCGCTAGCTATTT | 32 |
Title | Assay and Gene Target | Sensitivity and Specificity | Reference |
---|---|---|---|
Anaplasma marginale | |||
RPA-CRISPR/Cas12a assay for the diagnosis of bovine Anaplasma marginale infection | RPA-CRISPR-Cas12a assay, major surface protein 4 (MSP4) | Sensitivity of 4 copies/µL of msp4 gene No cross-reactivity observed when tested with DNA from Babesia bovis, T. orientalis, and T. evansi | [21] |
Specific molecular detection and characterization of Anaplasma marginale in Mongolian Cattle | Nested PCR based on the msp5 gene | Sensitivity: limit of detection was 200 copies/µL of the msp5 gene No cross-reactivity when tested against Ehrlichia canis, E. muris, Ehrlichia sp., Anaplasma bovis, A. centrale, A. platys, Anaplasma sp. closely related to A. phagocytophilum of Japan, A. phagocytophilum, Theileria orientalis, Babesia bovis, and B. ovata | [14] |
Molecular detection of Anaplasma marginale infection in carrier cattle | Semi-nested PCR, major surface protein 5 | Sensitivity limit of detection of 30 infected erythrocytes per ml of blood No cross-reactivity when tested against Theileria annulata, Babesia bigemina, and Trypanosoma evansi | [5] |
Real-time PCR assay with an endogenous internal amplification control for detection and quantification of Anaplasma marginale in bovine blood | TaqMan Quantitative PCR, based on major surface protein 1 (msp1α) gene | Sensitivity: Able to detect up to 1 copy of the msp1 gene No cross-reactivity observed when tested with closely related Anaplasma spp.: A. centrale, A. bovis, A. phagocytophilum, A. ovis-positive, and A. platys | [22] |
Detection and quantification of Anaplasma marginale DNA in blood samples of cattle by real-time PCR | TaqMan-based real-time PCR assay based on the msp1b gene | Sensitivity: 101 DNA copies of the msp1b gene and 30 Anaplasma-infected erythrocytes mL−1 of blood No cross-reactivity with other pathogens, including A. centrale, A. bovis, A. ovis, A. phagocytophilum, B. bovis, B. bigemina, T. annulata, and T. buffeli | [23] |
Comparison of three nucleic acid-based tests for detecting Anaplasma marginale and Anaplasma centrale in cattle | Three nucleic acid tests for A. marginale based on the msp1b gene RLB, nested PCR, and qPCR | Sensitivity: 2500 copies of the msp1β gene for RLB, 250 copies of the same gene by nPCR and qPCR No cross-reactivity when tested against Anaplasma sp., A. phagocytophilum, B. bovis, and Theileria parva | [24] |
CRISPR-Cas-based pen-side diagnostic tests for Anaplasma marginale and Babesia bigemina | RPA-Ca12a assay based on msp5 gene | Sensitivity: 100 copies/µL of msp5 gene No cross-reactivity when tested against T. parva, T. mutans, Babesia bigemina, and T. lestoquardi DNA | Our test. |
Babesia bigemina | |||
Molecular detection and identification of Babesia bovis and Babesia bigemina in cattle in northern Thailand | Nested PCR based on RAP1a gene for B. bigemina | Sensitivity: The detection limit was equivalent to a parasitemia of 0.00000001% No cross-reactivity when tested against DNA from B. bovis, T. orientalis, T. gondii, and N. caninum | [25] |
A quantitative PCR assay for the detection and quantification of Babesia bovis and B. bigemina | SYBR green qPCR based on the cytochrome B gene | Sensitivity of 1000 copies, translating to 0.1 fg of DNA No cross-reactivity observed when tested against T. annulata, T. buffeli, T. equi, and B. caballi | [26] |
Development of TaqMan-based real-time PCR assays for diagnostic detection of Babesia bovis and Babesia bigemina | TaqMan assay based on the 18S rRNA | The sensitivity of the test is at 2.5 parasites/µL of infected blood No cross-reaction observed when tested against DNA from Theileria parva, Trypanosoma evansi, and Neospora caninum | [27] |
Rapid and sensitive detection of Babesia bovis and Babesia bigemina by loop-mediated isothermal amplification combined with a lateral flow dipstick | A LAMP-LFP assay based on the cytochrome B gene | Sensitivity of 0.8 g of Babesia bigemina DNA No cross-reactivity with DNA from Babesia bovis, Theileria sergenti, Theileria ovis, Theileria equi, and Toxoplasma gondii | [28] |
Development and standardization of a loop-mediated isothermal amplification (LAMP) test for the detection of Babesia bigemina | LAMP technique based on the ama-1 gene | Sensitivity of 0.00000001% of parasitemia Highly specific with no cross-reactivity observed when tested with DNA from B. bovis, Anaplasma marginale, A. phagocytophilum, A. centrale, Trypanosoma theileri, Bos taurus, Homo sapiens, Rhipicephalus microplus, and Neospora caninum | [29] |
CRISPR-Cas-based pen-side diagnostic tests for Anaplasma marginale and Babesia bigemina | RPA-Ca12a assay based on RAP1a gene | Sensitivity: 100 copies/µL of RAP1a gene No cross-reactivity when tested against T. parva, T. mutans, Babesia bigemina, and T. lestoquardi DNA | Our test. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muriuki, R.; Ndichu, M.; Githigia, S.; Svitek, N. CRISPR-Cas-Based Pen-Side Diagnostic Tests for Anaplasma marginale and Babesia bigemina. Microorganisms 2024, 12, 2595. https://doi.org/10.3390/microorganisms12122595
Muriuki R, Ndichu M, Githigia S, Svitek N. CRISPR-Cas-Based Pen-Side Diagnostic Tests for Anaplasma marginale and Babesia bigemina. Microorganisms. 2024; 12(12):2595. https://doi.org/10.3390/microorganisms12122595
Chicago/Turabian StyleMuriuki, Robert, Maingi Ndichu, Samuel Githigia, and Nicholas Svitek. 2024. "CRISPR-Cas-Based Pen-Side Diagnostic Tests for Anaplasma marginale and Babesia bigemina" Microorganisms 12, no. 12: 2595. https://doi.org/10.3390/microorganisms12122595
APA StyleMuriuki, R., Ndichu, M., Githigia, S., & Svitek, N. (2024). CRISPR-Cas-Based Pen-Side Diagnostic Tests for Anaplasma marginale and Babesia bigemina. Microorganisms, 12(12), 2595. https://doi.org/10.3390/microorganisms12122595