Tunable MEMS-Based Terahertz Metamaterial for Pressure Sensing Application
Abstract
1. Introduction
2. Designs and Methods
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, C.; Ren, Z.; Wei, J.; Lee, C. Reconfigurable terahertz metamaterials: From fundamental principles to advanced 6G applications. Iscience 2022, 25, 103799. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-S.; Xu, Z. Reconfigurable metamaterials for optoelectronic applications. Int. J. Optomechatron. 2020, 14, 78–93. [Google Scholar] [CrossRef]
- Shelby, R.A.; Smith, D.R.; Schultz, S. Experimental Verification of a Negative Index of Refraction. Science 2001, 292, 77–79. [Google Scholar] [CrossRef]
- Zhu, W.M.; Liu, A.Q.; Zhang, W.; Tao, J.F.; Bourouina, T.; Teng, J.; Zhang, X.H.; Wu, Q.Y.S.; Tanoto, H.; Guo, H.C.; et al. Polarization dependent state to polarization independent state change in THz metamaterials. Appl. Phys. Lett. 2011, 99, 221102. [Google Scholar] [CrossRef]
- Vivek, A.; Shambavi, K.; Alex, Z.C. A review: Metamaterial sensors for material characterization. Sens. Rev. 2019, 39, 417–432. [Google Scholar] [CrossRef]
- Wu, L.; Cheng, K.; Lin, Y.-S. All-Dielectric Nanostructured Metasurfaces with Ultrahigh Color Purity and Selectivity for Refractive Index Sensing Applications. Results Phys. 2022, 43, 106092. [Google Scholar] [CrossRef]
- Fang, R.; Yu, Z.; Lin, Y.-S. Lithography-Free Fabrication and Optical Characterizations of Nanotextured Nickle Dewetting Thin-Film for Broadband Absorbers. Nano Futures 2022, 6, 035003. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, W.; Lin, Y.-S.; Yang, B.-R. A tunable color filter using a hybrid metasurface composed of ZnO nanopillars and Ag nanoholes. Nanoscale Adv. 2022, 4, 3624–3633. [Google Scholar] [CrossRef] [PubMed]
- Larouche, S.; Tsai, Y.-J.; Tyler, T.; Jokerst, N.M.; Smith, D.R. Infrared metamaterial phase holograms. Nat. Mater. 2012, 11, 450–454. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Lin, Y.-S. Flexible and Controllable Metadevice Using Self-Assembly MEMS Actuator. Nano Lett. 2021, 21, 3205–3210. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Li, D.; Hui, X.; Mu, X. Infrared metamaterial for surface-enhanced infrared absorption spectroscopy: Pushing the frontier of ultrasensitive on-chip sensing. Int. J. Optomechatron. 2021, 15, 97–119. [Google Scholar] [CrossRef]
- Mo, Y.; Zhong, J.; Lin, Y.-S. Tunable chevron-shaped infrared metamaterial. Mater. Lett. 2019, 263, 127291. [Google Scholar] [CrossRef]
- Liang, Z.; Wen, Y.; Zhang, Z.; Liang, Z.; Xu, Z.; Lin, Y.-S. Plasmonic metamaterial using metal-insulator-metal nanogratings for high-sensitive refraction index sensor. Results Phys. 2019, 15, 102602. [Google Scholar] [CrossRef]
- Yang, Y.; Zheng, D.; Lin, Y.-S. Tunable infrared meta-absorber with single- and dual-absorption resonances. Surf. Interfaces 2022, 32, 102178. [Google Scholar] [CrossRef]
- Zheng, D.; Lin, Y.-S. Tunable Dual-Split-Disk Resonator with Electromagnetically Induced Transparency Characteristic. Adv. Mater. Technol. 2020, 5, 202000584. [Google Scholar] [CrossRef]
- Ou, H.; Lu, F.; Xu, Z.; Lin, Y.-S. Terahertz Metamaterial with Multiple Resonances for Biosensing Application. Nanomaterials 2020, 10, 1038. [Google Scholar] [CrossRef]
- Hu, X.; Zheng, D.; Lin, Y.-S. Actively tunable terahertz metamaterial with single-band and dual-band switching characteristic. Appl. Phys. A 2020, 126, 110. [Google Scholar] [CrossRef]
- Lu, F.; Ou, H.; Liao, Y.; Zhu, F.; Lin, Y.-S. Actively switchable terahertz metamaterial. Results Phys. 2019, 15, 102756. [Google Scholar] [CrossRef]
- Liu, X.; Qiao, Q.; Dong, B.; Liu, W.; Xu, C.; Xu, S.; Zhou, G. MEMS enabled suspended silicon waveguide platform for long-wave infrared modulation applications. Int. J. Optomechatron. 2022, 16, 42–57. [Google Scholar] [CrossRef]
- Dixit, A.S.; Kumar, S. Performance enhancement of antipodal Vivaldi antenna array using metamaterial for 38 GHz band of 5G applications. Opt. Mater. 2022, 133, 112811. [Google Scholar] [CrossRef]
- Liu, L.; Liu, T.; Zheng, Y.; Chernogor, L.F.; Jin, Z.-J.; Sun, Z. Archimedean spiral antenna based on metamaterial structure with wideband circular polarization. AEU-Int. J. Electron. Commun. 2022, 152, 154257. [Google Scholar] [CrossRef]
- Kang, M.; Feng, T.; Wang, H.-T.; Li, J. Wave front engineering from an array of thin aperture antennas. Opt. Express 2012, 20, 15882–15890. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Fang, B.; Li, J.; Wang, Z.; Cai, J.; Lu, J.; Wu, Y.; Li, C.; Jing, X. Flexible control of the focal spot with encoding metalens based on the digital addition principle of metasurfaces. Opt. Lasers Eng. 2022, 156, 107084. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Q.; Yang, W.; Ji, Z.; Jin, L.; Ma, X.; Song, Q.; Boltasseva, A.; Han, J.; Shalaev, V.M.; et al. High-efficiency broadband achromatic metalens for near-IR biological imaging window. Nat. Commun. 2021, 12, 5560. [Google Scholar] [CrossRef]
- Kim, M.; Pallecchi, E.; Ge, R.; Wu, X.; Ducournau, G.; Lee, J.C.; Happy, H.; Akinwande, D. Analogue switches made from boron nitride monolayers for application in 5G and terahertz communication systems. Nat. Electron. 2020, 3, 479–485. [Google Scholar] [CrossRef]
- Reichel, K.S.; Lozada-Smith, N.; Joshipura, I.D.; Ma, J.; Shrestha, R.; Mendis, R.; Dickey, M.D.; Mittleman, D.M. Electrically reconfigurable terahertz signal processing devices using liquid metal components. Nat. Commun. 2018, 9, 4202. [Google Scholar] [CrossRef]
- Manjappa, M.; Pitchappa, P.; Singh, N.; Wang, N.; Zheludev, N.I.; Lee, C.; Singh, R. Reconfigurable MEMS Fano metasurfaces with multiple-input–output states for logic operations at terahertz frequencies. Nat. Commun. 2018, 9, 4056. [Google Scholar] [CrossRef]
- Li, X.-S.; Feng, N.; Xu, Y.; Huang, Z.; Wen, K.; Xiong, X. Theoretical and simulation study of dynamically tunable sensor based on liquid crystal-modulated Fano resonator in terahertz band. Opt. Laser Technol. 2022, 155, 108350. [Google Scholar] [CrossRef]
- Sun, M.; Maqbool, E.; Han, Z. Terahertz sensing with high sensitivity and substance identification capability using a novel High-quality resonance supported by a thin structured silicon film. Opt. Laser Technol. 2022, 152, 108177. [Google Scholar] [CrossRef]
- Ma, T.; Li, J.; Luo, Z. High Q-factor toroidal resonances driven by bound states in the continuum in all-dielectric metamaterial at terahertz frequencies. Opt. Laser Technol. 2023, 157, 108745. [Google Scholar] [CrossRef]
- Shinichi, W. Terahertz Polarization Imaging and Its Applications. Photonics 2018, 5, 58. [Google Scholar]
- He, J.; Dong, T.; Chi, B.; Zhang, Y. Metasurfaces for Terahertz Wavefront Modulation: A Review. J. Infrared Millim. Terahertz Waves 2020, 41, 607–631. [Google Scholar] [CrossRef]
- Wang, J.; Ando, M.; Nagata, H.; Yoshida, S.; Sakai, K.; Kiwa, T. Multifunctional terahertz microscopy for biochemical and chemical imaging and sensing. Biosens. Bioelectron. 2023, 220, 114901. [Google Scholar] [CrossRef] [PubMed]
- Zou, H.; Cheng, Y. Design of a six-band terahertz metamaterial absorber for temperature sensing application. Opt. Mater. 2019, 88, 674–679. [Google Scholar] [CrossRef]
- Liu, X.; Liu, W.; Ren, Z.; Ma, Y.; Dong, B.; Zhou, G.; Lee, C. Progress of optomechanical micro/nano sensors: A review. Int. J. Optomechatron. 2021, 15, 120–159. [Google Scholar] [CrossRef]
- Ahmadivand, A.; Gerislioglu, B.; Ramezani, Z.; Kaushik, A.; Manickam, P.; Ghoreishi, S.A. Functionalized terahertz plasmonic metasensors: Femtomolar-level detection of SARS-CoV-2 spike proteins. Biosens. Bioelectron. 2021, 177, 112971. [Google Scholar] [CrossRef]
- Velez, P.; Munoz-Enano, J.; Grenier, K.; Mata-Contreras, J.; Dubuc, D.; Martin, F. Split Ring Resonator-Based Microwave Fluidic Sensors for Electrolyte Concentration Measurements. IEEE Sens. J. 2018, 19, 2562–2569. [Google Scholar] [CrossRef]
- Boulais, K.A.; Rule, D.W.; Simmons, S.; Santiago, F.; Gehman, V.; Long, K.; Rayms-Keller, A. Tunable split-ring resonator for metamaterials using photocapacitance of semi-insulating GaAs. Appl. Phys. Lett. 2008, 93, 043518. [Google Scholar] [CrossRef]
- Moghbeli, E.; Askari, H.R.; Forouzeshfard, M.R. The effect of geometric parameters of a single-gap SRR metamaterial on its electromagnetic properties as a unit cell of interior invisibility cloak in the microwave regime. Opt. Laser Technol. 2018, 108, 626–633. [Google Scholar] [CrossRef]
- Ekmekci, E.; Topalli, K.; Akin, T.; Turhan-Sayan, G. A tunable multi-band metamaterial design using micro-split SRR structures. Opt. Express 2009, 17, 16046–16058. [Google Scholar] [CrossRef]
- Yu, J.; Ma, H.; Wang, J.; Feng, M.; Li, Y.; Qu, S. High-efficiency ultra-wideband polarization conversion metasurfaces based on split elliptical ring resonators. Acta Phys. Sin. 2015, 64, 178101. [Google Scholar]
- Fischer, A.C.; Forsberg, F.; Lapisa, M.; Bleiker, S.J.; Stemme, G.; Roxhed, N.; Niklaus, F. Integrating MEMS and ICs. Microsyst. Nanoeng. 2015, 1, 15005. [Google Scholar] [CrossRef]
- Liu, H.-F.; Luo, Z.-C.; Hu, Z.-K.; Yang, S.-Q.; Tu, L.-C.; Zhou, Z.-B.; Kraft, M. A review of high-performance MEMS sensors for resource exploration and geophysical applications. Pet. Sci. 2022, 19, 2631–2648. [Google Scholar] [CrossRef]
- Wang, T.; Guan, Y.; Pang, J.; Li, N.; Nie, J.; Xie, J. An accurate dew point sensor based on MEMS piezoelectric resonator and piecewise fitting method. Sens. Actuators B Chem. 2022, 370, 132411. [Google Scholar] [CrossRef]
- Hao, C.; Zhang, W.; Wu, B.; Zhang, Z.; He, J.; Wang, R.; Xue, C. A novel two-dimensional high SNR MEMS shear stress sensor for ocean turbulence. Sens. Actuators A Phys. 2021, 330, 112891. [Google Scholar] [CrossRef]
- Hsueh, T.; Li, P.; Fang, S.; Hsu, C. A vertical CuO-NWS/MEMS NO2 gas sensor that is produced by sputtering. Sens. Actuators B Chem. 2022, 355, 131260. [Google Scholar] [CrossRef]
- Cui, J.; Li, Y.; Yang, Y.; Shi, P.; Wang, B.; Wang, S.; Zhang, G.; Zhang, W. Design and optimization of MEMS heart sound sensor based on bionic structure. Sens. Actuators A Phys. 2021, 333, 113188. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, X.; Shi, Q.; He, T.; Sun, Z.; Guo, X.; Liu, W.; Bin Sulaiman, O.; Dong, B.; Lee, C. Development Trends and Perspectives of Future Sensors and MEMS/NEMS. Micromachines 2019, 11, 7. [Google Scholar] [CrossRef]
- Ekmekci, E.; Kose, U.; Cinar, A.; Ertan, O.; Ekmekci, Z. The use of metamaterial type double-sided resonator structures in humidity and concentration sensing applications. Sens. Actuators A Phys. 2019, 297, 111559. [Google Scholar] [CrossRef]
- Withayachumnankul, W.; Jaruwongrungsee, K.; Tuantranont, A.; Fumeaux, C.; Abbott, D. Metamaterial-based microfluidic sensor for dielectric characterization. Sens. Actuators A Phys. 2013, 189, 233–237. [Google Scholar] [CrossRef]
- Lin, Y.-S.; Qian, Y.; Ma, F.; Liu, Z.; Kropelnicki, P.; Lee, C. Development of stress-induced curved actuators for a tunable THz filter based on double split-ring resonators. Appl. Phys. Lett. 2013, 102, 111908. [Google Scholar] [CrossRef]
- Katsarakis, N.; Konstantinidis, G.; Kostopoulos, A.; Penciu, R.S.; Gundogdu, T.F.; Kafesaki, M.; Economou, E.; Koschny, T.; Soukoulis, C.M. Magnetic response of split-ring resonators in the far-infrared frequency regime. Opt. Lett. 2005, 30, 1348–1350. [Google Scholar] [CrossRef] [PubMed]
- Soukoulis, C.M.; Kafesaki, M.; Economou, E.N. Negative-Index Materials: New Frontiers in Optics. Adv. Mater. 2006, 18, 1941–1952. [Google Scholar] [CrossRef]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, W.-H.; Li, B.; Fu, S.-H.; Lin, Y.-S. Tunable MEMS-Based Terahertz Metamaterial for Pressure Sensing Application. Micromachines 2023, 14, 169. https://doi.org/10.3390/mi14010169
Lai W-H, Li B, Fu S-H, Lin Y-S. Tunable MEMS-Based Terahertz Metamaterial for Pressure Sensing Application. Micromachines. 2023; 14(1):169. https://doi.org/10.3390/mi14010169
Chicago/Turabian StyleLai, Wei-Hsi, Binghui Li, Shih-Huai Fu, and Yu-Sheng Lin. 2023. "Tunable MEMS-Based Terahertz Metamaterial for Pressure Sensing Application" Micromachines 14, no. 1: 169. https://doi.org/10.3390/mi14010169
APA StyleLai, W.-H., Li, B., Fu, S.-H., & Lin, Y.-S. (2023). Tunable MEMS-Based Terahertz Metamaterial for Pressure Sensing Application. Micromachines, 14(1), 169. https://doi.org/10.3390/mi14010169

