A Simulation Optimization Factor of Si(111)-Based AlGaN/GaN Epitaxy for High Frequency and Low-Voltage-Control High Electron Mobility Transistor Application
Abstract
:1. Introduction
2. Simulation
2.1. AlGaN Barrier Layer Thickness
2.2. Al Component of AlGaN Barrier Layer
2.3. SiN Passivation Layer Thickness Optimization
3. Optimization Factor OPTIM
4. Design and Simulation Result
5. Epitaxy and Device Fabrication
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morkoc, H. Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies. J. Appl. Phys. 1994, 76, 1363–1398. [Google Scholar] [CrossRef]
- Gu, Z.L. Research and Development of GaN Semiconductor. Semicond. Inf. 1999, 04, 10–14+34. [Google Scholar] [CrossRef]
- Green, B.M. The effect of surface passivation on the microwave characteristics of undoped AlGaN/GaN HEMTs. IEEE Electron Device Lett. 2000, 21, 268–279. [Google Scholar] [CrossRef]
- Arteev, D.S.; Sakharov, A.V.; Lundin, W.V. Influence of AlN/GaN interfacial non-idealities on the properties of two-dimensional electron gas in AlGaN/AlN/GaN heterostructures. J. Phys. Conf. Ser. 2021, 2103, 012202. [Google Scholar] [CrossRef]
- Rathore, S.U.; Dimitrijev, S.; Hamid, A.M.; Mohd-Yasin, F. Equations for the electron density of the two-dimensional electron gas in realistic AlGaN/GaN heterostructures. Nanomanufacturing 2021, 1, 171. [Google Scholar] [CrossRef]
- Baby, R.; Venugopalrao, A.; Chandrasekar, H. Study of the impact of interface traps associated with SiN X passivation on AlGaN/GaN MIS-HEMTs. Semicond. Sci. Technol. 2022, 37, 035005. [Google Scholar] [CrossRef]
- Shuhaimi, B.A.B.A.; Watanabe, A.; Egawa, T. Effect of Al0. 06Ga0. 94N/GaN Strained-Layer Superlattices Cladding Underlayer to InGaN-Based Multi-Quantum Well Grown on Si (111) Substrate with AlN/GaN Intermediate Layer. Jpn. J. Appl. Phys. 2010, 49, 021002. [Google Scholar] [CrossRef]
- Zhong, Y.Z.; Zhang, J.W.; Shan, W. A review on the GaN-on-Si power electronic devices. Fundam. Res. 2022, 2, 462–475. [Google Scholar] [CrossRef]
- Qi, Z.; Pei, Y.; Wang, L. An Accurate Datasheet-Based Full-Characteristics Analytical Model of GaN HEMTs for Deadtime Optimization. IEEE Trans. Power Electron. 2020, 36, 7942–7955. [Google Scholar] [CrossRef]
- Kao, C.J.; Sheu, J.K.; Lai, W.C. Effect of GaN cap layer grown at a low temperature on electrical characteristics of Al0.25Ga0.75N/GaN heterojunction field-effect transistors. Appl. Phys. Lett. 2004, 85, 1430–1432. [Google Scholar] [CrossRef] [Green Version]
- Zhen, Z.; Wang, Q.; Qin, Y. Comparative Study on Characteristics of AlGaN/GaN Metal–Insulator– Semiconductor High-Electron-Mobility Transistors. Phys. Status Solidi A 2022, 219, 2200010. [Google Scholar] [CrossRef]
- Babu, A.R. Influence of Interface trap distributions over the device characteristics of AlGaN/GaN/AlInN MOS-HEMT using Cubic Spline Interpolation technique. Int. J. Numer. Model. Electron. Netw. Devices Fields 2021, 35, 2936. [Google Scholar] [CrossRef]
- Narang, K.; Singh, V.K.; Pandey, A. Suitability of thin-GaN for AlGaN/GaN HEMT material and device. J. Mater. Sci. 2022, 57, 5913–5923. [Google Scholar] [CrossRef]
- Khan, A.N.; Jena, K.; Routray, S.R. RF/Analog and Linearity Performance Evaluation of Lattice-Matched ultra-thin AlGaN/GaN Gate Recessed MOSHEMT with Silicon Substrate. Silicon 2021, 14, 8599–8608. [Google Scholar] [CrossRef]
- Kaneriya, R.K.; Karmakar, C.; Rastogi, G. Influence of AlN spacer and GaN cap layer in GaN heterostructure for RF HEMT applications. Microelectron. Eng. 2022, 255, 111724. [Google Scholar] [CrossRef]
- Kang, H.; Choi, W.; Kim, I.; Lee, D.; Yang, Y. 500 W Three-way GaN Doherty Power Amplifier for Sub-6 GHz 5G New Radio Base Transceiver Systems. In Proceedings of the 50th European Microwave Conference (EuMC) 2021, Utrecht, The Netherlands, 12–14 January 2021; pp. 312–315. [Google Scholar] [CrossRef]
- Ishteyaq, I.; Muzaffar, K. Multiple input multiple output (MIMO) and fifth generation (5G): An indispensable technology for sub-6 GHz and millimeter wave future generation mobile terminal applications. Int. J. Microw. Wirel. Technol. 2022, 14, 932–948. [Google Scholar] [CrossRef]
Parameter | Mobility (cm2/V∙s) | Density (1013 cm−2) | Sheet Res (Ω/sq) |
---|---|---|---|
Test result | 2063 | 1.86 | 161.41 |
Simulation result | 2178 | 1.80 | \ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, H.; Shen, G.; Liu, S.; Jiang, C.; Wu, J. A Simulation Optimization Factor of Si(111)-Based AlGaN/GaN Epitaxy for High Frequency and Low-Voltage-Control High Electron Mobility Transistor Application. Micromachines 2023, 14, 168. https://doi.org/10.3390/mi14010168
Guan H, Shen G, Liu S, Jiang C, Wu J. A Simulation Optimization Factor of Si(111)-Based AlGaN/GaN Epitaxy for High Frequency and Low-Voltage-Control High Electron Mobility Transistor Application. Micromachines. 2023; 14(1):168. https://doi.org/10.3390/mi14010168
Chicago/Turabian StyleGuan, He, Guiyu Shen, Shibin Liu, Chengyu Jiang, and Jingbo Wu. 2023. "A Simulation Optimization Factor of Si(111)-Based AlGaN/GaN Epitaxy for High Frequency and Low-Voltage-Control High Electron Mobility Transistor Application" Micromachines 14, no. 1: 168. https://doi.org/10.3390/mi14010168
APA StyleGuan, H., Shen, G., Liu, S., Jiang, C., & Wu, J. (2023). A Simulation Optimization Factor of Si(111)-Based AlGaN/GaN Epitaxy for High Frequency and Low-Voltage-Control High Electron Mobility Transistor Application. Micromachines, 14(1), 168. https://doi.org/10.3390/mi14010168