Chemical Constituents and α-Glucosidase Inhibitory Activities of the Leaves of Embelia parviflora—In Vitro and In Silico Studies
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. General Experimental Procedures
2.3. Extraction and Isolation
2.4. Assay of α-Glucosidase Enzyme Inhibition
2.5. Molecular Docking
2.6. Statistical Analysis
3. Results and Discussion
3.1. Chemical Constituents and Chemotaxonomy Significance
3.2. α-Glucosidase Inhibitory Activity
3.3. Molecular Docking
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dubéarnès, A.; Julius, A.; Utteridge, T.M.A. A synopsis of the genus Embelia in peninsular Malaysia and Singapore. Studies in Malaysian Myrsinaceae III. Kew Bull. 2015, 70, 25. [Google Scholar] [CrossRef]
- Vijayan, K.R.; Raghu, A.V. Embelin: An HPTLC method for quantitative estimation in five species of genus Embelia Burm. f. Future J. Pharm. Sci. 2021, 7, 55. [Google Scholar] [CrossRef]
- Sharma, V.; Gautam, D.N.S.; Radu, A.F.; Behl, T.; Bungau, S.G.; Vesa, C.M. Reviewing the traditional/modern uses, phytochemistry, essential oils/extracts and pharmacology of Embelia ribes Burm. Antioxidants 2022, 11, 1359. [Google Scholar] [CrossRef] [PubMed]
- Manguro, L.O.A.; Okwiri, S.O.; Lemmen, P. Oleanane-type triterpenes of Embelia schimperi leaves. Phytochemistry 2006, 67, 2641–2650. [Google Scholar] [CrossRef]
- Bouzeko, I.L.T.; Ndontsa, B.L.; Nguekeu, Y.M.M.; Awouafack, M.D.; Wong, C.P.; Mpetga, J.D.S.; Mbouangouere, R.; Tane, P.; Morita, H. A new alkylbenzoquinone from Embelia rowlandii Gilg. (Myrsinaceae). Nat. Prod. Res. 2019, 33, 1909–1915. [Google Scholar] [CrossRef] [PubMed]
- Manguro, L.O.A.; Ugi, I.; Lemmen, P. Flavonol glycosides from the leaves of Embelia keniensis. J. Chin. Chem. Soc. 2005, 52, 201–208. [Google Scholar] [CrossRef]
- Qin, Y.; Chen, J.P.; Li, C.Y.; Zhu, L.J.; Zhang, X.; Wang, J.H.; Yao, X.S. Flavonoid glycosides from the fruits of Embelia ribes and their anti-oxidant and α-glucosidase inhibitory activities. J. Asian Nat. Prod. Res. 2021, 23, 724–730. [Google Scholar] [CrossRef] [PubMed]
- Dang, P.H.; Nguyen, H.X.; Nguyen, N.T.; Le, H.N.T.; Nguyen, M.T.T. α-Glucosidase inhibitors from the stems of Embelia ribes. Phytother. Res. 2014, 28, 1632–1636. [Google Scholar] [CrossRef]
- Dang, P.H.; Nguyen, N.T.; Nguyen, H.X.; Nguyen, L.B.; Le, T.H.; Van Do, T.N.; Can, M.V.; Nguyen, M.T.T. α-Glucosidase inhibitors from the leaves of Embelia ribes. Fitoterapia 2015, 100, 201–207. [Google Scholar] [CrossRef]
- Yang, L.J. Chemical constituents from the fruits of Embelia laeta. Chin. Pharm. J. 2016, 24, 1179–1182. [Google Scholar]
- Feng, X.; Li, Y.H.; Liang, C.Y.; Wang, H.; Zhang, X.W. Chemical constituents from Embelia laeta. Zhong Yao Cai (J. Chin. Med. Mater.) 2013, 36, 1947–1949. [Google Scholar]
- Chen, J.P.; Zhu, L.J.; Su, X.X.; Zhang, K.X.; Zhang, X.; Wang, J.H.; Yao, X.S. New alkylresorcinols from the fruits of Embelia ribes. Fitoterapia 2018, 128, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Machocho, A.K.; Kiprono, P.C.; Grinberg, S.; Bittner, S. Pentacyclic triterpenoids from Embelia schimperi. Phytochemistry 2003, 62, 573–577. [Google Scholar] [CrossRef] [PubMed]
- Manguro, L.O.A.; Ugi, I.; Lemen, P. Further flavonol glycosides of Embelia schimperi leaves. Bull. Chem. Soc. Ethiop. 2004, 18, 51–57. [Google Scholar] [CrossRef]
- Mahendran, S.; Badami, S.; Maithili, V. Evaluation of antidiabetic effect of embelin from Embelia ribes in alloxan induced diabetes in rats. Biomed. Prev. Nutr. 2011, 1, 25–31. [Google Scholar] [CrossRef]
- Bhandari, U.; Kanojia, R.; Pillai, K.K. Effect of ethanolic extract of Embelia ribes on dyslipidemia in diabetic rats. J. Diabetes Res. 2002, 3, 159–162. [Google Scholar] [CrossRef]
- Bhandari, U.; Jain, N.; Pillai, K.K. Further studies on antioxidant potential and protection of pancreatic β-cells by Embelia ribes in experimental diabetes. J. Diabetes Res. 2007, 2007, 015803. [Google Scholar] [CrossRef] [PubMed]
- Durg, S.; Veerapur, V.P.; Neelima, S.; Dhadde, S.B. Antidiabetic activity of Embelia ribes, embelin and its derivatives: A systematic review and meta-analysis. Biomed. Pharmacother. 2017, 86, 195–204. [Google Scholar] [CrossRef]
- Bhandari, U.; Chaudhari, H.S.; Khanna, G.; Najmi, A.K. Antidiabetic effects of Embelia ribes extract in high fat diet and low dose streptozotocin-induced type 2 diabetic rats. Front. Life Sci. 2013, 7, 186–196. [Google Scholar] [CrossRef]
- Bhandari, U.; Jain, N.; Ansari, M.N.; Pillai, K.K. Beneficial effect of Embelia ribes ethanolic extract on blood pressure and glycosylated hemoglobin in streptozotocin-induced diabetes in rats. Fitoterapia 2008, 79, 351–355. [Google Scholar] [CrossRef]
- Chaudhari, H.S.; Bhandari, U.; Khanna, G. Preventive effect of embelin from Embelia ribes on lipid metabolism and oxidative stress in high-fat diet-induced obesity in rats. Planta Med. 2012, 78, 651–657. [Google Scholar] [CrossRef] [PubMed]
- Nazish, I.; Ansari, S.H.; Arora, P. Antiobesity actions of Embelia ribes. Pharmacogn. J. 2012, 4, 73–80. [Google Scholar] [CrossRef]
- Gupta, G.; Kazmi, I.; Afzal, M.; Upadhyay, G.; Singh, R.; Habtemariam, S. Antidepressant-like activity of embelin isolated from Embelia ribes. Phytopharmacology 2013, 4, 87–95. [Google Scholar]
- Thippeswamy, B.S.; Nagakannan, P.; Shivasharan, B.D.; Mahendran, S.; Veerapur, V.P.; Badami, S. Protective effect of embelin from Embelia ribes Burm. against transient global ischemia-induced brain damage in rats. Neurotox. Res. 2011, 20, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Durg, S.; Kumar, N.; Vandal, R.; Dhadde, S.B.; Thippeswamy, B.S.; Veerapur, V.P.; Badami, S. Antipsychotic activity of embelin isolated from Embelia ribes: A preliminary study. Biomed. Pharmacother. 2017, 90, 328–331. [Google Scholar] [CrossRef] [PubMed]
- Dhayalan, M.; Denison, M.I.J.; L, J.A.; Krishnan, K.; N, G.N. In vitro antioxidant, antimicrobial, cytotoxic potential of gold and silver nanoparticles prepared using Embelia ribes. Nat. Prod. Res. 2017, 31, 465–468. [Google Scholar] [CrossRef]
- Afzal, M.; Gupta, G.; Kazmi, I.; Rahman, M.; Upadhyay, G.; Ahmad, K.; Imam, F.; Pravez, M.; Anwar, F. Evaluation of anxiolytic activity of embelin isolated from Embelia ribes. Biomed. Aging Pathol. 2012, 2, 45–47. [Google Scholar] [CrossRef]
- Ansari, M.N.; Bhandari, U.; Islam, F.; Tripathi, C.D. Evaluation of antioxidant and neuroprotective effect of ethanolic extract of Embelia ribes Burm in focal cerebral ischemia/reperfusion-induced oxidative stress in rats. Fundam. Clin. Pharmacol. 2008, 22, 305–314. [Google Scholar] [CrossRef]
- Swamy, H.K.; Krishna, V.; Shankarmurthy, K.; Rahiman, B.A.; Mankani, K.L.; Mahadevan, K.M.; Harish, B.G.; Naika, H.R. Wound healing activity of embelin isolated from the ethanol extract of leaves of Embelia ribes Burm. J. Ethnopharmacol. 2007, 109, 529–534. [Google Scholar] [CrossRef]
- Hossan, M.S.; Fatima, A.; Rahmatullah, M.; Khoo, T.J.; Nissapatorn, V.; Galochkina, A.V.; Slita, A.V.; Shtro, A.A.; Nikolaeva, Y.; Zarubaev, V.V.; et al. Antiviral activity of Embelia ribes Burm. f. against influenza virus in vitro. Arch. Virol. 2018, 163, 2121–2131. [Google Scholar] [CrossRef]
- Rambaran, N.; Naidoo, Y.; Dwarka, D.; Mellem, J.; Thimmegowda, S.C.; Baijnath, H. In vitro antioxidant and anticancer potential of the vegetative and reproductive organs of Embelia ruminata. J. Herbs Spices Med. Plants 2024, 30, 429–441. [Google Scholar] [CrossRef]
- Lemmich, J. Anthelmintic usage of extracts of Embelia schimperi from Tanzania. J. Ethnopharmacol. 1996, 50, 35–42. [Google Scholar] [CrossRef]
- Li, W.; Liu, X.; Liang, X.L.; Chen, Y.; Pang, D.; Huang, Z.; Han, Q.; Liu, W.; Chen, L. Optimization of extraction process and antioxidant activity of polysaccharide in Embelia parviflora Wall. by RSM. Med. Plant 2020, 11, 34–42. [Google Scholar] [CrossRef]
- Anh, M.T.H.; Mau, C.H.; Thuong, S.D. Morphological characteristics and sequence of trnE-trnT of Embelia parviflora Wall. ex A. DC.). TNU J. Sci. Technol. 2025, 230, 259–266. [Google Scholar] [CrossRef]
- Lu, S.H.; Li, Y.H.; Chen, Y.; Zeng, H.S.; Zhang, L.; Zheng, X.R. Study on the chemical constituents of volatile oil from different parts of Embelia parviflora Wall. ex A. DC by GC-MS. Med. Plant 2012, 3, 58–61. [Google Scholar]
- Wei, J.; Chen, Y.; Ma, X.; Qiu, M.; Qing, B.; Jiang, L.; Wen, Z.; Qin, Z. Anti-inflammatory effect of polysaccharide from Embelia parviflora Wall, on rheumatoid arthritis in rats. Med. Plant 2024, 15, 41. [Google Scholar] [CrossRef]
- Liu, W.; Que, Z.; Li, J.; Chen, Z.; Huang, Z.; Pang, D.; Chen, L.; Chen, Y. Study on sreening of effective components of Embelia parviflora for tonifying blood and its mechanism. China Pharm. 2020, 12, 293–297. [Google Scholar]
- Oanh, V.T.K.; Ha, N.T.T.; Duc, H.V.; Thuc, D.N.; Hang, N.T.M.; Thanh, L.N. New triterpene and nor-diterpene derivatives from the leaves of Adinandra poilanei. Phytochem. Lett. 2021, 46, 110–113. [Google Scholar] [CrossRef]
- Phuong, D.T.L.; Van Phuong, N.; Le Tuan, N.; Cong, N.T.; Hang, N.T.; Thanh, L.N.; Bankova, V. Antimicrobial, cytotoxic, and α-glucosidase inhibitory activities of ethanol extract and chemical constituents isolated from Homotrigona apicalis propolis—In vitro and molecular docking studies. Life 2023, 13, 1682. [Google Scholar] [CrossRef]
- Sosińska, E.; Przybylski, R.; Hazendonk, P.; Zhao, Y.Y.; Curtis, J.M. Characterisation of non-polar dimers formed during thermo-oxidative degradation of β-sitosterol. Food Chem. 2013, 139, 464–474. [Google Scholar] [CrossRef]
- Faizi, S.; Ali, M.; Saleem, R.; Irfanullah, B.S. Complete 1H and 13C NMR assignments of stigma-5-en-3-O-β-glucoside and its acetyl derivative. Magn. Reson. Chem. 2001, 39, 399–405. [Google Scholar] [CrossRef]
- Lavaud, C.; Massiot, G.; Moretti, C.; Le Men-Olivier, L. Triterpene saponins from Myrsine pellucida. Phytochemistry 1994, 37, 1671–1677. [Google Scholar] [CrossRef] [PubMed]
- Acebey-Castellon, I.L.; Voutquenne-Nazabadioko, L.; Doan Thi Mai, H.; Roseau, N.; Bouthagane, N.; Muhammad, D.; Lavaud, C. Triterpenoid saponins from Symplocos lancifolia. J. Nat. Prod. 2011, 74, 163–168. [Google Scholar] [CrossRef]
- Li, Y.L.; Li, J.; Wang, N.L.; Yao, X.S. Flavonoids and a new polyacetylene from Bidens parviflora Willd. Molecules 2008, 13, 1931–1941. [Google Scholar] [CrossRef] [PubMed]
- Ngoc, L.T.; Mai, N.T. Chemical constituents of Saraca dives. Vietnam J. Sci. Technol. 2014, 123, 107–111. [Google Scholar]
- Thanh, N.T.V.; Hien, D.T.T.; Minh, T.T.; Cuong, H.D.; Nhiem, N.X.; Yen, P.H.; Van Kiem, P. Quercetin glycosides and sesquiterpenes from Phoebe poilanei Kosterm. Vietnam J. Chem. 2019, 57, 401–405. [Google Scholar] [CrossRef]
- Zhong, X.N.; Otsuka, H.; Ide, T.; Hirata, E.; Takushi, A.; Takeda, Y. Three flavonol glycosides from leaves of Myrsine seguinii. Phytochemistry 1997, 46, 943–946. [Google Scholar] [CrossRef]
- Niu, C.; Yang, L.P.; Zhang, Z.Z.; Zhou, D.J.; Kong, J.C.; Liu, Z.Q.; Wang, Z.H. Chemical constituents of Ampelopsis japonica. Chem. Nat. Comp. 2022, 58, 545–547. [Google Scholar] [CrossRef]
- Wang, H.; Cong, W.L.; Fu, Z.L.; Chen, D.F.; Wang, Q. Anti-complementary constituents of Viola kunawarensis. Nat. Prod. Res. 2017, 31, 2312–2315. [Google Scholar] [CrossRef]
- Wu, Q.L.; Wang, M.; Simon, J.E.; Yu, S.C.; Xiao, P.G.; Ho, C.T. Studies on the chemical constituents of loquat leaves (Eriobotrya japonica). Orient. Food Herbs 2003, 22, 292–306. [Google Scholar]
- Ren, Y.; Anaya-Eugenio, G.D.; Czarnecki, A.A.; Ninh, T.N.; Yuan, C.; Chai, H.B.; Soejarto, D.D.; Burdette, J.E.; de Blanco, E.J.C.; Kinghorn, A.D. Cytotoxic and NF-κB and mitochondrial transmembrane potential inhibitory pentacyclic triterpenoids from Syzygium corticosum and their semi-synthetic derivatives. Bioorg. Med. Chem. 2018, 26, 4452–4460. [Google Scholar] [CrossRef] [PubMed]
- Huong, P.T.T.; Nguyen, V.T.; Diep, C.N.; Thao, N.P.; Cuong, N.X.; Nam, N.H.; Minh, C.V. Antimicrobial compounds from Rhizophora stylosa. Vietnam J. Sci. Technol. 2015, 53, 205–210. [Google Scholar] [CrossRef]
- Khallouki, F.; Hull, W.E.; Würtele, G.; Haubner, R.; Erben, G.; Owen, R.W. Isolation of the major phenolic compounds in the pits of brined green olive drupes: Structure elucidation by comprehensive 1H/13C-NMR spectroscopy. Nat. Prod. Comm. 2019, 14, 1–8. [Google Scholar] [CrossRef]
- Itoh, A.; Isoda, K.; Kondoh, M.; Kawase, M.; Watari, A.; Kobayashi, M.; Tamesada, M.; Yagi, K. Hepatoprotective effect of syringic acid and vanillic acid on CCl4-induced liver injury. Biol. Pharm. Bull. 2010, 33, 983–987. [Google Scholar] [CrossRef]
- Raffauf, R.F.; Zennie, T.M.; Onan, K.D.; Le Quesne, P.W. Funebrine, a structurally novel pyrrole alkaloid, and other. gamma.-hydroxyisoleucine-related metabolites of Quararibea funebris (Llave) Vischer (Bombacaceae). J. Org. Chem. 1984, 49, 2714–2718. [Google Scholar] [CrossRef]
- Trang, B.T.; Thuong, C.H.; Thao, P.X.; Mac, D.H.; Gree, R. A new approach for the synthesis of sotolon in racemic and enantioenriched forms. Vietnam J. Chem. 2021, 59, 42–46. [Google Scholar] [CrossRef]
- Ali, Z.; Khan, I.A. Alkyl phenols and saponins from the roots of Labisia pumila (Kacip Fatimah). Phytochemistry 2011, 72, 2075–2080. [Google Scholar] [CrossRef] [PubMed]
- Row, L.C.; Chen, C.M.; Ho, J.C. Two cerebrosides and one acylglycosyl sterol from Monochoria vaginalis. J. Chin. Chem. Soc. 2003, 50, 1103–1107. [Google Scholar] [CrossRef]
- Zhang, G.L.; Li, N.; Wang, Y.H.; Zheng, Y.T.; Zhang, Z.; Wang, M.W. Bioactive lignans from Peperomia heyneana. J. Nat. Prod. 2007, 70, 662–664. [Google Scholar] [CrossRef]
- Jiang, J.; Sun, C.; Wang, G.; Xu, Q.; Bian, Y.; Li, J.; Li, J.; Ding, R.; Lin, H.; Tian, W.; et al. C-13 Norisoprenoids and Eudesmanoids from Nelumbo nucifera Gaertn. Regulate the Lipid Metabolism via the AMPK/ACC/SREBP-1c Signaling Pathway. Chem. Biodiver. 2025, 22, e202401778. [Google Scholar] [CrossRef]
- Liu, J.J.; Hao, J.J.; Tan, M.; Liao, C.C.; Liu, D.; Li, H.M.; Li, R.T. Iridoids and other constituents from the leaves and stems of Valeriana officinalis var. latifolia. Phytochemistry 2024, 218, 113934. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.J.; Xiong, J.; Zou, Y.; Mei, Q.B.; Wang, W.X.; Hu, J.F. Sesquiterpenoids from the Chinese endangered plant Manglietia aromatica. Phytochem. Lett. 2016, 18, 202–207. [Google Scholar] [CrossRef]
- Tu, P.C.; Tseng, H.C.; Liang, Y.C.; Huang, G.J.; Lu, T.L.; Kuo, T.F.; Kuo, Y.H. Phytochemical investigation of Tradescantia albiflora and anti-inflammatory butenolide derivatives. Molecules 2019, 24, 3336. [Google Scholar] [CrossRef]
- Pan, Y.B.; Song, X.Q.; Sun, P.; Zhang, H. Chemical constituents from the stems of Marsdenia tenacissima. Phytochem. Lett. 2023, 58, 24–28. [Google Scholar] [CrossRef]
- Liu, Q.W.; Chen, C.H.; Wang, X.F.; Jiang, K.; Qu, S.J.; Dai, Y.R.; Tan, C.H. Triterpenoids, megastigmanes and hydroxycinnamic acid derivatives from Anisomeles indica. Nat. Prod. Res. 2019, 33, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.H.; Oh, K.E.; Jo, Y.H.; Ahn, J.H.; Liu, Q.; Turk, A.; Jang, J.Y.; Hwang, B.Y.; Lee, M.K. Characterization of tyrosinase inhibitory constituents from the aerial parts of Humulus japonicus using LC-MS/MS coupled online assay. Bioorg. Med. Chem. 2018, 26, 509–515. [Google Scholar] [CrossRef] [PubMed]
- DellaGreca, M.; Di Marino, C.; Zarrelli, A.; D’Abrosca, B. Isolation and phytotoxicity of apocarotenoids from Chenopodium album. J. Nat. Prod. 2004, 67, 1492–1495. [Google Scholar] [CrossRef]
- Wang, H.L.; Ding, J. Extraction Method of Neoflavonoid Compound. Patent CN111732617, 1 October 2020. [Google Scholar]
- Otsuka, H.; Yao, M.; Kamada, K.; Takeda, Y. Alangionosides G-M: Glycosides of megastigmane derivatives from the leaves of Alangium premnifolium. Chem. Pharm. Bull. 1995, 43, 754–759. [Google Scholar] [CrossRef]
- De Tommasi, N.; Piacente, S.; De Simone, F.; Pizza, C. Constituents of Cydonia vulgaris: Isolation and structure elucidation of four new flavonol glycosides and nine new α-ionol-derived glycosides. J. Agric. Food Chem. 1996, 44, 1676–1681. [Google Scholar] [CrossRef]
- Srinroch, C.; Sahakitpichan, P.; Techasakul, S.; Chimnoi, N.; Ruchirawat, S.; Kanchanapoom, T. 2-Aminobenzoyl and megastigmane glycosides from Wrightia antidysenterica. Phytochem. Lett. 2019, 29, 61–64. [Google Scholar] [CrossRef]
- Michalska, K.; Galanty, A.; Le, T.N.; Malarz, J.; Vuong, N.Q.; Pham, V.C.; Stojakowska, A. New polyesterified ursane derivatives from leaves of Maesa membranacea and their cytotoxic activity. Molecules 2021, 26, 7013. [Google Scholar] [CrossRef] [PubMed]
- Manome, T.; Hara, Y.; Ishibashi, M. A new 1, 2-diketone physalin isolated from Physalis minima and TRAIL-resistance overcoming activity of physalins. J. Nat. Med. 2023, 77, 370–378. [Google Scholar] [CrossRef] [PubMed]
- Ninh, B.H.; Dung, D.T.; Tai, B.H.; Yen, P.H.; Nhiem, N.X.; Hien, T.T.T.; Kiem, P.V. New isopropyl chromone and flavanone glucoside compounds from the leaves of Syzygium cerasiforme (Blume) Merr. & LM Perry and their inhibition of nitric oxide production. Chem. Biodiver. 2023, 20, e202201048. [Google Scholar] [CrossRef]
- Thao, N.P.; Linh, K.T.P.; Quan, N.H.; Trung, V.T.; Binh, P.T.; Cuong, N.T.; Nam, N.H.; Thanh, N.V. Cytotoxic metabolites from the leaves of the mangrove Rhizophora apiculata. Phytochem. Lett. 2022, 47, 51–55. [Google Scholar] [CrossRef]
- Kornpointner, C.; Hochenegger, N.J.; Shi, B.B.; Berger, A.; Theiner, J.; Brecker, L.; Schinnerl, J. Phytochemistry meets geochemistry—Blumenol C sulfate: A new megastigmane sulfate from Palicourea luxurians (Rubiaceae: Palicoureeae). Molecules 2022, 27, 7284. [Google Scholar] [CrossRef]
- Thapsut, M.; Singha, S.; Seeka, C.; Sutthivaiyakit, S. Megastigmanes from the aerial part of Euphorbia heterophylla. Phytochem. Lett. 2021, 44, 42–47. [Google Scholar] [CrossRef]
- Uyen, N.H.; Widyowati, R.; Sulistyowaty, M.I.; Sugimoto, S.; Yamano, Y.; Kawakami, S.; Otsuka, H.; Matsunami, K. Firmosides A and B: Two new sucrose ferulates from the aerial parts of Silene firma and evaluation of radical scavenging activities. J. Nat. Med. 2020, 74, 796–803. [Google Scholar] [CrossRef]
- Deng, L.; Zong, W.; Tao, X.; Liu, S.; Feng, Z.; Lin, Y.; Liao, Z.; Chen, M. Evaluation of the therapeutic effect against benign prostatic hyperplasia and the active constituents from Epilobium angustifolium L. J. Ethnopharmacol. 2019, 232, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.M.; Wang, Y.; Yu, J.H.; Liu, Y.L.; Wu, X.; He, X.R.; Zhou, Z.W. Tyrosinase inhibitors from the leaves of Eucalyptus globulus. Fitoterapia 2019, 139, 104418. [Google Scholar] [CrossRef]
- Yan, J.; Shi, X.; Donkor, P.O.; Zhu, H.; Gao, X.; Ding, L.; Qiu, F. Nine pairs of megastigmane enantiomers from the leaves of Eucommia ulmoides Oliver. J. Nat. Med. 2017, 71, 780–790. [Google Scholar] [CrossRef]
- Phetkul, U.; Hayiawae, N.; Khunthong, S.; Daus, M.; Voravuthikunchai, S.P.; Tamvapee, P.; Watanapokasin, R.; Chakthong, S. Zanthoisobutylamides A−C: Rare dimeric C-6 substituent dihydrobenzophenanthridine alkaloids from the roots of Zanthoxylum nitidum. Nat. Prod. Res. 2023, 37, 1249–1257. [Google Scholar] [CrossRef]
- Rahim, A.; Saito, Y.; Miyake, K.; Goto, M.; Nakagawa-Goto, K. Novel seco-phenanthroquinolizidine alkaloids from Indonesian Boehmeria virgata. Phytochem. Lett. 2021, 45, 132–136. [Google Scholar] [CrossRef]
- Shen, D.Y.; Kuo, P.C.; Huang, S.C.; Hwang, T.L.; Chan, Y.Y.; Shieh, P.C.; Ngan, N.T.; Thang, T.D.; Wu, T.S. Constituents from the leaves of Clausena lansium and their anti-inflammatory activity. J. Nat. Med. 2017, 71, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Vitek, R.; de Novais, L.M.; Torquato, H.F.; Paredes-Gamero, E.J.; de Carvalho, M.G.; de Sousa, P.T., Jr.; Jacinto, M.J.; da Silva, V.C. Chemical constituents and antileukemic activity of Eugenia dysenterica. Nat. Prod. Res. 2017, 31, 1930–1934. [Google Scholar] [CrossRef]
- Lee, M.; Lee, H.H.; Lee, J.K.; Ye, S.K.; Kim, S.H.; Sung, S.H. Anti-adipogenic activity of compounds isolated from Idesia polycarpa on 3T3-L1 cells. Bioorg. Med. Chem. Lett. 2013, 23, 3170–3174. [Google Scholar] [CrossRef] [PubMed]
- Sob, S.V.T.; Wabo, H.K.; Tang, C.P.; Tane, P.; Ngadjui, B.T.; Ye, Y. Phenol esters and other constituents from the stem barks of Stereospermum acuminatissimum. J. Asian Nat. Prod. Res. 2011, 13, 1128–1134. [Google Scholar] [CrossRef] [PubMed]
- Tip-pyang, S.; Limpipatwattana, Y.; Khumkratok, S.; Siripong, P.; Sichaem, J. A new cytotoxic 1-azaanthraquinone from the stems of Goniothalamus laoticus. Fitoterapia 2010, 81, 894–896. [Google Scholar] [CrossRef] [PubMed]
- Chiang, Y.M.; Liu, H.K.; Lo, J.M.; Chien, S.C.; Chan, Y.F.; Lee, T.H.; Su, J.K.; Kuo, Y.H. Cytotoxic constituents of the leaves of Calocedrus formosana. J. Chin. Chem. Soc. 2003, 50, 161–166. [Google Scholar] [CrossRef]
- Pan, W.B.; Chang, F.R.; Wei, L.M.; Wu, Y.C. New flavans, spirostanol sapogenins, and a pregnane genin from Tupistra chinensis and their cytotoxicity. J. Nat. Prod. 2003, 66, 161–168. [Google Scholar] [CrossRef]
- Chen, C.Y.; Chang, F.R.; Teng, C.M.; Wu, Y.C. Cheritamine, A new N-fatty acyl tryptamine and other constituents from the stems of Annona cherimola. J. Chin. Chem. Soc. 1999, 46, 77–86. [Google Scholar] [CrossRef]
- Van Nguyen Thien, T.; Do, L.T.M.; Dang, P.H.; Huynh, N.V.; Dang, H.P.; Nguyen, T.T.; Tran, K.T.; Huu, N.D.M.; That, Q.T. A new lignan from the flowers of Hibiscus sabdariffa L. (Malvaceae). Nat. Prod. Res. 2021, 35, 2218–2223. [Google Scholar] [CrossRef]
- Sheng, Z.; Dai, H.; Pan, S.; Wang, H.; Hu, Y.; Ma, W. Isolation and characterization of an α-glucosidase inhibitor from Musa spp.(Baxijiao) flowers. Molecules 2014, 19, 10563–10573. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Hu, X.; Xu, X.; Zhang, G.; Gong, D. Inhibitory mechanism of two allosteric inhibitors, oleanolic acid and ursolic acid on α-glucosidase. Inter. J. Biol. Macromol. 2018, 107, 1844–1855. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Zhang, G.; Liao, Y.; Gong, D. Inhibitory kinetics and mechanism of kaempferol on α-glucosidase. Food Chem. 2016, 190, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Van Do, T.N.; Nguyen, H.X.; Truong, T.Q.; Ly, D.T.; Dang, N.M.T.; Le, T.H.; Nguyen, M.T.T. Some terpenoid compounds from the ethyl acetate extract of Annona muricata L. leaves and their α-glucosidase inhibitory activity. Sci. Technol. Dev. J. Nat. Sci. 2024, 8, 1–7. (In Vietnamese) [Google Scholar] [CrossRef]
- Tabussum, A.; Riaz, N.; Saleem, M.; Ashraf, M.; Ahmad, M.; Alam, U.; Jabeen, B.; Malik, A.; Jabbar, A. α-Glucosidase inhibitory constituents from Chrozophora plicata. Phytochem. Lett. 2013, 6, 614–619. [Google Scholar] [CrossRef]
- Liu, Y.; Zhan, L.; Xu, C.; Jiang, H.; Zhu, C.; Sun, L.; Sun, C.; Li, X. α-Glucosidase inhibitors from Chinese bayberry (Morella rubra Sieb. et Zucc.) fruit: Molecular docking and interaction mechanism of flavonols with different B-ring hydroxylations. RSC Adv. 2020, 10, 29347–29361. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, J.; Yan, Y.; Liu, D.; Wang, C.; Wang, H. Inhibition of glycosidase by ursolic acid: In vitro, in vivo and in silico study. J. Sci. Food Agric. 2020, 100, 986–994. [Google Scholar] [CrossRef]
- Khusnutdinova, E.F.; Petrova, A.V.; Thu, H.N.T.; Tu, A.L.T.; Thanh, T.N.; Thi, C.B.; Bavkov, D.; Kazakova, O.B. Structural modifications of 2,3-indolobetulinic acid: Design and synthesis of highly potent α-glucosidase inhibitors. Bioorg. Chem. 2019, 88, 102957. [Google Scholar] [CrossRef]
- Li, N.; Yang, J.; Wang, C.; Wu, L.; Liu, Y. Screening bifunctional flavonoids of anti-cholinesterase and anti-glucosidase by in vitro and in silico studies: Quercetin, kaempferol and myricetin. Food Biosci. 2023, 51, 102312. [Google Scholar] [CrossRef]
Compounds | Name | Plants | Parts | References |
---|---|---|---|---|
1 | β-Sistosterol | E. ribes | leaves | [3] |
2 | Daucosterol | E. rowlandii | leaves | [5] |
E. ribes | leaves | [3] | ||
4 | Ursolic acid | E. ribes | leaves | [9] |
5 | Kaempferol | E. ribes | leaves | [9] |
6 | Kaempferin | E. ribes | leaves | [9] |
7 | Quercitrin | E. ribes | leaves | [9] |
14 | Vanillic acid | E. laeta | leaves | [11] |
15 | Syringic acid | E. laeta | leaves | [11] |
Compounds | Species | Family | References |
---|---|---|---|
3-O-(6′-O-Palmitoyl)-β-D-glucopyranosyl stigmasterol (3) | Myrsine pellucida | Primulaceae | [42] |
Labisia pumila | Primulaceae | [57] | |
Monochoria vaginalis | Pontederiaceae | [58] | |
Quercetin-3-rhamnoside-3′-glucoside (8) | Myrsine seguinii | Primulaceae | [47] |
(6R,9R)-9-Hydroxy-4,7-megastigmadien-3-one (9) | Peperomia heyneana | Piperaceae | [59] |
Nelumbo nucifera | Nelumbonaceae | [60] | |
Valeriana officinalis var. latifolia | Caprifoliaceae | [61] | |
Manglietia aromatica | Magnoliaceae | [62] | |
Tradescantia albiflora | Commelinaceae | [63] | |
Grasshopper ketone (10) | Nelumbo nucifera | Nelumbonaceae | [60] |
Marsdenia tenacissima | Apocynaceae | [64] | |
Anisomeles indica | Lamiaceae | [65] | |
Humulus japonicus | Cannabaceae | [66] | |
Chenopodium album | Chenopodiaceae | [67] | |
(6R,7E,9R)-9-Hydroxy-4,7-megastigmadien-3-one, 9-O-β-D-Apiofuranosyl(1->6)-β-D-glucopyranoside (11) | Eriobotrya japonica | Rosaceae | [68] |
Alangium premnifolium | Cornaceae | [69] | |
Cydonia vulgaris | Rosaceae | [70] | |
Wrightia antidysenterica | Apocynaceae | [71] | |
Vomifoliol (12) | Maesa membranacea | Primulaceae | [72] |
Physalis minima | Solanaceae | [73] | |
Syzygium cerasiforme | Myrtaceae | [74] | |
Rhizophora apiculata | Rhizophoraceae | [75] | |
Palicourea adusta | Rubiaceae | [76] | |
Euphorbia heterophylla | Euphorbiaceae | [77] | |
Silene firma | Caryophyllaceae | [78] | |
Epilobium angustifolium | Onagraceae | [79] | |
Eucalyptus globulus | Myrtaceae | [80] | |
Eucommia ulmoides | Eucommiaceae | [81] | |
Methyl trans-p-coumarate (13) | Zanthoxylum nitidum | Rutaceae | [82] |
Boehmeria virgata | Urticaceae | [83] | |
Clausena lansium | Rutaceae | [84] | |
Eugenia dysenterica | Myrtaceae | [85] | |
Idesia polycarpa | Salicaceae | [86] | |
Stereospermum acuminatissimum | Bignoniaceae | [87] | |
Goniothalamus laoticus | Annonaceae | [88] | |
Calocedrus formosana | Cupressaceae | [89] | |
Tupistra chinensis | Liliaceae | [90] | |
Annona cherimola | Annonaceae | [91] | |
Hibiscus sabdariffa | Malvaceae | [92] | |
Sotolone (16) | Quararibea funebris | Bombacaceae | [55] |
No. | Compounds | IC50 (µg/mL) | No. | Compounds | IC50 (µg/mL) |
---|---|---|---|---|---|
1 | 1 | >256 | 9 | 9 | >256 |
2 | 2 | >256 | 10 | 10 | >256 |
3 | 3 | >256 | 11 | 11 | >256 |
4 | 4 | 1.40 ± 0.06 | 12 | 12 | >256 |
5 | 5 | 1.75 ± 0.08 | 13 | 13 | >256 |
6 | 6 | 162.13 ± 3.28 | 14 | 16 | >256 |
7 | 7 | 168.01 ± 4.15 | 15 | MeOH extract | 12.80 ± 0.62 |
8 | 8 | >256 | 16 | Acarbose | 198.5 ± 6.25 |
Compound | Binding Energy (kcal/mol) | Interacted Residues | |
---|---|---|---|
Active Site | Allosteric Site | ||
4 | N.D * | −9.2 | Arg175, Ser179, Asn411 |
5 | −7.9 | N.D * | Glu304, Arg312, Arg439, Asp408, Phe157 |
6 | −9.3 | N.D * | Lys155, Asp349, Phe157, Arg312, His239 |
7 | −9.1 | N.D * | Arg312, Glu304, |
Acarbose | −6.7 | N.D * | Glu304, His279, Pro309, Phe300, Arg312, Glu276, Gln350, Asp349, Tyr313, Asp408, Phe157 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thuong, S.D.; Anh, M.T.H.; Phuong, N.V.; Mau, C.H.; Quan, N.H.; Cong, N.T.; Thanh, L.N. Chemical Constituents and α-Glucosidase Inhibitory Activities of the Leaves of Embelia parviflora—In Vitro and In Silico Studies. Life 2025, 15, 680. https://doi.org/10.3390/life15050680
Thuong SD, Anh MTH, Phuong NV, Mau CH, Quan NH, Cong NT, Thanh LN. Chemical Constituents and α-Glucosidase Inhibitory Activities of the Leaves of Embelia parviflora—In Vitro and In Silico Studies. Life. 2025; 15(5):680. https://doi.org/10.3390/life15050680
Chicago/Turabian StyleThuong, Sy Danh, Mai Thi Hoang Anh, Nguyen Van Phuong, Chu Hoang Mau, Nguyen Huu Quan, Nguyen Thanh Cong, and Le Nguyen Thanh. 2025. "Chemical Constituents and α-Glucosidase Inhibitory Activities of the Leaves of Embelia parviflora—In Vitro and In Silico Studies" Life 15, no. 5: 680. https://doi.org/10.3390/life15050680
APA StyleThuong, S. D., Anh, M. T. H., Phuong, N. V., Mau, C. H., Quan, N. H., Cong, N. T., & Thanh, L. N. (2025). Chemical Constituents and α-Glucosidase Inhibitory Activities of the Leaves of Embelia parviflora—In Vitro and In Silico Studies. Life, 15(5), 680. https://doi.org/10.3390/life15050680