Cerebrovascular Management Considerations in Patients on AATs
Abstract
1. Introduction
2. Role of Intravenous Thrombolysis
3. Endovascular Mechanical Thrombectomy
4. ICH Management
5. Management of ARIA
6. Antiplatelet Management
7. Anticoagulation Management
Study | Device | Study Type | Implantation Success | Results |
---|---|---|---|---|
Reddy et al. (PROTECT-AF) [74] | WATCHMAN | Prospective, randomized, multi-center clinical trial Warfarin control arm | 88% | Composite stroke/systemic embolism/cardiac death: HR 0.71 (95% CI, 0.44–1.30) |
Holmes et al. (PREVAIL) [63] | WATCHMAN | Prospective, randomized, multi-center clinical trial Warfarin control arm | 95% | Composite stroke/systemic embolism/cardiac death: RR 1.07 (95% CI, 0.57–1.89) |
Litwinowicz et al. [70] | LARIAT | Prospective, observational, single-center | 96.4% | Thromboembolism rate: 0.6% (Estimated risk reduction 81%) Severe bleeding rate: 0.8% (Estimated risk reduction 78%) |
Caliskan et al. [73] | AtriClip | Prospective, observation, multi-center registry | 100% | Ischemic stroke rate w/o anticoagulation: 0.5/1000 patient years (Estimated risk reduction 87.5%) |
8. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Shin, J.H. Dementia Epidemiology Fact Sheet 2022. Ann. Rehabil. Med. 2022, 46, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Mayeux, R.; Stern, Y. Epidemiology of Alzheimer disease. Cold Spring Harb. Perspect. Med. 2012, 2, a006239. [Google Scholar] [CrossRef] [PubMed]
- Sojkova, J.; Zhou, Y.; An, Y.; Kraut, M.A.; Ferrucci, L.; Wong, D.F.; Resnick, S.M. Longitudinal patterns of beta-amyloid deposition in nondemented older adults. Arch. Neurol. 2011, 68, 644–649. [Google Scholar] [CrossRef]
- Marini, C.; Baldassarre, M.; Russo, T.; De Santis, F.; Sacco, S.; Ciancarelli, I.; Carolei, A. Burden of first-ever ischemic stroke in the oldest old: Evidence from a population-based study. Neurology 2004, 62, 77–81. [Google Scholar] [CrossRef]
- What Is Dementia? Symptoms, Types, and Diagnosis. 8 December 2022. Available online: https://www.nia.nih.gov/health/what-is-dementia#:~:text=Dementia%20is%20the%20loss%20of,and%20their%20personalities%20may%20change (accessed on 1 April 2025).
- Pinho, J.; Quintas-Neves, M.; Dogan, I.; Reetz, K.; Reich, A.; Costa, A.S. Incident stroke in patients with Alzheimer’s disease: Systematic review and meta-analysis. Sci. Rep. 2021, 11, 16385. [Google Scholar] [CrossRef]
- Budd Haeberlein, S.; Aisen, P.S.; Barkhof, F.; Chalkias, S.; Chen, T.; Cohen, S.; Dent, G.; Hansson, O.; Harrison, K.; von Hehn, C.; et al. Two Randomized Phase 3 Studies of Aducanumab in Early Alzheimer’s Disease. J. Prev. Alzheimers Dis. 2022, 9, 197–210. [Google Scholar] [CrossRef]
- van Dyck, C.H.; Swanson, C.J.; Aisen, P.; Bateman, R.J.; Chen, C.; Gee, M.; Kanekiyo, M.; Li, D.; Reyderman, L.; Cohen, S.; et al. Lecanemab in Early Alzheimer’s Disease. N. Engl. J. Med. 2023, 388, 9–21. [Google Scholar] [CrossRef]
- Sims, J.R.; Zimmer, J.A.; Evans, C.D.; Lu, M.; Ardayfio, P.; Sparks, J.; Wessels, A.M.; Shcherbinin, S.; Wang, H.; Monkul Nery, E.S.; et al. Donanemab in Early Symptomatic Alzheimer Disease: The TRAILBLAZER-ALZ 2 Randomized Clinical Trial. JAMA 2023, 330, 512–527. [Google Scholar] [CrossRef]
- GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef]
- Roytman, M.; Mashriqi, F.; Al-Tawil, K.; Schulz, P.E.; Zaharchuk, G.; Benzinger, T.L.S.; Franceschi, A.M. Amyloid-Related Imaging Abnormalities: An Update. AJR Am. J. Roentgenol. 2023, 220, 562–574. [Google Scholar] [CrossRef]
- Barakos, J.; Purcell, D.; Suhy, J.; Chalkias, S.; Burkett, P.; Marsica Grassi, C.; Castrillo-Viguera, C.; Rubino, I.; Vijverberg, E. Detection and Management of Amyloid-Related Imaging Abnormalities in Patients with Alzheimer’s Disease Treated with Anti-Amyloid Beta Therapy. J. Prev. Alzheimers Dis. 2022, 9, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Salloway, S.; Chalkias, S.; Barkhof, F.; Burkett, P.; Barakos, J.; Purcell, D.; Suhy, J.; Forrestal, F.; Tian, Y.; Umans, K.; et al. Amyloid-Related Imaging Abnormalities in 2 Phase 3 Studies Evaluating Aducanumab in Patients with Early Alzheimer Disease. JAMA Neurol. 2022, 79, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Lees, K.R.; Bluhmki, E.; von Kummer, R.; Brott, T.G.; Toni, D.; Grotta, J.C.; Albers, G.W.; Kaste, M.; Marler, J.R.; Hamilton, S.A.; et al. Time to treatment with intravenous alteplase and outcome in stroke: An updated pooled analysis of ECASS, ATLANTIS, NINDS, and EPITHET trials. Lancet 2010, 375, 1695–1703. [Google Scholar] [CrossRef]
- Burgos, A.M.; Saver, J.L. Evidence that Tenecteplase Is Noninferior to Alteplase for Acute Ischemic Stroke. Stroke 2019, 50, 2156–2162. [Google Scholar] [CrossRef]
- Powers, W.J.; Rabinstein, A.A.; Ackerson, T.; Adeoye, O.M.; Bambakidis, N.C.; Becker, K.; Biller, J.; Brown, M.; Demaerschalk, B.M.; Hoh, B.; et al. Guidelines for the Early Management of Patients with Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke 2019, 50, e344–e418. [Google Scholar] [CrossRef]
- Berge, E.; Whiteley, W.; Audebert, H.; De Marchis, G.M.; Fonseca, A.C.; Padiglioni, C.; de la Ossa, N.P.; Strbian, D.; Tsivgoulis, G.; Turc, G. European Stroke Organisation (ESO) guidelines on intravenous thrombolysis for acute ischaemic stroke. Eur. Stroke J. 2021, 6, I–LXII. [Google Scholar] [CrossRef]
- Chacon-Portillo, M.A.; Llinas, R.H.; Marsh, E.B. Cerebral microbleeds shouldn’t dictate treatment of acute stroke: A retrospective cohort study evaluating risk of intracerebral hemorrhage. BMC Neurol. 2018, 18, 33. [Google Scholar] [CrossRef]
- Schlemm, L.; Endres, M.; Werring, D.J.; Nolte, C.H. Benefit of Intravenous Thrombolysis in Acute Ischemic Stroke Patients with High Cerebral Microbleed Burden. Stroke 2020, 51, 232–239. [Google Scholar] [CrossRef]
- Schlemm, L.; Braemswig, T.B.; Boutitie, F.; Vynckier, J.; Jensen, M.; Galinovic, I.; Simonsen, C.Z.; Cheng, B.; Cho, T.H.; Fiehler, J.; et al. Cerebral Microbleeds and Treatment Effect of Intravenous Thrombolysis in Acute Stroke: An Analysis of the WAKE-UP Randomized Clinical Trial. Neurology 2022, 98, e302–e314. [Google Scholar] [CrossRef]
- Ganesh, A.; Fraser, J.F.; Gordon Perue, G.L.; Amin-Hanjani, S.; Leslie-Mazwi, T.M.; Greenberg, S.M.; Couillard, P.; Asdaghi, N.; Goyal, M.; American Heart Association Stroke Council. Endovascular Treatment and Thrombolysis for Acute Ischemic Stroke in Patients with Premorbid Disability or Dementia: A Scientific Statement from the American Heart Association/American Stroke Association. Stroke 2022, 53, e204–e217. [Google Scholar] [CrossRef]
- Reish, N.J.; Jamshidi, P.; Stamm, B.; Flanagan, M.E.; Sugg, E.; Tang, M.; Donohue, K.L.; McCord, M.; Krumpelman, C.; Mesulam, M.M.; et al. Multiple Cerebral Hemorrhages in a Patient Receiving Lecanemab and Treated with t-PA for Stroke. N. Engl. J. Med. 2023, 388, 478–479. [Google Scholar] [CrossRef] [PubMed]
- Peripheral and Central Nervous System Drugs Advisory Committee. Donanemab for the Treatment of Patients with Early Symptomatic Alzheimer’s Disease: Sponsor Briefing Document; Eli Lilly and Company: Indianapolis, IN, USA, 2024. [Google Scholar]
- Cummings, J.; Apostolova, L.; Rabinovici, G.D.; Atri, A.; Aisen, P.; Greenberg, S.; Hendrix, S.; Selkoe, D.; Weiner, M.; Petersen, R.C.; et al. Lecanemab: Appropriate Use Recommendations. J. Prev. Alzheimers Dis. 2023, 10, 362–377. [Google Scholar] [CrossRef] [PubMed]
- Treatment with Endovascular Intervention for Stroke Patients with Existing Disability. 26 September 2023. Available online: https://www.pcori.org/research-results/2022/treatment-endovascular-intervention-stroke-patients-existing-disability (accessed on 1 September 2023).
- Agbonon, R.; Forestier, G.; Bricout, N.; Benhassen, W.; Turc, G.; Bretzner, M.; Pasi, M.; Benzakoun, J.; Seners, P.; Derraz, I.; et al. Cerebral microbleeds and risk of symptomatic hemorrhagic transformation following mechanical thrombectomy for large vessel ischemic stroke. J. Neurol. 2024, 271, 2631–2638. [Google Scholar] [CrossRef]
- Weller, J.M.; Enkirch, S.J.; Bogs, C.; Braemswig, T.B.; Deb-Chatterji, M.; Keil, F.; Kindler, C.; Maywald, S.; Schirmer, M.D.; Stosser, S.; et al. Endovascular Treatment for Acute Stroke in Cerebral Amyloid Angiopathy. Stroke 2021, 52, e581–e585. [Google Scholar] [CrossRef]
- Yang, P.; Zhang, Y.; Zhang, L.; Zhang, Y.; Treurniet, K.M.; Chen, W.; Peng, Y.; Han, H.; Wang, J.; Wang, S.; et al. Endovascular Thrombectomy with or without Intravenous Alteplase in Acute Stroke. N. Engl. J. Med. 2020, 382, 1981–1993. [Google Scholar] [CrossRef]
- Salloway, S.; Sperling, R.; Fox, N.C.; Blennow, K.; Klunk, W.; Raskind, M.; Sabbagh, M.; Honig, L.S.; Porsteinsson, A.P.; Ferris, S.; et al. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N. Engl. J. Med. 2014, 370, 322–333. [Google Scholar] [CrossRef]
- Agarwal, A.; Gupta, V.; Brahmbhatt, P.; Desai, A.; Vibhute, P.; Joseph-Mathurin, N.; Bathla, G. Amyloid-related Imaging Abnormalities in Alzheimer Disease Treated with Anti-Amyloid-beta Therapy. Radiographics 2023, 43, e230009. [Google Scholar] [CrossRef]
- Greenberg, S.; Battioui, C.; Lu, M.; Biffi, A.; Ardayfio, P.; Zimmer, J.; Evans, C.; Wang, H.; Monkul Nery, E.; Sparks, J. ARIA insights from the donanemab trials. Neurology 2024, 102, P1-9.001. [Google Scholar] [CrossRef]
- Greenberg, S.M.; Ziai, W.C.; Cordonnier, C.; Dowlatshahi, D.; Francis, B.; Goldstein, J.N.; Hemphill, J.C., 3rd; Johnson, R.; Keigher, K.M.; Mack, W.J.; et al. 2022 Guideline for the Management of Patients with Spontaneous Intracerebral Hemorrhage: A Guideline From the American Heart Association/American Stroke Association. Stroke 2022, 53, e282–e361. [Google Scholar] [CrossRef]
- de Bruin, O.F.; Voigt, S.; Schoones, J.W.; Moojen, W.A.; van Etten, E.S.; Wermer, M.J.H. Surgical intervention for cerebral amyloid angiopathy-related lobar intracerebral hemorrhage: A systematic review. J. Neurosurg. 2024, 141, 955–965. [Google Scholar] [CrossRef]
- Pradilla, G.; Ratcliff, J.J.; Hall, A.J.; Saville, B.R.; Allen, J.W.; Paulon, G.; McGlothlin, A.; Lewis, R.J.; Fitzgerald, M.; Caveney, A.F.; et al. Trial of Early Minimally Invasive Removal of Intracerebral Hemorrhage. N. Engl. J. Med. 2024, 390, 1277–1289. [Google Scholar] [CrossRef] [PubMed]
- Sperling, R.A.; Jack, C.R., Jr.; Black, S.E.; Frosch, M.P.; Greenberg, S.M.; Hyman, B.T.; Scheltens, P.; Carrillo, M.C.; Thies, W.; Bednar, M.M.; et al. Amyloid-related imaging abnormalities in amyloid-modifying therapeutic trials: Recommendations from the Alzheimer’s Association Research Roundtable Workgroup. Alzheimers Dement. 2011, 7, 367–385. [Google Scholar] [CrossRef] [PubMed]
- Filippi, M.; Cecchetti, G.; Spinelli, E.G.; Vezzulli, P.; Falini, A.; Agosta, F. Amyloid-Related Imaging Abnormalities and beta-Amyloid-Targeting Antibodies: A Systematic Review. JAMA Neurol. 2022, 79, 291–304. [Google Scholar] [CrossRef] [PubMed]
- Kozberg, M.G.; Perosa, V.; Gurol, M.E.; van Veluw, S.J. A practical approach to the management of cerebral amyloid angiopathy. Int. J. Stroke 2021, 16, 356–369. [Google Scholar] [CrossRef]
- Regenhardt, R.W.; Thon, J.M.; Das, A.S.; Thon, O.R.; Charidimou, A.; Viswanathan, A.; Gurol, M.E.; Chwalisz, B.K.; Frosch, M.P.; Cho, T.A.; et al. Association Between Immunosuppressive Treatment and Outcomes of Cerebral Amyloid Angiopathy-Related Inflammation. JAMA Neurol. 2020, 77, 1261–1269. [Google Scholar] [CrossRef]
- Greenberg, S.M.; Aparicio, H.J.; Furie, K.L.; Goyal, M.S.; Hinman, J.D.; Kozberg, M.; Leonard, A.; Fisher, M.J.; Council on Cardiovascular and Stroke Nursing; Council on Clinical Cardiology. Vascular Neurology Considerations for Antiamyloid Immunotherapy: A Science Advisory from the American Heart Association. Stroke 2025, 56, e30–e38. [Google Scholar] [CrossRef]
- Honig, L.S.; Sabbagh, M.N.; van Dyck, C.H.; Sperling, R.A.; Hersch, S.; Matta, A.; Giorgi, L.; Gee, M.; Kanekiyo, M.; Li, D. Updated safety results from phase 3 lecanemab study in early Alzheimer’s disease. Alzheimer’s Res. Ther. 2024, 16, 105. [Google Scholar] [CrossRef]
- Bushnell, C.; Kernan, W.N.; Sharrief, A.Z.; Chaturvedi, S.; Cole, J.W.; Cornwell, W.K., 3rd; Cosby-Gaither, C.; Doyle, S.; Goldstein, L.B.; Lennon, O.; et al. 2024 Guideline for the Primary Prevention of Stroke: A Guideline from the American Heart Association/American Stroke Association. Stroke 2024, 55, e344–e424. [Google Scholar] [CrossRef]
- Arnett, D.K.; Blumenthal, R.S.; Albert, M.A.; Buroker, A.B.; Goldberger, Z.D.; Hahn, E.J.; Himmelfarb, C.D.; Khera, A.; Lloyd-Jones, D.; McEvoy, J.W.; et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019, 140, e563–e595. [Google Scholar] [CrossRef]
- Akoudad, S.; Portegies, M.L.; Koudstaal, P.J.; Hofman, A.; van der Lugt, A.; Ikram, M.A.; Vernooij, M.W. Cerebral Microbleeds Are Associated with an Increased Risk of Stroke: The Rotterdam Study. Circulation 2015, 132, 509–516. [Google Scholar] [CrossRef]
- Biffi, A.; Halpin, A.; Towfighi, A.; Gilson, A.; Busl, K.; Rost, N.; Smith, E.E.; Greenberg, M.S.; Rosand, J.; Viswanathan, A. Aspirin and recurrent intracerebral hemorrhage in cerebral amyloid angiopathy. Neurology 2010, 75, 693–698. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.S.; Chan, Y.L.; Liu, J.Y.; Gao, S.; Lam, W.W. Asymptomatic microbleeds as a risk factor for aspirin-associated intracerebral hemorrhages. Neurology 2003, 60, 511–513. [Google Scholar] [CrossRef] [PubMed]
- Ha, A.C.T.; Bhatt, D.L.; Rutka, J.T.; Johnston, S.C.; Mazer, C.D.; Verma, S. Intracranial Hemorrhage During Dual Antiplatelet Therapy: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2021, 78, 1372–1384. [Google Scholar] [CrossRef] [PubMed]
- Johnston, S.C.; Easton, J.D.; Farrant, M.; Barsan, W.; Conwit, R.A.; Elm, J.J.; Kim, A.S.; Lindblad, A.S.; Palesch, Y.Y.; Neurological Emergencies Treatment Trials Network; et al. Clopidogrel and Aspirin in Acute Ischemic Stroke and High-Risk TIA. N. Engl. J. Med. 2018, 379, 215–225. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Zhao, X.; Liu, L.; Wang, D.; Wang, C.; Wang, C.; Li, H.; Meng, X.; Cui, L.; et al. Clopidogrel with aspirin in acute minor stroke or transient ischemic attack. N. Engl. J. Med. 2013, 369, 11–19. [Google Scholar] [CrossRef]
- Kornej, J.; Borschel, C.S.; Benjamin, E.J.; Schnabel, R.B. Epidemiology of Atrial Fibrillation in the 21st Century: Novel Methods and New Insights. Circ. Res. 2020, 127, 4–20. [Google Scholar] [CrossRef]
- Heidenreich, P.A.; Trogdon, J.G.; Khavjou, O.A.; Butler, J.; Dracup, K.; Ezekowitz, M.D.; Finkelstein, E.A.; Hong, Y.; Johnston, S.C.; Khera, A.; et al. Forecasting the future of cardiovascular disease in the United States: A policy statement from the American Heart Association. Circulation 2011, 123, 933–944. [Google Scholar] [CrossRef]
- Connolly, S.J.; Eikelboom, J.; Joyner, C.; Diener, H.C.; Hart, R.; Golitsyn, S.; Flaker, G.; Avezum, A.; Hohnloser, S.H.; Diaz, R.; et al. Apixaban in patients with atrial fibrillation. N. Engl. J. Med. 2011, 364, 806–817. [Google Scholar] [CrossRef]
- Granger, C.B.; Alexander, J.H.; McMurray, J.J.; Lopes, R.D.; Hylek, E.M.; Hanna, M.; Al-Khalidi, H.R.; Ansell, J.; Atar, D.; Avezum, A.; et al. Apixaban versus warfarin in patients with atrial fibrillation. N. Engl. J. Med. 2011, 365, 981–992. [Google Scholar] [CrossRef]
- Patel, M.R.; Mahaffey, K.W.; Garg, J.; Pan, G.; Singer, D.E.; Hacke, W.; Breithardt, G.; Halperin, J.L.; Hankey, G.J.; Piccini, J.P.; et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N. Engl. J. Med. 2011, 365, 883–891. [Google Scholar] [CrossRef]
- Giugliano, R.P.; Ruff, C.T.; Braunwald, E.; Murphy, S.A.; Wiviott, S.D.; Halperin, J.L.; Waldo, A.L.; Ezekowitz, M.D.; Weitz, J.I.; Spinar, J.; et al. Edoxaban versus warfarin in patients with atrial fibrillation. N. Engl. J. Med. 2013, 369, 2093–2104. [Google Scholar] [CrossRef] [PubMed]
- Diener, H.C.; Connolly, S.J.; Ezekowitz, M.D.; Wallentin, L.; Reilly, P.A.; Yang, S.; Xavier, D.; Di Pasquale, G.; Yusuf, S.; The RE-LY Study Group. Dabigatran compared with warfarin in patients with atrial fibrillation and previous transient ischaemic attack or stroke: A subgroup analysis of the RE-LY trial. Lancet Neurol. 2010, 9, 1157–1163. [Google Scholar] [CrossRef] [PubMed]
- Flaker, G.C.; Eikelboom, J.W.; Shestakovska, O.; Connolly, S.J.; Kaatz, S.; Budaj, A.; Husted, S.; Yusuf, S.; Lip, G.Y.; Hart, R.G. Bleeding during treatment with aspirin versus apixaban in patients with atrial fibrillation unsuitable for warfarin: The apixaban versus acetylsalicylic acid to prevent stroke in atrial fibrillation patients who have failed or are unsuitable for vitamin K antagonist treatment (AVERROES) trial. Stroke 2012, 43, 3291–3297. [Google Scholar] [CrossRef]
- Wilson, D.; Ambler, G.; Shakeshaft, C.; Brown, M.M.; Charidimou, A.; Al-Shahi Salman, R.; Lip, G.Y.H.; Cohen, H.; Banerjee, G.; Houlden, H.; et al. Cerebral microbleeds and intracranial haemorrhage risk in patients anticoagulated for atrial fibrillation after acute ischaemic stroke or transient ischaemic attack (CROMIS-2): A multicentre observational cohort study. Lancet Neurol. 2018, 17, 539–547. [Google Scholar] [CrossRef]
- Mast, J. Death of Patient in Closely Watched Alzheimer’s Trial Raises Concern About Risk for Some Groups. 2022. Available online: https://www.statnews.com/2022/10/28/patient-death-lecanemab-alzheimers-trial/?utm_source=STAT+Newsletters&utm_campaign=77dcde7c5f-MR_COPY_01&utm (accessed on 3 April 2025).
- de Vries, T.A.C.; Hirsh, J.; Xu, K.; Mallick, I.; Bhagirath, V.C.; Eikelboom, J.W.; Ginsberg, J.S.; Kruger, P.C.; Chan, N.C. Apixaban for Stroke Prevention in Atrial Fibrillation: Why are Event Rates Higher in Clinical Practice than in Randomized Trials?—A Systematic Review. Thromb. Haemost. 2020, 120, 1323–1329. [Google Scholar] [CrossRef]
- Perreault, S.; Cote, R.; Dragomir, A.; White-Guay, B.; Lenglet, A.; Dorais, M. Effectiveness and safety of low-dose versus standard-dose rivaroxaban and apixaban in patients with atrial fibrillation. PLoS ONE 2022, 17, e0277744. [Google Scholar] [CrossRef]
- Mobius-Winkler, S.; Sandri, M.; Mangner, N.; Lurz, P.; Dahnert, I.; Schuler, G. The WATCHMAN left atrial appendage closure device for atrial fibrillation. J. Vis. Exp. 2012, 60, e3671. [Google Scholar] [CrossRef]
- Reddy, V.Y.; Mobius-Winkler, S.; Miller, M.A.; Neuzil, P.; Schuler, G.; Wiebe, J.; Sick, P.; Sievert, H. Left atrial appendage closure with the Watchman device in patients with a contraindication for oral anticoagulation: The ASAP study (ASA Plavix Feasibility Study with Watchman Left Atrial Appendage Closure Technology). J. Am. Coll. Cardiol. 2013, 61, 2551–2556. [Google Scholar] [CrossRef]
- Holmes, D.R., Jr.; Kar, S.; Price, M.J.; Whisenant, B.; Sievert, H.; Doshi, S.K.; Huber, K.; Reddy, V.Y. Prospective randomized evaluation of the Watchman Left Atrial Appendage Closure device in patients with atrial fibrillation versus long-term warfarin therapy: The PREVAIL trial. J. Am. Coll. Cardiol. 2014, 64, 1–12. [Google Scholar] [CrossRef]
- Holmes, D.R., Jr.; Doshi, S.K.; Kar, S.; Price, M.J.; Sanchez, J.M.; Sievert, H.; Valderrabano, M.; Reddy, V.Y. Left Atrial Appendage Closure as an Alternative to Warfarin for Stroke Prevention in Atrial Fibrillation: A Patient-Level Meta-Analysis. J. Am. Coll. Cardiol. 2015, 65, 2614–2623. [Google Scholar] [CrossRef]
- Blanc, C.; Blanc, G.; Boveda, S.; Calviere, L.; Combes, N.; Viguier, A.; Mondoly, P.; Albucher, J.F.; Gollion, C.; Fabry, V.; et al. Left Atrial Appendage Closure in Patients with Atrial Fibrillation and Coexisting Cerebral Amyloid Angiopathy. Stroke 2021, 52, e792–e793. [Google Scholar] [CrossRef] [PubMed]
- Ryan, D.; Zwischenberger, B.A.; Liu, A.J. Pearls and Oy-sters: A Patient on Lecanemab Newly Diagnosed with Atrial Fibrillation. Neurology 2024, 103, e210125. [Google Scholar] [CrossRef] [PubMed]
- Massumi, A.; Chelu, M.G.; Nazeri, A.; May, S.A.; Afshar-Kharaghan, H.; Saeed, M.; Razavi, M.; Rasekh, A. Initial experience with a novel percutaneous left atrial appendage exclusion device in patients with atrial fibrillation, increased stroke risk, and contraindications to anticoagulation. Am. J. Cardiol. 2013, 111, 869–873. [Google Scholar] [CrossRef]
- Bartus, K.; Han, F.T.; Bednarek, J.; Myc, J.; Kapelak, B.; Sadowski, J.; Lelakowski, J.; Bartus, S.; Yakubov, S.J.; Lee, R.J. Percutaneous left atrial appendage suture ligation using the LARIAT device in patients with atrial fibrillation: Initial clinical experience. J. Am. Coll. Cardiol. 2013, 62, 108–118. [Google Scholar] [CrossRef]
- Stone, D.; Byrne, T.; Pershad, A. Early results with the LARIAT device for left atrial appendage exclusion in patients with atrial fibrillation at high risk for stroke and anticoagulation. Catheter. Cardiovasc. Interv. 2015, 86, 121–127. [Google Scholar] [CrossRef]
- Litwinowicz, R.; Bartus, M.; Burysz, M.; Brzezinski, M.; Suwalski, P.; Kapelak, B.; Vuddanda, V.; Lakkireddy, D.; Lee, R.J.; Trabka, R.; et al. Long term outcomes after left atrial appendage closure with the LARIAT device—Stroke risk reduction over five years follow-up. PLoS ONE 2018, 13, e0208710. [Google Scholar] [CrossRef]
- Salzberg, S.P.; Plass, A.; Emmert, M.Y.; Desbiolles, L.; Alkadhi, H.; Grunenfelder, J.; Genoni, M. Left atrial appendage clip occlusion: Early clinical results. J. Thorac. Cardiovasc. Surg. 2010, 139, 1269–1274. [Google Scholar] [CrossRef]
- Ailawadi, G.; Gerdisch, M.W.; Harvey, R.L.; Hooker, R.L.; Damiano, R.J., Jr.; Salamon, T.; Mack, M.J. Exclusion of the left atrial appendage with a novel device: Early results of a multicenter trial. J. Thorac. Cardiovasc. Surg. 2011, 142, 1002–1009.e1. [Google Scholar] [CrossRef]
- Caliskan, E.; Sahin, A.; Yilmaz, M.; Seifert, B.; Hinzpeter, R.; Alkadhi, H.; Cox, J.L.; Holubec, T.; Reser, D.; Falk, V.; et al. Epicardial left atrial appendage AtriClip occlusion reduces the incidence of stroke in patients with atrial fibrillation undergoing cardiac surgery. Europace 2018, 20, e105–e114. [Google Scholar] [CrossRef]
- Reddy, V.Y.; Sievert, H.; Halperin, J.; Doshi, S.K.; Buchbinder, M.; Neuzil, P.; Huber, K.; Whisenant, B.; Kar, S.; Swarup, V.; et al. Percutaneous left atrial appendage closure vs warfarin for atrial fibrillation: A randomized clinical trial. JAMA 2014, 312, 1988–1998. [Google Scholar] [CrossRef]
ARIA Subtype | Radiographic Severity | ||
---|---|---|---|
Mild | Moderate | Severe | |
ARIA-E | FLAIR hyperintensity confined to a sulcus, cortex, or subcortical white matter confined to one location < 5 cm | FLAIR hyperintensity of a single lesion measuring 5–10 cm or more than one site < 1 cm | FLAIR hyperintensity > 10 cm with significant subcortical white matter and/or sulcal involvement with one or more sites of involvement |
ARIA-H microhemorrhage | ≤4 new incident microhemorrhage | 5–9 new incident microhemorrhages | ≥10 new incident microhemorrhages |
ARIA-H superficial siderosis | 1 focal area of superficial siderosis | 2 focal areas of superficial siderosis | >2 focal areas of superficial siderosis |
Drug | Number of Subjects | Incidence ARIA-E—APOE ε4 Noncarrier | Incidence ARIA-E—APOE ε4 Carrier | Incidence ARIA-H—APOE ε4 Noncarrier | Incidence ARIA-H—APOE ε4 Carrier |
---|---|---|---|---|---|
Aducanumab (10 mg/kg) [13] | 1029 | 20.3% | 43.0% | 12.4% | 22.7% |
Lecanemab (10 mg/kg) [8] | 859 | 5.4% | 15.8% | 11.9% | 19.7% |
Donanemab (700 mg for 3 doses then 1400 mg) [9] | 853 | 15.7% | 27.1% | 19.7% (not reported separately) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryan, D.; Feng, W.; Liu, A.J. Cerebrovascular Management Considerations in Patients on AATs. J. Clin. Med. 2025, 14, 3420. https://doi.org/10.3390/jcm14103420
Ryan D, Feng W, Liu AJ. Cerebrovascular Management Considerations in Patients on AATs. Journal of Clinical Medicine. 2025; 14(10):3420. https://doi.org/10.3390/jcm14103420
Chicago/Turabian StyleRyan, Dylan, Wuwei Feng, and Andy J. Liu. 2025. "Cerebrovascular Management Considerations in Patients on AATs" Journal of Clinical Medicine 14, no. 10: 3420. https://doi.org/10.3390/jcm14103420
APA StyleRyan, D., Feng, W., & Liu, A. J. (2025). Cerebrovascular Management Considerations in Patients on AATs. Journal of Clinical Medicine, 14(10), 3420. https://doi.org/10.3390/jcm14103420