Reproductive and Obstetric Outcomes Following a Natural Cycle vs. Artificial Endometrial Preparation for Frozen–Thawed Embryo Transfer: A Retrospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
- Patient characteristics and treatment variables:
- Reproductive outcomes:
- Obstetric maternal outcomes:
- Neonatal outcomes:
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European IVF Monitoring Consortium (EIM), for the European Society of Human Reproduction and Embryology (ESHRE); Wyns, C.; De Geyter, C.; Calhaz-Jorge, C.; Kupka, M.S.; Motrenko, T.; Smeenk, J.; Bergh, C.; Tandler-Schneider, A.; Rugescu, I.A.; et al. ART in Europe, 2018: Results Generated from European Registries by ESHRE. Hum. Reprod. Open 2022, 2022, hoac022. [Google Scholar] [CrossRef] [PubMed]
- Asserhøj, L.L.; Spangmose, A.L.; Aaris Henningsen, A.-K.; Clausen, T.D.; Ziebe, S.; Jensen, R.B.; Pinborg, A. Adverse Obstetric and Perinatal Outcomes in 1,136 Singleton Pregnancies Conceived after Programmed Frozen Embryo Transfer (FET) Compared with Natural Cycle FET. Fertil. Steril. 2021, 115, 947–956. [Google Scholar] [CrossRef] [PubMed]
- Carosso, A.R.; Canosa, S.; Gennarelli, G.; Sestero, M.; Evangelisti, B.; Charrier, L.; Bergandi, L.; Benedetto, C.; Revelli, A. Luteal Support with Very Low Daily Dose of Human Chorionic Gonadotropin after Fresh Embryo Transfer as an Alternative to Cycle Segmentation for High Responders Patients Undergoing Gonadotropin-Releasing Hormone Agonist-Triggered IVF. Pharmaceuticals 2021, 14, 228. [Google Scholar] [CrossRef] [PubMed]
- Maheshwari, A.; Pandey, S.; Amalraj Raja, E.; Shetty, A.; Hamilton, M.; Bhattacharya, S. Is Frozen Embryo Transfer Better for Mothers and Babies? Can Cumulative Meta-Analysis Provide a Definitive Answer? Hum. Reprod. Update 2018, 24, 35–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ginström Ernstad, E.; Wennerholm, U.-B.; Khatibi, A.; Petzold, M.; Bergh, C. Neonatal and Maternal Outcome after Frozen Embryo Transfer: Increased Risks in Programmed Cycles. Am. J. Obstet. Gynecol. 2019, 221, 126.e1–126.e18. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Kuang, Y.; Wang, N. Risks of Placenta Previa and Hypertensive Disorders of Pregnancy Are Associated With Endometrial Preparation Methods in Frozen-Thawed Embryo Transfers. Front. Med. (Lausanne) 2021, 8, 646220. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, L.; Li, T.C.; Wang, C.C.; Zhang, T.; Chung, J.P.W. Systematic Review Update and Meta-Analysis of Randomized and Non-Randomized Controlled Trials of Ovarian Stimulation versus Artificial Cycle for Endometrial Preparation Prior to Frozen Embryo Transfer in Women with Polycystic Ovary Syndrome. Reprod. Biol. Endocrinol. 2022, 20, 62. [Google Scholar] [CrossRef]
- Conrad, K.P. Evidence for Corpus Luteal and Endometrial Origins of Adverse Pregnancy Outcomes in Women Conceiving with or Without Assisted Reproduction. Obstet. Gynecol. Clin. N. Am. 2020, 47, 163–181. [Google Scholar] [CrossRef]
- Conrad, K.P.; Baker, V.L. Corpus Luteal Contribution to Maternal Pregnancy Physiology and Outcomes in Assisted Reproductive Technologies. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013, 304, R69–R72. [Google Scholar] [CrossRef] [Green Version]
- von Versen-Höynck, F.; Schaub, A.M.; Chi, Y.-Y.; Chiu, K.-H.; Liu, J.; Lingis, M.; Stan Williams, R.; Rhoton-Vlasak, A.; Nichols, W.W.; Fleischmann, R.R.; et al. Increased Preeclampsia Risk and Reduced Aortic Compliance With In Vitro Fertilization Cycles in the Absence of a Corpus Luteum. Hypertension 2019, 73, 640–649. [Google Scholar] [CrossRef]
- Pereira, M.M.; Mainigi, M.; Strauss, J.F. Secretory Products of the Corpus Luteum and Preeclampsia. Hum. Reprod. Update 2021, 27, 651–672. [Google Scholar] [CrossRef] [PubMed]
- Carosso, A.; Revelli, A.; Gennarelli, G.; Canosa, S.; Cosma, S.; Borella, F.; Tancredi, A.; Paschero, C.; Boatti, L.; Zanotto, E.; et al. Controlled Ovarian Stimulation and Progesterone Supplementation Affect Vaginal and Endometrial Microbiota in IVF Cycles: A Pilot Study. J. Assist. Reprod. Genet. 2020, 37, 2315–2326. [Google Scholar] [CrossRef] [PubMed]
- Makhijani, R.; Bartels, C.; Godiwala, P.; Bartolucci, A.; Nulsen, J.; Grow, D.; Benadiva, C.; Engmann, L. Maternal and Perinatal Outcomes in Programmed versus Natural Vitrified-Warmed Blastocyst Transfer Cycles. Reprod. Biomed. Online 2020, 41, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Saito, K.; Kuwahara, A.; Ishikawa, T.; Morisaki, N.; Miyado, M.; Miyado, K.; Fukami, M.; Miyasaka, N.; Ishihara, O.; Irahara, M.; et al. Endometrial Preparation Methods for Frozen-Thawed Embryo Transfer Are Associated with Altered Risks of Hypertensive Disorders of Pregnancy, Placenta Accreta, and Gestational Diabetes Mellitus. Hum. Reprod. 2019, 34, 1567–1575. [Google Scholar] [CrossRef]
- De Geyter, C.; Calhaz-Jorge, C.; Kupka, M.S.; Wyns, C.; Mocanu, E.; Motrenko, T.; Scaravelli, G.; Smeenk, J.; Vidakovic, S.; Goossens, V.; et al. ART in Europe, 2014: Results Generated from European Registries by ESHRE: The European IVF-Monitoring Consortium (EIM) for the European Society of Human Reproduction and Embryology (ESHRE). Hum. Reprod. 2018, 33, 1586–1601. [Google Scholar] [CrossRef]
- Shi, Y.; Sun, Y.; Hao, C.; Zhang, H.; Wei, D.; Zhang, Y.; Zhu, Y.; Deng, X.; Qi, X.; Li, H.; et al. Transfer of Fresh versus Frozen Embryos in Ovulatory Women. N. Engl. J. Med. 2018, 378, 126–136. [Google Scholar] [CrossRef]
- Ghobara, T.; Gelbaya, T.A.; Ayeleke, R.O. Cycle Regimens for Frozen-Thawed Embryo Transfer. Cochrane Database Syst. Rev. 2017, 7, CD003414. [Google Scholar] [CrossRef]
- Groenewoud, E.R.; Cohlen, B.J.; Al-Oraiby, A.; Brinkhuis, E.A.; Broekmans, F.J.M.; de Bruin, J.P.; van den Dool, G.; Fleisher, K.; Friederich, J.; Goddijn, M.; et al. A Randomized Controlled, Non-Inferiority Trial of Modified Natural versus Artificial Cycle for Cryo-Thawed Embryo Transfer. Hum. Reprod. 2016, 31, 1483–1492. [Google Scholar] [CrossRef] [Green Version]
- von Versen-Höynck, F.; Griesinger, G. Should Any Use of Artificial Cycle Regimen for Frozen-Thawed Embryo Transfer in Women Capable of Ovulation Be Abandoned: Yes, but What’s next for FET Cycle Practice and Research? Hum. Reprod. 2022, 37, 1697–1703. [Google Scholar] [CrossRef]
- Cerrillo, M.; Herrero, L.; Guillén, A.; Mayoral, M.; García-Velasco, J.A. Impact of Endometrial Preparation Protocols for Frozen Embryo Transfer on Live Birth Rates. Rambam Maimonides Med. J. 2017, 8, e0020. [Google Scholar] [CrossRef]
- Casper, R.F.; Yanushpolsky, E.H. Optimal Endometrial Preparation for Frozen Embryo Transfer Cycles: Window of Implantation and Progesterone Support. Fertil. Steril. 2016, 105, 867–872. [Google Scholar] [CrossRef] [Green Version]
- Hatoum, I.; Bellon, L.; Swierkowski, N.; Ouazana, M.; Bouba, S.; Fathallah, K.; Paillusson, B.; Bailly, M.; Boitrelle, F.; Alter, L.; et al. Disparities in Reproductive Outcomes According to the Endometrial Preparation Protocol in Frozen Embryo Transfer: The Risk of Early Pregnancy Loss in Frozen Embryo Transfer Cycles. J. Assist. Reprod. Genet. 2018, 35, 425–429. [Google Scholar] [CrossRef]
- Melnick, A.P.; Setton, R.; Stone, L.D.; Pereira, N.; Xu, K.; Rosenwaks, Z.; Spandorfer, S.D. Replacing Single Frozen-Thawed Euploid Embryos in a Natural Cycle in Ovulatory Women May Increase Live Birth Rates Compared to Medicated Cycles in Anovulatory Women. J. Assist. Reprod. Genet. 2017, 34, 1325–1331. [Google Scholar] [CrossRef]
- Wiegel, R.E.; Jan Danser, A.H.; Steegers-Theunissen, R.P.M.; Laven, J.S.E.; Willemsen, S.P.; Baker, V.L.; Steegers, E.A.P.; von Versen-Höynck, F. Determinants of Maternal Renin-Angiotensin-Aldosterone-System Activation in Early Pregnancy: Insights From 2 Cohorts. J. Clin. Endocrinol. Metab. 2020, 105, 3505–3517. [Google Scholar] [CrossRef]
- von Versen-Höynck, F.; Strauch, N.K.; Liu, J.; Chi, Y.-Y.; Keller-Woods, M.; Conrad, K.P.; Baker, V.L. Effect of Mode of Conception on Maternal Serum Relaxin, Creatinine, and Sodium Concentrations in an Infertile Population. Reprod. Sci. 2019, 26, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Conrad, K.P.; von Versen-Höynck, F.; Baker, V.L. Potential Role of the Corpus Luteum in Maternal Cardiovascular Adaptation to Pregnancy and Preeclampsia Risk. Am. J. Obstet. Gynecol. 2022, 226, 683–699. [Google Scholar] [CrossRef] [PubMed]
- Jauniaux, E.; Jurkovic, D. Placenta Accreta: Pathogenesis of a 20th Century Iatrogenic Uterine Disease. Placenta 2012, 33, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Jauniaux, E.; Jurkovic, D.; Hussein, A.M.; Burton, G.J. New Insights into the Etiopathology of Placenta Accreta Spectrum. Am. J. Obstet. Gynecol. 2022, 227, 384–391. [Google Scholar] [CrossRef] [PubMed]
- Gurol-Urganci, I.; Cromwell, D.A.; Edozien, L.C.; Smith, G.C.S.; Onwere, C.; Mahmood, T.A.; Templeton, A.; van der Meulen, J.H. Risk of Placenta Previa in Second Birth after First Birth Cesarean Section: A Population-Based Study and Meta-Analysis. BMC Pregnancy Childbirth 2011, 11, 95. [Google Scholar] [CrossRef]
- Committee on Obstetric Practice. The American College of Obstetrician and Gynecologists. Committee Opinion No. 743: Low-Dose Aspirin Use During Pregnancy. Obstet. Gynecol. 2018, 132, e44–e52. [Google Scholar] [CrossRef]
- Chaemsaithong, P.; Cuenca-Gomez, D.; Plana, M.N.; Gil, M.M.; Poon, L.C. Does Low-Dose Aspirin Initiated before 11 Weeks’ Gestation Reduce the Rate of Preeclampsia? Am. J. Obstet. Gynecol. 2020, 222, 437–450. [Google Scholar] [CrossRef] [PubMed]
NC/m-NC n = 239 | AC n = 78 | p | |
---|---|---|---|
Positive pregnancy test, n (%) | 103 (43.1) | 40 (51.3) | 0.2071 |
Clinical pregnancy at US, n (%) | 91 (38.1) | 35 (44.9) | 0.2869 |
Miscarriage < 12 w, n (%) | 11 (12.1) | 5 (14.2) | 0.6259 |
Late abortion ≥ 12 w, n (%) | 1 (1.1) | 0 (0) | >0.9999 |
Ectopic, n (%) | 3 (3.3) | 1 (2.8) | >0.9999 |
Therapeutic pregnancy termination, n (%) | 1 (1.1) | 1 (2.8) | 0.5164 |
Live birth, n (%) | 75 (31.4) | 29 (37.2) | 0.2760 |
Singleton live birth, n (%) | 75 (31.4) | 28 (35.9) | 0.4596 |
NC/m-NC n = 75 | AC n = 28 | p | |
---|---|---|---|
Maternal age at embryo freezing, mean (SD) | 34.1 (4.2) | 33.7 (3.5) | 0.6096 |
Maternal age at embryo thawing, mean (SD) | 34.9 (4) | 34.4 (3.8) | 0.4817 |
Maternal age at embryo thawing, n (%) | 0.5076 | ||
≤34 | 35 (47.3) | 17 (60.7) | |
35–39 | 28 (37.8) | 8 (28.6) | |
≥40 | 11 (14.9) | 3 (10.7) | |
Primary infertility, n (%) | 57 (76) | 24 (85.7) | 0.2845 |
Race, n (%) | 0.9155 | ||
Caucasian | 68 (90.7) | 26 (92.9) | |
Asian | 3 (4) | 0 (0) | |
African | 2 (2.7) | 1 (3.6) | |
South American | 2 (2.7) | 1 (3.6) | |
Smoking habit, n (%) | 8 (14.3) | 2 (8.3) | 0.7149 |
Maternal BMI, mean (SD) | 22.8 (3.4) | 23 (4.9) | 0.8320 |
Maternal BMI, n (%) | 0.1823 | ||
<18.5 | 2 (3) | 3 (12) | |
18.5–24.9 | 49 (74.2) | 14 (56) | |
25–29.9 | 11 (16.7) | 5 (20) | |
≥30 | 4 (6.1) | 3 (12) | |
Years of infertility, n (%) | 0.0237 | ||
1–2 | 31 (43.7) | 7 (28) | |
3–4 | 23 (32.4) | 16 (64) | |
≥5 | 17 (23.9) | 2 (8) | |
Cause of infertility, n (%) | 0.0061 | ||
Oligo/anovulation | 4 (5.5) | 9 (33.3) | |
Endometriosis | 3 (4.1) | 0 (0) | |
Male factor | 32 (43.8) | 8 (29.6) | |
Tubal factor | 5 (6.8) | 0 (0) | |
Unexplained | 16 (21.9) | 8 (29.6) | |
Mixed | 13 (17.8) | 2 (7.4) | |
Antral Follicle Count, mean (SD) | 18.2 (7.5) | 27.5 (11.9) | <0.001 |
AMH (ng/mL), mean (SD) | 5 (7) | 10.6 (9.2) | 0.0089 |
Sperm origin, n (%) | 0.3741 | ||
Fresh | 67 (89.3) | 27 (100) | |
Frozen | 4 (5.3) | 0 (0) | |
Surgical | 4 (5.3) | 0 (0) | |
ART method, n (%) | 0.1253 | ||
IVF | 23 (30.7) | 5 (17.9) | |
ICSI | 44 (58.7) | 16 (57.1) | |
Combined | 8 (10.7) | 6 (21.4) | |
Culture until blastocyst stage (day 5–6) n (%) | 73 (97.3) | 27 (96.4) | >0.9999 |
OHSS, n (%) | 5 (7.1) | 1 (3.7) | >0.9999 |
Freeze-all strategy, n (%) | 36 (48) | 25 (92.6) | <0.001 |
Single embryo transfer, n (%) | 73 (97.3) | 27 (96.4) | >0.9999 |
Endometrial thickness at ET (mm), mean (SD) | 8.1 (1.7) | 8.5 (1.9) | 0.3292 |
Pre-existing comorbidity, n (%) | |||
Disthyroidism | 22 (29.3) | 8 (28.6) | 0.9396 |
Hyperprolactinemia | 11 (14.7) | 0 (0) | 0.0329 |
Hypertension | 0 (0) | 0 (0) | |
Obesity | 4 (5.3) | 3 (10.7) | 0.3862 |
Other | 19 (25.3) | 4 (14.3) | 0.2310 |
Autoimmune antibodies, n (%) | 14 (18.9) | 6 (21.4) | 0.7757 |
Gynecological comorbidity, n (%) | |||
PCOS | 4 (5.3) | 10 (35.7) | <0.001 |
Hypothalamic amenorrhea | 0 (0) | 1 (3.6) | 0.2718 |
Endometriosis | 7 (9.3) | 0 (0) | 0.1852 |
Uterine fibromatosis | 7 (9.3) | 2 (7.1) | >0.9999 |
Previous PID | 3 (4) | 1 (3.6) | >0.9999 |
Previous gynecological surgery, n (%) | |||
Adnexal surgery | 7 (9.3) | 1 (3.6) | 0.4421 |
Miomectomy | 2 (2.7) | 0 (0) | >0.9999 |
Polypectomy | 8 (10.7) | 1 (3.6) | 0.4382 |
Endometriosis ablation | 3 (4) | 0 (0) | 0.5606 |
Other | 4 (5.3) | 1 (3.6) | >0.9999 |
Therapy during pregnancy, n (%) | |||
Low-dose acetylsalicylic acid (ASA) | 12 (18.5) | 8 (30.8) | 0.2002 |
NC/m-NC n = 75 | AC n = 28 | p | |
---|---|---|---|
Gestational age (weeks), median (Q1; Q3) | 39 + 3 (38; 40 + 6) | 39 + 3 (38 + 6; 40 + 1) | 0.9475 |
Type of delivery, n (%) | 0.6159 | ||
Spontaneous vaginal delivery | 45 (60) | 15 (53.6) | |
Operative vaginal delivery | 13 (17.3) | 4 (14.3) | |
C-section | 17 (22.7) | 9 (32.1) | |
Labour induction, n (%) | 21 (31.8) | 14 (53.8) | 0.0500 |
pPROM, n (%) | 3 (4) | 2 (7.1) | 0.6112 |
Chorioamniotitis, n (%) | 3 (4) | 0 (0) | 0.5606 |
PPH, n (%) | 12 (16) | 12 (42.9) | 0.0041 |
OASIS, n (%) | 2 (2.7) | 2 (7.1) | 0.2975 |
Manual placenta removal, n (%) | 1 (1.3) | 1 (3.6) | 0.4717 |
Placenta weight, mean (SD) | 596.5 (136.7) | 532.9 (104.5) | 0.1163 |
Placental insertion anomalies, n (%) | 0 (0) | 3 (10.7) | 0.0191 |
HDP, n (%) | 4 (5.3) | 5 (17.9) | 0.0591 |
PIH, n (%) | 3 (4) | 5 (17.9) | 0.0327 |
PE, n (%) | 1 (1.3) | 0 (0) | >0.9999 |
GDM, n (%) | 9 (12) | 7 (25) | 0.1293 |
Cholestasis, n (%) | 1 (1.3) | 1 (3.6) | 0.4717 |
Hospitalization during pregnancy, n (%) | 14 (18.7) | 8 (28.6) | 0.2752 |
NC/m-NC n = 75 | AC n = 28 | p | OR | IC 95% | aOR | IC 95% | |
---|---|---|---|---|---|---|---|
HDP, n (%) | 4 (5.3) | 5 (17.9) | 0.0591 | 3.86 | 0.955–15.594 | 2.34 | 0.502–10.872 |
PIH, n (%) | 12 (16) | 12 (42.9) | 0.0041 | 3.94 | 1.492–10.389 | 4.38 | 1.507–12.747 |
Placental insertion anomalies, n (%) | 0 (0) | 3 (10.7) | 0.0191 | - | - | - | - |
NC/m-NC n = 75 | AC n = 28 | p | |
---|---|---|---|
Male sex, n (%) | 38 (50.7) | 14 (50) | 0.9520 |
Late preterm (32–37 w), n (%) | 6 (8) | 5 (17.9) | 0.1647 |
Birthweight, mean (SD) | 3253.1 (557.3) | 3119.1 (543.2) | 0.2771 |
LGA, n (%) | 7 (9.3) | 2 (7.1) | >0.9999 |
Macrosomia ≥ 4000 g, n (%) | 7 (9.3) | 1 (3.6) | 0.4421 |
SGA, n (%) | 6 (8) | 2 (7.1) | >0.9999 |
IUGR ≥ 32 w, n (%) | 5 (6.7) | 2 (7.1) | >0.9999 |
APGAR ≤ 7 at 5′, n (%) | 2 (2.7) | 0 (0) | >0.9999 |
Arterial pH at birth, mean (SD) | 7.24 (0.9) | 7.23 (0.1) | 0.5160 |
Neonatal hospitalization, n (%) | 4 (5.6) | 3 (10.7) | 0.4000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carosso, A.R.; Brunod, N.; Filippini, C.; Revelli, A.; Evangelisti, B.; Cosma, S.; Borella, F.; Canosa, S.; Benedetto, C.; Gennarelli, G. Reproductive and Obstetric Outcomes Following a Natural Cycle vs. Artificial Endometrial Preparation for Frozen–Thawed Embryo Transfer: A Retrospective Cohort Study. J. Clin. Med. 2023, 12, 4032. https://doi.org/10.3390/jcm12124032
Carosso AR, Brunod N, Filippini C, Revelli A, Evangelisti B, Cosma S, Borella F, Canosa S, Benedetto C, Gennarelli G. Reproductive and Obstetric Outcomes Following a Natural Cycle vs. Artificial Endometrial Preparation for Frozen–Thawed Embryo Transfer: A Retrospective Cohort Study. Journal of Clinical Medicine. 2023; 12(12):4032. https://doi.org/10.3390/jcm12124032
Chicago/Turabian StyleCarosso, Andrea Roberto, Nicole Brunod, Claudia Filippini, Alberto Revelli, Bernadette Evangelisti, Stefano Cosma, Fulvio Borella, Stefano Canosa, Chiara Benedetto, and Gianluca Gennarelli. 2023. "Reproductive and Obstetric Outcomes Following a Natural Cycle vs. Artificial Endometrial Preparation for Frozen–Thawed Embryo Transfer: A Retrospective Cohort Study" Journal of Clinical Medicine 12, no. 12: 4032. https://doi.org/10.3390/jcm12124032
APA StyleCarosso, A. R., Brunod, N., Filippini, C., Revelli, A., Evangelisti, B., Cosma, S., Borella, F., Canosa, S., Benedetto, C., & Gennarelli, G. (2023). Reproductive and Obstetric Outcomes Following a Natural Cycle vs. Artificial Endometrial Preparation for Frozen–Thawed Embryo Transfer: A Retrospective Cohort Study. Journal of Clinical Medicine, 12(12), 4032. https://doi.org/10.3390/jcm12124032