Impact of Endometrial Preparation on the Maternal and Fetal Cardiovascular Variables of the First Trimester Combined Screening Test
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European IVF Monitoring Consortium (EIM), for the European Society of Human Reproduction and Embryology (ESHRE); Wyns, C.; De Geyter, C.; Calhaz-Jorge, C.; Kupka, M.S.; Motrenko, T.; Smeenk, J.; Bergh, C.; Tandler-Schneider, A.; Rugescu, I.A.; et al. ART in Europe, 2018: Results generated from European registries by ESHRE. Hum. Reprod. Open 2022, 2022, hoac022. [Google Scholar] [PubMed]
- Adamson, G.D.; de Mouzon, J.; Chambers, G.M.; Zegers-Hochschild, F.; Mansour, R.; Ishihara, O.; Banker, M.; Dyer, S. International Committee for Monitoring Assisted Reproductive Technology: World report on assisted reproductive technology, 2011. Fertil. Steril. 2018, 110, 1067–1080. [Google Scholar] [CrossRef] [PubMed]
- Ghobara, T.; Gelbaya, T.A.; Ayeleke, R.O. Cycle regimens for frozen-thawed embryo transfer. Cochrane Database Syst. Rev. 2017, 7, CD003414. [Google Scholar] [CrossRef]
- Mackens, S.; Santos-Ribeiro, S.; van de Vijver, A.; Racca, A.; Van Landuyt, L.; Tournaye, H.; Blockeel, C. Frozen embryo transfer: A review on the optimal endometrial preparation and timing. Hum. Reprod. 2017, 32, 2234–2242. [Google Scholar] [CrossRef]
- Glujovsky, D.; Pesce, R.; Sueldo, C.; Retamar, A.M.Q.; Hart, R.J.; Ciapponi, A. Endometrial preparation for women undergoing embryo transfer with frozen embryos or embryos derived from donor oocytes. Cochrane Database Syst. Rev. 2020, 10, CD006359. [Google Scholar] [PubMed]
- Mizrachi, Y.; Horowitz, E.; Ganer Herman, H.; Farhi, J.; Raziel, A.; Weissman, A. Should women receive luteal support following natural cycle frozen embryo transfer? A systematic review and meta-analysis. Hum. Reprod. Update 2021, 27, 643–650. [Google Scholar] [CrossRef]
- Gjerris, A.C.; Loft, A.; Pinborg, A.; Christiansen, M.; Tabor, A. First-trimester screening markers are altered in pregnancies conceived after IVF/ICSI. Ultrasound Obstet. Gynecol. 2009, 33, 8–17. [Google Scholar] [CrossRef]
- Cavoretto, P.; Dallagiovanna, C.; Viganò, P.; Somigliana, E.; Persico, N.; Papaleo, E.; Faulisi, S.; Candiani, M. First trimester combijned screening test in pregnancies derived from blastocyst trasfer. Eur. J. Obstet. Gynecol. Reprod. Biol. 2016, 198, 50–55. [Google Scholar] [CrossRef]
- Cavoretto, P.; Giorgione, V.; Cipriani, S.; Viganò, P.; Candiani, M.; Inversetti, A.; Ricci, E.; Parazzini, F. Nuchal translucency measurement, free β-hCG and PAPP-A concentrations in IVF/ICSI pregnancies: Systematic review and meta-analysis. Prenat. Diagn. 2017, 37, 540–555. [Google Scholar] [CrossRef]
- Carbone, I.F.; Cruz, J.J.; Sarquis, R.; Akolekar, R.; Nicolaides, K.H. Assisted conception and placental perfusion assessed by uterine artery Doppler at 11–13 weeks’ gestation. Hum. Reprod. 2011, 26, 1659–1664. [Google Scholar] [CrossRef]
- Almasi-Hashiani, A.; Omani-Samani, R.; Mohammadi, M.; Amini, P.; Navid, B.; Alizadeh, A.; Khedmati Morasae, E.; Maroufizadeh, S. Assisted reproductive technology and the risk of preeclampsia: An updated systematic review and meta-analysis. BMC Pregnancy Childbirth 2019, 19, 149. [Google Scholar] [CrossRef] [PubMed]
- Omani-Samani, R.; Alizadeh, A.; Almasi-Hashiani, A.; Mohammadi, M.; Maroufizadeh, S.; Navid, B.; Khedmati Morasae, E.; Amini, P. Risk of preeclampsia following assisted reproductive technology: Systematic review and meta-analysis of 72 cohort studies. J. Matern. Fetal Neonatal Med. 2020, 33, 2826–2840. [Google Scholar] [CrossRef] [PubMed]
- Von Versen-Höynck, F.; Strauch, N.K.; Liu, J.; Chi, Y.Y.; Keller-Woods, M.; Conrad, K.P.; Baker, V.L. Effect of Mode of Conception on Maternal Serum Relaxin, Creatinine, and Sodium Concentrations in an Infertile Population. Reprod. Sci. 2019, 26, 412–419. [Google Scholar] [CrossRef]
- Conrad, K.P.; von Versen-Höynck, F.; Baker, V.L. Potential role of the corpus luteum in maternal cardiovascular adaptation to pregnancy and preeclampsia risk. Am. J. Obstet. Gynecol. 2021, 226, 683–699. [Google Scholar] [CrossRef] [PubMed]
- Dallagiovanna, C.; Cappellari, M.; D’Ambrosi, F.; Reschini, M.; Kordas, K.; Li Piani, L.; Filippi, F.; Somigliana, E. Endometrial preparation does not affect the risk of hypertensive disorders of pregnancy in low-risk women undergoing frozen embryo transfer. Gynecol. Endocrinol. 2021, 38, 238–242. [Google Scholar] [CrossRef]
- Busnelli, A.; Schirripa, I.; Fedele, F.; Bulfoni, A.; Levi-Setti, P.E. Obstetric and perinatal outcomes following programmed compared to natural frozen-thawed embryo transfer cycles: A systematic review and meta-analysis. Hum. Reprod. 2022, 37, 1619–1641. [Google Scholar] [CrossRef]
- Marshall, S.A.; Senadheera, S.N.; Parry, L.J.; Girling, J.E. The Role of Relaxin in Normal and Abnormal Uterine Function During the Menstrual Cycle and Early Pregnancy. Reprod. Sci. 2017, 24, 342–354. [Google Scholar] [CrossRef]
- Von Versen-Höynck, F.; Narasimhan, P.; Selamet Tierney, E.S.; Martinez, N.; Conrad, K.P.; Baker, V.L.; Winn, V.D. Absent or Excessive Corpus Luteum Number Is Associated With Altered Maternal Vascular Health in Early Pregnancy. Hypertension 2019, 73, 680–690. [Google Scholar] [CrossRef]
- Cardellicchio, L.; Reschini, M.; Paffoni, A.; Guarneri, C.; Restelli, L.; Somigliana, E.; Vegetti, W. Frozen-thawed blastocyst transfer in natural cycle: Feasibility in everyday clinical practice. Arch. Gynecol. Obstet. 2017, 295, 1509–1514. [Google Scholar] [CrossRef]
- Kagan, K.O.; Cicero, S.; Staboulidou, I.; Wright, D.; Nicolaides, K.H. Fetal nasal bone in screening for trisomies 21, 18 and 13 and Turner syndrome at 11–13 weeks of gestation. Ultrasound Obstet. Gynecol. 2009, 33, 259–264. [Google Scholar] [CrossRef]
- Kagan, K.O.; Valencia, C.; Livanos, P.; Wright, D.; Nicolaides, K.H. Tricuspid regurgitation in screening for trisomies 21, 18 and 13 and Turner syndrome at 11 + 0 to 13 + 6 weeks of gestation. Ultrasound Obstet. Gynecol. 2009, 33, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Snijders, R.J.; Noble, P.; Sebire, N.; Souka, A.; Nicolaides, K.H. UK multicentre project on assessment of risk of trisomy 21 by maternal age and fetal nuchal-translucency thickness at 10-14 weeks of gestation. Fetal Medicine Foundation First Trimester Screening Group. Lancet 1998, 352, 343–346. [Google Scholar] [CrossRef] [PubMed]
- O’Gorman, N.; Wright, D.; Syngelaki, A.; Akolekar, R.; Wright, A.; Poon, L.C.; Nicolaides, K.H. Competing risks model in screening for preeclampsia by maternal factors and biomarkers at 11–13 weeks gestation. Am. J. Obstet. Gynecol. 2016, 214, 103.e1–103.e12. [Google Scholar] [CrossRef] [PubMed]
- O’Gorman, N.; Wright, D.; Poon, L.C.; Rolnik, D.L.; Syngelaki, A.; de Alvarado, M.; Carbone, I.F.; Dutemeyer, V.; Fiolna, M.; Frick, A.; et al. Multicenter screening for preeclampsia by maternal factors and biomarkers at 11–13 weeks’ gestation: Comparison with NICE guidelines and ACOG recommendations. Ultrasound Obstet. Gynecol. 2017, 49, 756–760. [Google Scholar] [CrossRef]
- Tan, M.Y.; Syngelaki, A.; Poon, L.C.; Rolnik, D.L.; O’Gorman, N.; Delgado, J.L.; Akolekar, R.; Konstantinidou, L.; Tsavdaridou, M.; Galeva, S.; et al. Screening for preeclampsia by maternal factors and biomarkers at 11–13 weeks’ gestation. Ultrasound Obstet. Gynecol. 2018, 52, 186–195. [Google Scholar] [CrossRef]
- Von Versen-Hoynck, F.; Schaub, A.M.; Chi, Y.Y.; Chiu, K.H.; Liu, J.; Lingis, M.; Stan Williams, R.; Rhoton-Vlasak, A.; Nichols, W.W.; Fleischmann, R.R.; et al. Increased preeclampsia risk and reduced aortic compliance with in vitro fertilization cycles in the absence of a corpus luteum. Hypertension 2019, 73, 640–649. [Google Scholar] [CrossRef]
- Deichert, U.; Albrand-Thielmann, C.; van de Sandt, M. Doppler-sonographic pelvic blood flow measurements and their prognostic value in terms of luteal phase and implantation. Hum. Reprod. 1996, 11, 1591–1593. [Google Scholar] [CrossRef]
- Romero, R. Prevention of spontaneous preterm birth: The role of sonographic cervical length in identifying patients who may benefit from progesterone treatment. Ultrasound Obstet. Gynecol. 2007, 30, 675–686. [Google Scholar] [CrossRef]
- Khandelwal, M. Vaginal progesterone in risk reduction of preterm birth in women with short cervix in the midtrimester of pregnancy. Int. J. Women’s Health 2012, 4, 481–490. [Google Scholar] [CrossRef]
- Valenzuela-Alcaraz, B.; Crispi, F.; Bijnens, B.; Cruz-Lemini, M.; Creus, M.; Sitges, M.; Bartrons, J.; Civico, S.; Balasch, J.; Gratacós, E. Assisted reproductive technologies are associated with cardiovascular remodeling in utero that persists postnatally. Circulation 2013, 128, 1442–1450. [Google Scholar] [CrossRef]
- Amor, D.J.; Xu, J.X.; Halliday, J.L.; Francis, I.; Healy, D.L.; Breheny, S.; Baker, H.W.G.; Jaques, A.M. Pregnancies conceived using assisted reproductive technologies (ART) have low levels of pregnancy-associated plasma protein-A (PAPP-A) leading to a high rate of false-positive results in first trimester screening for Down syndrome. Hum. Reprod. 2009, 24, 1330–1338. [Google Scholar] [PubMed]
- Ong, C.Y.; Liao, A.W.; Spencer, K.; Munim, S.; Nicolaides, K.H. First trimester maternal serum free beta human chorionic gonadotrophin and pregnancy associated plasma protein A as predictors of pregnancy complications. BJOG 2000, 107, 1265–1270. [Google Scholar] [CrossRef] [PubMed]
- Dugoff, L.; Hobbins, J.C.; Malone, F.D.; Vidaver, J.; Sullivan, L.; Canick, J.A.; Lambert-Messerlian, G.M.; Porter, T.F.; Luthy, D.A.; Comstock, C.H.; et al. Quadscreen as a predictor of adverse pregnancy outcome. Obstet. Gynecol. 2005, 106, 260–267. [Google Scholar] [CrossRef]
- Smith, G.C.; Shah, I.; Crossley, J.A.; Aitken, D.A.; Pell, J.P.; Nelson, S.M.; Cameron, A.D.; Connor, M.J.; Dobbie, R. Pregnancy-associated plasma protein A and alpha-fetoprotein and prediction of adverse perinatal outcome. Obstet. Gynecol. 2006, 107, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Bersinger, N.A.; Wunder, D.; Vanderlick, F.; Chanson, A.; Pescia, G.; Janecek, P.; Boillat, E.; Birkhäuser, M.H. Maternal serum levels of placental proteins after in vitro fertilisation and their implications for prenatal screening. Prenat. Diagn. 2004, 24, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Liao, A.W.; Heath, V.; Kametas, N.; Spencer, K.; Nicolaides, K.H. First-trimester screening for trisomy 21 in singleton pregnancies achieved by assisted reproduction. Hum. Reprod. 2001, 16, 1501–1504. [Google Scholar] [CrossRef]
- Wøjdemann, K.R.; Larsen, S.O.; Shalmi, A.; Sundberg, K.; Christiansen, M.; Tabor, A. First trimester screening for Down syndrome and assisted reproduction: No basis for concern. Prenat. Diagn. 2001, 21, 563–565. [Google Scholar] [CrossRef]
- Ghisoni, L.; Ferrazzi, E.; Castagna, C.; Levi Setti, P.E.; Masini, A.C.; Pigni, A. Prenatal diagnosis after ART success: The role of early combined screening tests in counselling pregnant patients. Placenta 2003, 24 (Suppl. SB), S99–S103. [Google Scholar]
- Maymon, R.; Shulman, A. Integrated first- and second-trimester Down syndrome screening test among unaffected IVF pregnancies. Prenat. Diagn. 2004, 24, 125–129. [Google Scholar] [CrossRef]
- Hui, P.W.; Tang, M.H.; Lam, Y.H.; Yeung, W.S.; Ng, E.H.; Ho, P.C. Nuchal translucency in pregnancies conceived after assisted reproduction technology. Ultrasound Obstet. Gynecol. 2005, 25, 234–238. [Google Scholar] [CrossRef]
Characteristics | Natural Cycle | HRT Cycle | p |
---|---|---|---|
n = 174 | n = 122 | ||
Age (years) | 36 [33–39] | 37 [33–41] | 0.08 |
BMI (Kg/m2) | 21.3 [19.6–23.4] | 20.7 [19.4–23.1] | 0.28 |
Smoking | 28 (16%) | 15 (12%) | 0.41 |
Previous deliveries | 35 (20%) | 19 (16%) | 0.36 |
Previous pregnancy | 65 (37%) | 52 (43%) | 0.40 |
Duration of infertility (years) | 3 [2–4] | 3 [2–4] | 0.33 |
Previous gynecology surgery | 42 (24%) | 30 (25%) | 1.00 |
Type of IVF | <0.001 | ||
Homologous | 168 (97%) | 97 (80%) | |
Heterologous | 6 (3%) | 25 (20%) | |
Regular cycles | 162 (93%) | 90 (74%) | <0.001 |
Indication to IVF | 0.004 | ||
Unexplained | 56 (32%) | 44 (36%) | |
Endometriosis | 20 (12%) | 7 (6%) | |
Tubal factor | 16 (9%) | 6 (5%) | |
Disovulatory | 4 (2%) | 16 (13%) | |
Male factor | 53 (31%) | 29 (24%) | |
Genetic | 13 (7%) | 13 (10%) | |
Mixed | 12 (7%) | 7 (6%) |
Characteristics | Natural Cycle | HRT Cycle | p |
---|---|---|---|
n = 174 | n = 122 | ||
β-hCG (MoM) | 1.14 [0.76–1.58] | 1.11 [0.75–1.77] | 0.56 |
PAPP_A (MoM) | 1.21 [0.71–1.73] | 1.19 [0.82–1.92] | 0.23 |
NT | 1.8 [1.6–2.0] | 1.8 [1.5–2.0] | 0.45 |
FHR | 159 [155–164] | 164 [158–168] | 0.002 |
UtA-PI (MoM) | 0.94 [0.74–1.18] | 0.72 [0.58–0.90] | <0.001 |
MAP (MoM) | 1.021 [0.964–1.087] | 1.041 [0.980–1.111] | 0.039 |
PIGF (MoM) | 1.04 [0.80–1.19] | 1.03 [0.72–1.37] | 0.83 |
High risk for trisomy 21 (≤1 su 250) | 13 (8%) | 11 (9%) | 0.67 |
High risk for trisomy 18 (≤1 su 250) | 2 (1%) | 2 (2%) | 1.00 |
High risk for trisomy 13 (≤1 su 250) | 1 (1%) | 2 (2%) | 0.57 |
High risk combined test | 15 (9%) | 12 (10%) | 0.84 |
High risk for preeclampsia a | 61 (38%) | 31 (28%) | 0.12 |
Characteristics | Natural Cycle | HRT Cycle | p |
---|---|---|---|
n = 174 | n = 122 | ||
Therapeutic abortion a | 5 (3%) | 2 (2%) | 0.70 |
Live birth | 169 | 120 | |
Preterm deliveries (<37 weeks) | 13 (8%) | 11 (9%) | 0.67 |
Neonatal weight <2500 g | 10 (6%) | 9 (8%) | 0.64 |
Hypertensive disorders in pregnancy | 8 (5%) | 12 (10%) | 0.10 |
Preeclampsia | 3 (2%) | 7 (6%) | 0.10 |
Gestational diabetes | 5 (3%) | 5 (4%) | 0.75 |
Other obstetrical complications b | 8 (5%) | 8 (7%) | 0.60 |
Neonatal complications c | 4 (2%) | 6 (5%) | 0.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dallagiovanna, C.; Benaglia, L.; Reschini, M.; Di Gesaro, L.; Li Piani, L.; Persico, N.; Vigano’, P.; Somigliana, E. Impact of Endometrial Preparation on the Maternal and Fetal Cardiovascular Variables of the First Trimester Combined Screening Test. J. Clin. Med. 2023, 12, 6854. https://doi.org/10.3390/jcm12216854
Dallagiovanna C, Benaglia L, Reschini M, Di Gesaro L, Li Piani L, Persico N, Vigano’ P, Somigliana E. Impact of Endometrial Preparation on the Maternal and Fetal Cardiovascular Variables of the First Trimester Combined Screening Test. Journal of Clinical Medicine. 2023; 12(21):6854. https://doi.org/10.3390/jcm12216854
Chicago/Turabian StyleDallagiovanna, Chiara, Laura Benaglia, Marco Reschini, Luca Di Gesaro, Letizia Li Piani, Nicola Persico, Paola Vigano’, and Edgardo Somigliana. 2023. "Impact of Endometrial Preparation on the Maternal and Fetal Cardiovascular Variables of the First Trimester Combined Screening Test" Journal of Clinical Medicine 12, no. 21: 6854. https://doi.org/10.3390/jcm12216854
APA StyleDallagiovanna, C., Benaglia, L., Reschini, M., Di Gesaro, L., Li Piani, L., Persico, N., Vigano’, P., & Somigliana, E. (2023). Impact of Endometrial Preparation on the Maternal and Fetal Cardiovascular Variables of the First Trimester Combined Screening Test. Journal of Clinical Medicine, 12(21), 6854. https://doi.org/10.3390/jcm12216854