Molecular Mechanisms of Vascular Tone in Exercising Pediatric Populations: A Comprehensive Overview on Endothelial, Antioxidative, Metabolic and Lipoprotein Signaling Molecules
Abstract
:1. Introduction
2. Vascular Signaling Molecules
2.1. Endothelial
2.2. Antioxidative
2.3. Metabolic
2.4. Lipoproteins
2.5. Search Strategy
3. Impact of Exercise on Vascular Biomarkers
3.1. Endothelial
3.2. Antioxidative
3.3. Metabolic
3.4. Lipoproteins
4. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NO | nitric oxide |
ET-1 | endothelin-1 |
fT3 | free triiodothyronine |
SOD | superoxide dismutase |
GPX | glutathione peroxidase |
HDL | High-Density Lipoprotein |
LDL | Low-Density Lipoprotein |
oxLDL | oxidized Low-Density Lipoprotein |
CVD | cardiovascular disease |
WHO | World Health Organization |
eNOS | endothelial nitric oxide synthase |
ETA | endothelin receptor subtype A |
ETB | endothelin receptor subtype B |
ROS | reactive oxygen species |
PI3K | phosphatidylinositol 3-kinase |
T4 | thyroxine |
T3 | triiodothyronine |
TRalpha | thyroid hormone receptor alpha |
SR-B1 | scavenger receptor class B type 1 |
Src | tyrosine protein kinase Src |
Akt | Protein Kinase B |
S1P3 | sphingosine-1-phosphate receptor |
MAPK/ERK | mitogen-activated protein kinase/extracellular-signal-regulated kinase |
LOX-1 | Lectin-like oxLDL receptor |
MT1-MMP | membrane type-1 matrix metalloproteinase |
NFκB | Nuclear factor kappa B |
References
- Ma, J.; Li, Y.; Yang, X.; Liu, K.; Zhang, X.; Zuo, X.; Ye, R.; Wang, Z.; Shi, R.; Meng, Q.; et al. Signaling pathways in vascular function and hypertension: Molecular mechanisms and therapeutic interventions. Signal Transduct. Target. Ther. 2023, 8, 168. [Google Scholar]
- Krüger-Genge, A.; Blocki, A.; Franke, R.P.; Jung, F. Vascular Endothelial Cell Biology: An Update. Int. J. Mol. Sci. 2019, 20, 4411. [Google Scholar] [CrossRef] [PubMed]
- Sandoo, A.; van Zanten, J.J.; Metsios, G.S.; Carroll, D.; Kitas, G.D. The endothelium and its role in regulating vascular tone. Open Cardiovasc. Med. J. 2010, 4, 302–312. [Google Scholar] [CrossRef] [PubMed]
- Baretella, O.; Vanhoutte, P.M. Endothelium-Dependent Contractions: Prostacyclin and Endothelin-1, Partners in Crime? Adv. Pharmacol. 2016, 77, 177–208. [Google Scholar] [PubMed]
- Stitham, J.; Midgett, C.; Martin, K.A.; Hwa, J. Prostacyclin: An inflammatory paradox. Front. Pharmacol. 2011, 2, 24. [Google Scholar] [CrossRef] [PubMed]
- Malekmohammad, K.; Bezsonov, E.E.; Rafieian-Kopaei, M. Role of Lipid Accumulation and Inflammation in Atherosclerosis: Focus on Molecular and Cellular Mechanisms. Front. Cardiovasc. Med. 2021, 8, 707529. [Google Scholar] [CrossRef]
- Zhao, Y.; Vanhoutte, P.M.; Leung, S.W.S. Vascular nitric oxide: Beyond eNOS. J. Pharmacol. Sci. 2015, 129, 83–94. [Google Scholar] [CrossRef]
- Jin, R.C.; Loscalzo, J. Vascular Nitric Oxide: Formation and Function. J. Blood Med. 2010, 2010, 147–162. [Google Scholar]
- Nishiyama, S.K.; Zhao, J.; Wray, D.W.; Richardson, R.S. Vascular function and endothelin-1: Tipping the balance between vasodilation and vasoconstriction. J. Appl. Physiol. (1985) 2017, 122, 354–360. [Google Scholar] [CrossRef] [PubMed]
- Rapoport, R.M.; Merkus, D. Endothelin-1 Regulation of Exercise-Induced Changes in Flow: Dynamic Regulation of Vascular Tone. Front. Pharmacol. 2017, 8, 517. [Google Scholar] [CrossRef]
- Vane, J.; Corin, R.E. Prostacyclin: A Vascular Mediator. Eur. J. Vasc. Endovasc. Surg. 2003, 26, 571–578. [Google Scholar] [CrossRef]
- Hiroi, Y.; Kim, H.H.; Ying, H.; Furuya, F.; Huang, Z.; Simoncini, T.; Noma, K.; Ueki, K.; Nguyen, N.H.; Scanlan, T.S.; et al. Rapid nongenomic actions of thyroid hormone. Proc. Natl. Acad. Sci. USA 2006, 103, 14104–14109. [Google Scholar] [CrossRef] [PubMed]
- Vecchione, C.; Maffei, A.; Colella, S.; Aretini, A.; Poulet, R.; Frati, G.; Gentile, M.T.; Fratta, L.; Trimarco, V.; Trimarco, B.; et al. Leptin Effect on Endothelial Nitric Oxide Is Mediated Through Akt–Endothelial Nitric Oxide Synthase Phosphorylation Pathway. Diabetes 2002, 51, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Zhou, Y.; Nabavi, S.M.; Sahebkar, A.; Little, P.J.; Xu, S.; Weng, J.; Ge, J. Mechanisms of Oxidized LDL-Mediated Endothelial Dysfunction and Its Consequences for the Development of Atherosclerosis. Front. Cardiovasc. Med. 2022, 9, 925923. [Google Scholar] [CrossRef] [PubMed]
- Shaul, P.W.; Mineo, C. HDL action on the vascular wall: Is the answer NO? J. Clin. Investig. 2004, 113, 509–513. [Google Scholar] [CrossRef]
- Fukai, T.; Ushio-Fukai, M. Superoxide dismutases: Role in redox signaling, vascular function, and diseases. Antioxid. Redox Signal 2011, 15, 1583–1606. [Google Scholar] [CrossRef] [PubMed]
- Handy, D.E.; Loscalzo, J. The role of glutathione peroxidase-1 in health and disease. Free Radic. Biol. Med. 2022, 188, 146–161. [Google Scholar] [CrossRef]
- de Freitas, R.A.; Lima, V.V.; Bomfim, G.F.; Giachini, F.R.C. Interleukin-10 in the Vasculature: Pathophysiological Implications. Curr. Vasc. Pharmacol. 2022, 20, 230–243. [Google Scholar] [CrossRef]
- Schober, A. Chemokines in Vascular Dysfunction and Remodeling. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 1950–1959. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; He, B. Endothelial dysfunction: Molecular mechanisms and clinical implications. MedComm 2024, 5, e651. [Google Scholar] [CrossRef] [PubMed]
- Mudau, M.; Genis, A.; Lochner, A.; Strijdom, H. Endothelial dysfunction: The early predictor of atherosclerosis. Cardiovasc. J. Afr. 2012, 23, 222–231. [Google Scholar] [CrossRef] [PubMed]
- Augustin, H.G.; Koh, G.Y. A systems view of the vascular endothelium in health and disease. Cell 2024, 187, 4833–4858. [Google Scholar] [CrossRef] [PubMed]
- Pi, X.; Xie, L.; Patterson, C. Emerging Roles of Vascular Endothelium in Metabolic Homeostasis. Circ. Res. 2018, 123, 477–494. [Google Scholar] [CrossRef] [PubMed]
- Strong, J.P.; Malcom, G.T.; Oalmann, M.C.; Wissler, R.W. The PDAY Study: Natural history, risk factors, and pathobiology. Pathobiological Determinants of Atherosclerosis in Youth. Ann. N. Y. Acad. Sci. 1997, 811, 226–235; discussion 235–237. [Google Scholar] [CrossRef]
- Pahkala, K.; Heinonen, O.J.; Simell, O.; Viikari, J.S.A.; Rönnemaa, T.; Niinikoski, H.; Raitakari, O.T. Association of Physical Activity With Vascular Endothelial Function and Intima-Media Thickness. Circulation 2011, 124, 1956–1963. [Google Scholar] [CrossRef]
- Fiuza-Luces, C.; Garatachea, N.; Berger, N.A.; Lucia, A. Exercise is the real polypill. Physiology 2013, 28, 330–358. [Google Scholar] [CrossRef]
- Sharma, S.; Merghani, A.; Mont, L. Exercise and the heart: The good, the bad, and the ugly. Eur. Heart J. 2015, 36, 1445–1453. [Google Scholar] [CrossRef] [PubMed]
- WHO Guidelines Approved by the Guidelines Review Committee. In Global Recommendations on Physical Activity for Health; World Health Organization: Geneva, Switzerland, 2010.
- Sabato, T.M.; Walch, T.J.; Caine, D.J. The elite young athlete: Strategies to ensure physical and emotional health. Open Access J. Sports Med. 2016, 7, 99–113. [Google Scholar]
- Little, C.C.; Howell, D.R.; Armento, A.M.; Sweeney, E.A.; Walker, G.A. Training volume recommendations and psychosocial outcomes in adolescent athletes. Phys. Sportsmed. 2023, 51, 420–426. [Google Scholar] [CrossRef] [PubMed]
- Cohn, J.N.; Ferrari, R.; Sharpe, N. Cardiac remodeling--concepts and clinical implications: A consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J. Am. Coll. Cardiol. 2000, 35, 569–582. [Google Scholar] [CrossRef] [PubMed]
- Green, D.J.; Hopman, M.T.E.; Padilla, J.; Laughlin, M.H.; Thijssen, D.H.J. Vascular Adaptation to Exercise in Humans: Role of Hemodynamic Stimuli. Physiol. Rev. 2017, 97, 495–528. [Google Scholar] [CrossRef]
- Nystoriak, M.A.; Bhatnagar, A. Cardiovascular Effects and Benefits of Exercise. Front. Cardiovasc. Med. 2018, 5, 135. [Google Scholar] [CrossRef]
- O’Keefe, J.H.; Patil, H.R.; Lavie, C.J.; Magalski, A.; Vogel, R.A.; McCullough, P.A. Potential adverse cardiovascular effects from excessive endurance exercise. Mayo Clin. Proc. 2012, 87, 587–595. [Google Scholar] [CrossRef]
- Green, D.J.; Spence, A.; Rowley, N.; Thijssen, D.H.; Naylor, L.H. Vascular adaptation in athletes: Is there an ‘athlete’s artery’? Exp. Physiol. 2012, 97, 295–304. [Google Scholar] [CrossRef]
- Baumgartner, L.; Weberruß, H.; Appel, K.; Engl, T.; Goeder, D.; Oberhoffer-Fritz, R.; Schulz, T. Improved Carotid Elasticity but Altered Central Hemodynamics and Carotid Structure in Young Athletes. Front. Sports Act. Living 2021, 3, 633873. [Google Scholar] [CrossRef]
- Tsukiyama, Y.; Ito, T.; Nagaoka, K.; Eguchi, E.; Ogino, K. Effects of exercise training on nitric oxide, blood pressure and antioxidant enzymes. J. Clin. Biochem. Nutr. 2017, 60, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Poole, D.C.; Ferguson, S.K.; Musch, T.I.; Porcelli, S. Role of nitric oxide in convective and diffusive skeletal muscle microvascular oxygen kinetics. Nitric Oxide 2022, 121, 34–44. [Google Scholar] [CrossRef]
- Muscella, A.; Stefàno, E.; Marsigliante, S. The effects of exercise training on lipid metabolism and coronary heart disease. Am. J. Physiol. Heart Circ. Physiol. 2020, 319, H76–H88. [Google Scholar] [CrossRef]
- Powers, S.K.; Goldstein, E.; Schrager, M.; Ji, L.L. Exercise Training and Skeletal Muscle Antioxidant Enzymes: An Update. Antioxidants 2022, 12, 39. [Google Scholar] [CrossRef]
- Docherty, S.; Harley, R.; McAuley, J.J.; Crowe, L.A.N.; Pedret, C.; Kirwan, P.D.; Siebert, S.; Millar, N.L. The effect of exercise on cytokines: Implications for musculoskeletal health: A narrative review. BMC Sports Sci. Med. Rehabil. 2022, 14, 5. [Google Scholar] [CrossRef]
- Lopes, W.A.; Leite, N.; da Silva, L.R.; Brunelli, D.T.; Gáspari, A.F.; Radominski, R.B.; Chacon-Mikahil, M.P.; Cavaglieri, C.R. Effects of 12 weeks of combined training without caloric restriction on inflammatory markers in overweight girls. J. Sports Sci. 2016, 34, 1902–1912. [Google Scholar] [CrossRef] [PubMed]
- Vasconcellos, F.; Seabra, A.; Cunha, F.; Montenegro, R.; Penha, J.; Bouskela, E.; Nogueira Neto, J.F.; Collett-Solberg, P.; Farinatti, P. Health markers in obese adolescents improved by a 12-week recreational soccer program: A randomised controlled trial. J. Sports Sci. 2016, 34, 564–575. [Google Scholar] [CrossRef]
- Woo, J.; Yeo, N.H.; Shin, K.O.; Lee, H.J.; Yoo, J.; Kang, S. Antioxidant enzyme activities and DNA damage in children with type 1 diabetes mellitus after 12 weeks of exercise. Acta Paediatr. 2010, 99, 1263–1268. [Google Scholar] [CrossRef]
- Förstermann, U.; Xia, N.; Li, H. Roles of Vascular Oxidative Stress and Nitric Oxide in the Pathogenesis of Atherosclerosis. Circ. Res. 2017, 120, 713–735. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Jia, H.; Hua, Y.; Wu, C.; Li, S.; Li, K.; Liang, Z.; Wang, Y. The Molecular Mechanism of Aerobic Exercise Improving Vascular Remodeling in Hypertension. Front. Physiol. 2022, 13, 792292. [Google Scholar] [CrossRef] [PubMed]
- Hellsten, Y.; Jensen, L.; Thaning, P.; Nyberg, M.; Mortensen, S. Impaired formation of vasodilators in peripheral tissue in essential hypertension is normalized by exercise training: Role of adenosine and prostacyclin. J. Hypertens. 2012, 30, 2007–2014. [Google Scholar] [CrossRef] [PubMed]
- Higashi, Y. Exercise is a double-edged sword for endothelial function. Hypertens. Res. 2016, 39, 61–63. [Google Scholar] [CrossRef]
- Hansen, C.; Møller, S.; Ehlers, T.; Wickham, K.A.; Bangsbo, J.; Gliemann, L.; Hellsten, Y. Redox balance in human skeletal muscle-derived endothelial cells—Effect of exercise training. Free Radic. Biol. Med. 2022, 179, 144–155. [Google Scholar] [CrossRef]
- Osanai, T.; Fujita, N.; Fujiwara, N.; Nakano, T.; Takahashi, K.; Guan, W.; Okumura, K. Cross talk of shear-induced production of prostacyclin and nitric oxide in endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H233–H238. [Google Scholar] [CrossRef]
- Maeda, S.; Miyauchi, T.; Kakiyama, T.; Sugawara, J.; Iemitsu, M.; Irukayama-Tomobe, Y.; Murakami, H.; Kumagai, Y.; Kuno, S.; Matsuda, M. Effects of exercise training of 8 weeks and detraining on plasma levels of endothelium-derived factors, endothelin-1 and nitric oxide, in healthy young humans. Life Sci. 2001, 69, 1005–1016. [Google Scholar] [CrossRef]
- Stow, L.R.; Jacobs, M.E.; Wingo, C.S.; Cain, B.D. Endothelin-1 gene regulation. Faseb J. 2011, 25, 16–28. [Google Scholar] [CrossRef]
- Schneider, M.P.; Boesen, E.I.; Pollock, D.M. Contrasting actions of endothelin ET(A) and ET(B) receptors in cardiovascular disease. Annu. Rev. Pharmacol. Toxicol. 2007, 47, 731–759. [Google Scholar] [CrossRef] [PubMed]
- Davenport, A.P.; Hyndman, K.A.; Dhaun, N.; Southan, C.; Kohan, D.E.; Pollock, J.S.; Pollock, D.M.; Webb, D.J.; Maguire, J.J. Endothelin. Pharmacol. Rev. 2016, 68, 357–418. [Google Scholar] [CrossRef]
- Kowalczyk, A.; Kleniewska, P.; Kolodziejczyk, M.; Skibska, B.; Goraca, A. The role of endothelin-1 and endothelin receptor antagonists in inflammatory response and sepsis. Arch. Immunol. Ther. Exp. 2015, 63, 41–52. [Google Scholar] [CrossRef]
- Guolin, L. The Positive and Negative Aspects of Reactive Oxygen Species in Sports Performance. In Current Issues in Sports and Exercise Medicine; Michael, H., Nick, D., Yaso, K., Eds.; IntechOpen: Rijeka, Croatia, 2013; Chapter 6. [Google Scholar]
- Powers, S.K.; Deminice, R.; Ozdemir, M.; Yoshihara, T.; Bomkamp, M.P.; Hyatt, H. Exercise-induced oxidative stress: Friend or foe? J. Sport. Health Sci. 2020, 9, 415–425. [Google Scholar] [CrossRef] [PubMed]
- Schippinger, G.; Wonisch, W.; Abuja, P.M.; Fankhauser, F.; Winklhofer-Roob, B.M.; Halwachs, G. Lipid peroxidation and antioxidant status in professional American football players during competition. Eur. J. Clin. Investig. 2002, 32, 686–692. [Google Scholar] [CrossRef] [PubMed]
- Virdis, A.; Bacca, A.; Colucci, R.; Duranti, E.; Fornai, M.; Materazzi, G.; Ippolito, C.; Bernardini, N.; Blandizzi, C.; Bernini, G.; et al. Endothelial dysfunction in small arteries of essential hypertensive patients: Role of cyclooxygenase-2 in oxidative stress generation. Hypertension 2013, 62, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Friedman, J.M. Leptin and the regulation of body weigh. Keio J. Med. 2011, 60, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Tadokoro, S.; Ide, S.; Tokuyama, R.; Umeki, H.; Tatehara, S.; Kataoka, S.; Satomura, K. Leptin promotes wound healing in the skin. PLoS ONE 2015, 10, e0121242. [Google Scholar] [CrossRef]
- Picó, C.; Palou, M.; Pomar, C.A.; Rodríguez, A.M.; Palou, A. Leptin as a key regulator of the adipose organ. Rev. Endocr. Metab. Disord. 2022, 23, 13–30. [Google Scholar] [CrossRef]
- Koh, K.K.; Park, S.M.; Quon, M.J. Leptin and cardiovascular disease: Response to therapeutic interventions. Circulation 2008, 117, 3238–3249. [Google Scholar] [CrossRef] [PubMed]
- Vilariño-García, T.; Polonio-González, M.L.; Pérez-Pérez, A.; Ribalta, J.; Arrieta, F.; Aguilar, M.; Obaya, J.C.; Gimeno-Orna, J.A.; Iglesias, P.; Navarro, J.; et al. Role of Leptin in Obesity, Cardiovascular Disease, and Type 2 Diabetes. Int. J. Mol. Sci. 2024, 25, 2338. [Google Scholar] [CrossRef]
- Beltowski, J. Leptin and atherosclerosis. Atherosclerosis 2006, 189, 47–60. [Google Scholar] [CrossRef]
- Sierra-Honigmann, M.R.; Nath, A.K.; Murakami, C.; García-Cardeña, G.; Papapetropoulos, A.; Sessa, W.C.; Madge, L.A.; Schechner, J.S.; Schwabb, M.B.; Polverini, P.J.; et al. Biological action of leptin as an angiogenic factor. Science 1998, 281, 1683–1686. [Google Scholar] [CrossRef] [PubMed]
- Dimmeler, S.; Fleming, I.; Fisslthaler, B.; Hermann, C.; Busse, R.; Zeiher, A.M. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 1999, 399, 601–605. [Google Scholar] [CrossRef]
- Bouassida, A.; Zalleg, D.; Bouassida, S.; Zaouali, M.; Feki, Y.; Zbidi, A.; Tabka, Z. Leptin, its implication in physical exercise and training: A short review. J. Sports Sci. Med. 2006, 5, 172–181. [Google Scholar] [PubMed]
- Fontana, A.; Vieira, J.G.; Vianna, J.M.; Bichowska, M.; Krzysztofik, M.; Wilk, M.; Reis, V.M. Reduction of leptin levels during acute exercise is dependent on fasting but not on caloric restriction during chronic exercise: A systematic review and meta-analysis. PLoS ONE 2023, 18, e0288730. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, C.; Knoll-Pientka, N.; Mwanri, A.; Erfle, C.; Onywera, V.; Tremblay, M.S.; Bühlmeier, J.; Luzak, A.; Ferland, M.; Schulz, H.; et al. Low leptin levels are associated with elevated physical activity among lean school children in rural Tanzania. BMC Public Health 2022, 22, 933. [Google Scholar] [CrossRef]
- Razvi, S.; Jabbar, A.; Pingitore, A.; Danzi, S.; Biondi, B.; Klein, I.; Peeters, R.; Zaman, A.; Iervasi, G. Thyroid Hormones and Cardiovascular Function and Diseases. J. Am. Coll. Cardiol. 2018, 71, 1781–1796. [Google Scholar] [CrossRef] [PubMed]
- Di Gioia, G.; Squeo, M.R.; Lemme, E.; Maestrini, V.; Monosilio, S.; Ferrera, A.; Buzzelli, L.; Valente, D.; Pelliccia, A. Association between FT3 Levels and Exercise-Induced Cardiac Remodeling in Elite Athletes. Biomedicines 2024, 12, 1530. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, M.; Asuka, E.; Fingeret, A. Physiology, Thyroid Function. In StatPearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2024. [Google Scholar]
- Gaynullina, D.K.; Schubert, R.; Tarasova, O.S. Changes in Endothelial Nitric Oxide Production in Systemic Vessels during Early Ontogenesis-A Key Mechanism for the Perinatal Adaptation of the Circulatory System. Int. J. Mol. Sci. 2019, 20, 1421. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Gómez, I.; Moliz, J.N.; Quesada, A.; Montoro-Molina, S.; Vargas-Tendero, P.; Osuna, A.; Wangensteen, R.; Vargas, F. L-Arginine metabolism in cardiovascular and renal tissue from hyper- and hypothyroid rats. Exp. Biol. Med. 2016, 241, 550–556. [Google Scholar] [CrossRef] [PubMed]
- Simsch, C.; Lormes, W.; Petersen, K.G.; Baur, S.; Liu, Y.; Hackney, A.C.; Lehmann, M.; Steinacker, J.M. Training intensity influences leptin and thyroid hormones in highly trained rowers. Int. J. Sports Med. 2002, 23, 422–427. [Google Scholar] [CrossRef]
- Soria, M.; Anson, M.; Escanero, J.F. Correlation Analysis of Exercise-Induced Changes in Plasma Trace Element and Hormone Levels During Incremental Exercise in Well-Trained Athletes. Biol. Trace Elem. Res. 2016, 170, 55–64. [Google Scholar] [CrossRef]
- Mastorakos, G.; Pavlatou, M. Exercise as a stress model and the interplay between the hypothalamus-pituitary-adrenal and the hypothalamus-pituitary-thyroid axes. Horm. Metab. Res. 2005, 37, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Hackney, A.; Kallman, A.; Hosick, K.; Rubin, D.; Battaglini, C. Thyroid hormonal responses to intensive interval versus steady-state endurance exercise sessions. Hormones 2012, 11, 54–60. [Google Scholar] [CrossRef]
- Steinacker, J.M.; Brkic, M.; Simsch, C.; Nething, K.; Kresz, A.; Prokopchuk, O.; Liu, Y. Thyroid hormones, cytokines, physical training and metabolic control. Horm. Metab. Res. 2005, 37, 538–544. [Google Scholar] [CrossRef] [PubMed]
- Jabbar, A.; Pingitore, A.; Pearce, S.H.; Zaman, A.; Iervasi, G.; Razvi, S. Thyroid hormones and cardiovascular disease. Nat. Rev. Cardiol. 2017, 14, 39–55. [Google Scholar] [CrossRef]
- Hackney, A.C.; Saeidi, A. The thyroid axis, prolactin, and exercise in humans. Curr. Opin. Endocr. Metab. Res. 2019, 9, 45–50. [Google Scholar] [CrossRef]
- Perseghin, G.; Lattuada, G.; Ragogna, F.; Alberti, G.; La Torre, A.; Luzi, L. Free leptin index and thyroid function in male highly trained athletes. Eur. J. Endocrinol. 2009, 161, 871–876. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, R.K. Emerging risk biomarkers in cardiovascular diseases and disorders. J. Lipids 2015, 2015, 971453. [Google Scholar] [CrossRef]
- Yu, X.H.; Zhang, D.W.; Zheng, X.L.; Tang, C.K. Cholesterol transport system: An integrated cholesterol transport model involved in atherosclerosis. Prog. Lipid Res. 2019, 73, 65–91. [Google Scholar] [CrossRef]
- Lewington, S.; Whitlock, G.; Clarke, R.; Sherliker, P.; Emberson, J.; Halsey, J.; Qizilbash, N.; Peto, R.; Collins, R. Blood cholesterol and vascular mortality by age, sex, and blood pressure: A meta-analysis of individual data from 61 prospective studies with 55,000 vascular deaths. Lancet 2007, 370, 1829–1839. [Google Scholar]
- Briel, M.; Ferreira-Gonzalez, I.; You, J.J.; Karanicolas, P.J.; Akl, E.A.; Wu, P.; Blechacz, B.; Bassler, D.; Wei, X.; Sharman, A.; et al. Association between change in high density lipoprotein cholesterol and cardiovascular disease morbidity and mortality: Systematic review and meta-regression analysis. BMJ 2009, 338, b92. [Google Scholar] [CrossRef]
- Mineo, C.; Yuhanna, I.S.; Quon, M.J.; Shaul, P.W. High density lipoprotein-induced endothelial nitric-oxide synthase activation is mediated by Akt and MAP kinases. J. Biol. Chem. 2003, 278, 9142–9149. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Chambliss, K.L.; Gao, X.; Yuhanna, I.S.; Behling-Kelly, E.; Bergaya, S.; Ahmed, M.; Michaely, P.; Luby-Phelps, K.; Darehshouri, A.; et al. SR-B1 drives endothelial cell LDL transcytosis via DOCK4 to promote atherosclerosis. Nature 2019, 569, 565–569. [Google Scholar] [CrossRef]
- Velagapudi, S.; Wang, D.; Poti, F.; Feuerborn, R.; Robert, J.; Schlumpf, E.; Yalcinkaya, M.; Panteloglou, G.; Potapenko, A.; Simoni, M.; et al. Sphingosine-1-phosphate receptor 3 regulates the transendothelial transport of HDL and LDL in opposite ways. Cardiovasc. Res. 2023, 120, 476–489. [Google Scholar] [CrossRef] [PubMed]
- Yuhanna, I.S.; Zhu, Y.; Cox, B.E.; Hahner, L.D.; Osborne-Lawrence, S.; Lu, P.; Marcel, Y.L.; Anderson, R.G.; Mendelsohn, M.E.; Hobbs, H.H.; et al. High-density lipoprotein binding to scavenger receptor-BI activates endothelial nitric oxide synthase. Nat. Med. 2001, 7, 853–857. [Google Scholar] [CrossRef]
- Murphy, A.J. High Density Lipoprotein: Assembly, Structure, Cargo, and Functions. ISRN Physiol. 2013, 2013, 186365. [Google Scholar] [CrossRef]
- Stocker, R.; Keaney, J.F., Jr. Role of oxidative modifications in atherosclerosis. Physiol. Rev. 2004, 84, 1381–1478. [Google Scholar] [CrossRef] [PubMed]
- Stanciulescu, L.A.; Scafa-Udriste, A.; Dorobantu, M. Exploring the Association between Low-Density Lipoprotein Subfractions and Major Adverse Cardiovascular Outcomes-A Comprehensive Review. Int. J. Mol. Sci. 2023, 24, 6669. [Google Scholar] [CrossRef]
- Levitan, I.; Volkov, S.; Subbaiah, P.V. Oxidized LDL: Diversity, patterns of recognition, and pathophysiology. Antioxid. Redox Signal 2010, 13, 39–75. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, K.; Ishibashi, T.; Sawamura, T.; Inoue, N.; Kamioka, M.; Uekita, H.; Ohkawara, H.; Sakamoto, T.; Sakamoto, N.; Okamoto, Y.; et al. LOX-1-MT1-MMP axis is crucial for RhoA and Rac1 activation induced by oxidized low-density lipoprotein in endothelial cells. Cardiovasc. Res. 2009, 84, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Ogura, S.; Kakino, A.; Sato, Y.; Fujita, Y.; Iwamoto, S.; Otsui, K.; Yoshimoto, R.; Sawamura, T. Lox-1: The multifunctional receptor underlying cardiovascular dysfunction. Circ. J. 2009, 73, 1993–1999. [Google Scholar] [CrossRef] [PubMed]
- Fikenzer, K.; Fikenzer, S.; Laufs, U.; Werner, C. Effects of endurance training on serum lipids. Vasc. Pharmacol. 2018, 101, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Franczyk, B.; Gluba-Brzózka, A.; Ciałkowska-Rysz, A.; Ławiński, J.; Rysz, J. The Impact of Aerobic Exercise on HDL Quantity and Quality: A Narrative Review. Int. J. Mol. Sci. 2023, 24, 4653. [Google Scholar] [CrossRef] [PubMed]
- Kodama, S.; Tanaka, S.; Saito, K.; Shu, M.; Sone, Y.; Onitake, F.; Suzuki, E.; Shimano, H.; Yamamoto, S.; Kondo, K.; et al. Effect of aerobic exercise training on serum levels of high-density lipoprotein cholesterol: A meta-analysis. Arch. Intern. Med. 2007, 167, 999–1008. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, D. Effects of aerobic exercise on lipids and lipoproteins. Lipids Health Dis. 2017, 16, 132. [Google Scholar] [CrossRef]
- Mann, S.; Beedie, C.; Jimenez, A. Differential effects of aerobic exercise, resistance training and combined exercise modalities on cholesterol and the lipid profile: Review, synthesis and recommendations. Sports Med. 2014, 44, 211–221. [Google Scholar] [CrossRef]
- Schardt, C.; Adams, M.B.; Owens, T.; Keitz, S.; Fontelo, P. Utilization of the PICO framework to improve searching PubMed for clinical questions. BMC Med. Inform. Decis. Mak. 2007, 7, 16. [Google Scholar] [CrossRef]
- Souza, L.V.; De Meneck, F.; Oliveira, V.; Higa, E.M.; Akamine, E.H.; Franco, M.D.C. Beneficial Impact of Moderate to Vigorous Physical Activity Program on Circulating Number and Functional Capacity of Endothelial Progenitor Cells in Children: The Crucial Role of Nitric Oxide and VEGF-A. Pediatr. Exerc. Sci. 2019, 31, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Stergioulas, A.T.; Filippou, D.K. Effects of physical conditioning on lipids and arachidonic acid metabolites in untrained boys: A longitudinal study. Appl. Physiol. Nutr. Metab. 2006, 31, 432–441. [Google Scholar] [CrossRef] [PubMed]
- Hamurcu, Z.; Saritas, N.; Baskol, G.; Akpinar, N. Effect of wrestling exercise on oxidative DNA damage, nitric oxide level and paraoxonase activity in adolescent boys. Pediatr. Exerc. Sci. 2010, 22, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Djordjevic, D.; Cubrilo, D.; Macura, M.; Barudzic, N.; Djuric, D.; Jakovljevic, V. The influence of training status on oxidative stress in young male handball players. Mol. Cell Biochem. 2011, 351, 251–259. [Google Scholar] [CrossRef]
- Park, J.H.; Miyashita, M.; Kwon, Y.C.; Park, H.T.; Kim, E.H.; Park, J.K.; Park, K.B.; Yoon, S.R.; Chung, J.W.; Nakamura, Y.; et al. A 12-week after-school physical activity programme improves endothelial cell function in overweight and obese children: A randomised controlled study. BMC Pediatr. 2012, 12, 111. [Google Scholar] [CrossRef]
- Wong, A.; Sanchez-Gonzalez, M.A.; Son, W.M.; Kwak, Y.S.; Park, S.Y. The Effects of a 12-Week Combined Exercise Training Program on Arterial Stiffness, Vasoactive Substances, Inflammatory Markers, Metabolic Profile, and Body Composition in Obese Adolescent Girls. Pediatr. Exerc. Sci. 2018, 30, 480–486. [Google Scholar] [CrossRef] [PubMed]
- Onur, E.; Kabaroğlu, C.; Günay, O.; Var, A.; Yilmaz, O.; Dündar, P.; Tikiz, C.; Güvenç, Y.; Yüksel, H. The beneficial effects of physical exercise on antioxidant status in asthmatic children. Allergol. Immunopathol. 2011, 39, 90–95. [Google Scholar] [CrossRef]
- Son, W.M.; Sung, K.D.; Bharath, L.P.; Choi, K.J.; Park, S.Y. Combined exercise training reduces blood pressure, arterial stiffness, and insulin resistance in obese prehypertensive adolescent girls. Clin. Exp. Hypertens. 2017, 39, 546–552. [Google Scholar] [CrossRef]
- Gunay, O.; Onur, E.; Yilmaz, O.; Dundar, P.E.; Tikiz, C.; Var, A.; Yuksel, H. Effects of physical exercise on lung injury and oxidant stress in children with asthma. Allergol. Immunopathol. 2012, 40, 20–24. [Google Scholar] [CrossRef]
- Donghui, T.; Shuang, B.; Xulong, L.; Meng, Y.; Yujing, G.; Yujie, H.; Juan, L.; Dongsheng, Y. Improvement of microvascular endothelial dysfunction induced by exercise and diet is associated with microRNA-126 in obese adolescents. Microvasc. Res. 2019, 123, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Starkoff, B.E.; Eneli, I.U.; Bonny, A.E.; Hoffman, R.P.; Devor, S.T. Endothelin-1 and Exercise Intensity in Sedentary Adolescents with Obesity. Int. J. Kinesiol. Sports Sci. 2015, 3, 8. [Google Scholar]
- Gonenc, S.; Acikgoz, O.; Semin, I.; Ozgonul, H. The effect of moderate swimming exercise on antioxidant enzymes and lipid peroxidation levels in children. Indian. J. Physiol. Pharmacol. 2000, 44, 340–344. [Google Scholar]
- Paltoglou, G.; Avloniti, A.; Chatzinikolaou, A.; Stefanaki, C.; Papagianni, M.; Papassotiriou, I.; Fatouros, I.G.; Chrousos, G.P.; Kanaka-Gantenbein, C.; Mastorakos, G. In early pubertal boys, testosterone and LH are associated with improved anti-oxidation during an aerobic exercise bout. Endocrine 2019, 66, 370–380. [Google Scholar] [CrossRef] [PubMed]
- Zivkovic, V.; Lazarevic, P.; Djuric, D.; Cubrilo, D.; Macura, M.; Vuletic, M.; Barudzic, N.; Nesic, M.; Jakovljevic, V. Alteration in basal redox state of young male soccer players after a six-month training programme. Acta Physiol. Hung. 2013, 100, 64–76. [Google Scholar] [CrossRef] [PubMed]
- Tong, T.K.; Kong, Z.; Lin, H.; Lippi, G.; Zhang, H.; Nie, J. Serum oxidant and antioxidant status following an all-out 21-km run in adolescent runners undergoing professional training--a one-year prospective trial. Int. J. Mol. Sci. 2013, 14, 15167–15178. [Google Scholar] [CrossRef] [PubMed]
- Alshammari, E.; Shafi, S.; Nurmi-Lawton, J.; Taylor, A.; Lanham-New, S.; Ferns, G. Altered antioxidant and trace-element status in adolescent female gymnasts. Int. J. Sport. Nutr. Exerc. Metab. 2010, 20, 291–298. [Google Scholar] [CrossRef]
- Pomerants, T.; Tillmann, V.; Karelson, K.; Jürimäe, J.; Jürimäe, T. Ghrelin response to acute aerobic exercise in boys at different stages of puberty. Horm. Metab. Res. 2006, 38, 752–757. [Google Scholar] [CrossRef]
- Güllü, E.; Güllü, A.; Düzova, H.; Özgör, B.; Kilinç, E.; Akçinar, F. The relationship between serum leptin and VO2max levels in pre-puberty swimmer girls: Effect of acute exercise. Prog. Nutr. 2020, 22, 177–184. [Google Scholar]
- Jürimäe, J.; Võsoberg, K.; Tamm, A.L.; Maasalu, K.; Remmel, L.; Tillmann, V. Body composition and inflammatory markers in pubertal girls: Comparison between athletes and non-athletic controls. Eur. J. Sport. Sci. 2017, 17, 867–873. [Google Scholar] [CrossRef]
- Karacabey, K. The effect of exercise on leptin, insulin, cortisol and lipid profiles in obese children. J. Int. Med. Res. 2009, 37, 1472–1478. [Google Scholar] [CrossRef] [PubMed]
- Seabra, A.; Katzmarzyk, P.; Carvalho, M.J.; Seabra, A.; Coelho, E.S.M.; Abreu, S.; Vale, S.; Póvoas, S.; Nascimento, H.; Belo, L.; et al. Effects of 6-month soccer and traditional physical activity programmes on body composition, cardiometabolic risk factors, inflammatory, oxidative stress markers and cardiorespiratory fitness in obese boys. J. Sports Sci. 2016, 34, 1822–1829. [Google Scholar] [CrossRef]
- Fazelifar, S.; Ebrahim, K.; Sarkisian, V. Effect of exercise training and detraining on serum leptin levels in obese young boys. Med. Dello Sport 2013, 66, 325–337. [Google Scholar]
- Li, C.; Lyu, S.; Zhang, J. Effects of Aerobic Exercise on the Serum Leptin Level and Heart Rate Variability in the Obese Girl Children. Comput. Intell. Neurosci. 2022, 2022, 2298994. [Google Scholar] [CrossRef] [PubMed]
- Kelishadi, R.; Hashemipour, M.; Mohammadifard, N.; Alikhassy, H.; Adeli, K. Short- and long-term relationships of serum ghrelin with changes in body composition and the metabolic syndrome in prepubescent obese children following two different weight loss programmes. Clin. Endocrinol. 2008, 69, 721–729. [Google Scholar] [CrossRef] [PubMed]
- Siegrist, M.; Rank, M.; Wolfarth, B.; Langhof, H.; Haller, B.; Koenig, W.; Halle, M. Leptin, adiponectin, and short-term and long-term weight loss after a lifestyle intervention in obese children. Nutrition 2013, 29, 851–857. [Google Scholar] [CrossRef] [PubMed]
- Kamal, N.N.; Ragy, M.M. The effects of exercise on C-reactive protein, insulin, leptin and some cardiometabolic risk factors in Egyptian children with or without metabolic syndrome. Diabetol. Metab. Syndr. 2012, 4, 27. [Google Scholar] [CrossRef] [PubMed]
- Racil, G.; Zouhal, H.; Elmontassar, W.; Ben Abderrahmane, A.; De Sousa, M.V.; Chamari, K.; Amri, M.; Coquart, J.B. Plyometric exercise combined with high-intensity interval training improves metabolic abnormalities in young obese females more so than interval training alone. Appl. Physiol. Nutr. Metab. 2016, 41, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Elloumi, M.; Ben Ounis, O.; Makni, E.; Van Praagh, E.; Tabka, Z.; Lac, G. Effect of individualized weight-loss programmes on adiponectin, leptin and resistin levels in obese adolescent boys. Acta Paediatr. 2009, 98, 1487–1493. [Google Scholar] [CrossRef]
- Souza, M.S.; Cardoso, A.L.; Yasbek, P., Jr.; Faintuch, J. Aerobic endurance, energy expenditure, and serum leptin response in obese, sedentary, prepubertal children and adolescents participating in a short-term treadmill protocol. Nutrition 2004, 20, 900–904. [Google Scholar] [CrossRef] [PubMed]
- Lau, P.W.C.; Kong, Z.; Choi, C.-r.; Yu, C.C.W.; Chan, D.F.Y.; Sung, R.Y.T.; Leung, B.W.C. Effects of Short-Term Resistance Training on Serum Leptin Levels in Obese Adolescents. J. Exerc. Sci. Fit. 2010, 8, 54–60. [Google Scholar] [CrossRef]
- Eliakim, A.; Makowski, G.S.; Brasel, J.A.; Cooper, D.M. Adiposity, lipid levels, and brief endurance training in nonobese adolescent males. Int. J. Sports Med. 2000, 21, 332–337. [Google Scholar] [CrossRef] [PubMed]
- Buchan, D.S.; Ollis, S.; Young, J.D.; Cooper, S.M.; Shield, J.P.; Baker, J.S. High intensity interval running enhances measures of physical fitness but not metabolic measures of cardiovascular disease risk in healthy adolescents. BMC Public Health 2013, 13, 498. [Google Scholar] [CrossRef] [PubMed]
- Rosenkranz, S.K.; Rosenkranz, R.R.; Hastmann, T.J.; Harms, C.A. High-intensity training improves airway responsiveness in inactive nonasthmatic children: Evidence from a randomized controlled trial. J. Appl. Physiol. (1985) 2012, 112, 1174–1183. [Google Scholar] [CrossRef]
- Tolfrey, K.; Jones, A.M.; Campbell, I.G. Lipid-lipoproteins in children: An exercise dose-response study. Med. Sci. Sports Exerc. 2004, 36, 418–427. [Google Scholar] [CrossRef]
- Balas-Nakash, M.; Benítez-Arciniega, A.; Perichart-Perera, O.; Valdés-Ramos, R.; Vadillo-Ortega, F. The effect of exercise on cardiovascular risk markers in Mexican school-aged children: Comparison between two structured group routines. Salud. Publica Mex. 2010, 52, 398–405. [Google Scholar] [CrossRef] [PubMed]
- Stoedefalke, K.; Armstrong, N.; Kirby, B.J.; Welsman, J.R. Effect of training on peak oxygen uptake and blood lipids in 13 to 14-year-old girls. Acta Paediatr. 2000, 89, 1290–1294. [Google Scholar] [CrossRef]
- Ghorbanian, B.; Ravassi, A.; Kordi, M.R.; Hedayati, M. The Effects of Rope Training on Lymphocyte ABCA1 Expression, Plasma ApoA-I and HDL-c in Boy Adolescents. Int. J. Endocrinol. Metab. 2013, 11, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Koozehchian, M.; Nazem, F.; Kreider, R.; Roberts, W.; Best, T.; Rong, Y.; Zuo, L. The role of exercise training on lipoprotein profiles in adolescent males. Lipids Health Dis. 2014, 13, 95. [Google Scholar] [CrossRef]
- Kelly, A.S.; Wetzsteon, R.J.; Kaiser, D.R.; Steinberger, J.; Bank, A.J.; Dengel, D.R. Inflammation, insulin, and endothelial function in overweight children and adolescents: The role of exercise. J. Pediatr. 2004, 145, 731–736. [Google Scholar] [CrossRef]
- Ribeiro, M.M.; Silva, A.G.; Santos, N.S.; Guazzelle, I.; Matos, L.N.J.; Trombetta, I.C.; Halpern, A.; Negrão, C.E.; Villares, S.M.F. Diet and Exercise Training Restore Blood Pressure and Vasodilatory Responses During Physiological Maneuvers in Obese Children. Circulation 2005, 111, 1915–1923. [Google Scholar] [CrossRef] [PubMed]
- Zorba, E.; Cengiz, T.; Karacabey, K. Exercise training improves body composition, blood lipid profile and serum insulin levels in obese children. J. Sports Med. Phys. Fit. 2011, 51, 664–669. [Google Scholar]
- Aouadi, R.; Khlifa, R.; Aouidet, A.; Mansour, A.; Ben Rayana, M.; Mdini, F.; Bahri, S.; Stratton, G. Aerobic training programs and glycemic control in diabetic children in relation to exercise frequency. J. Sports Med. Phys. Fit. 2011, 51, 393–400. [Google Scholar]
- Racil, G.; Ben Ounis, O.; Hammouda, O.; Kallel, A.; Zouhal, H.; Chamari, K.; Amri, M. Effects of high vs. moderate exercise intensity during interval training on lipids and adiponectin levels in obese young females. Eur. J. Appl. Physiol. 2013, 113, 2531–2540. [Google Scholar] [CrossRef] [PubMed]
- Woo, K.S.; Chook, P.; Yu, C.W.; Sung, R.Y.; Qiao, M.; Leung, S.S.; Lam, C.W.; Metreweli, C.; Celermajer, D.S. Effects of diet and exercise on obesity-related vascular dysfunction in children. Circulation 2004, 109, 1981–1986. [Google Scholar] [CrossRef]
- Lee, Y.H.; Song, Y.W.; Kim, H.S.; Lee, S.Y.; Jeong, H.S.; Suh, S.H.; Park, J.K.; Jung, J.W.; Kim, N.S.; Noh, C.I.; et al. The effects of an exercise program on anthropometric, metabolic, and cardiovascular parameters in obese children. Korean Circ. J. 2010, 40, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Kovács Md Phd, V.A.; Fajcsák, Z.; Gábor, A.; Martos, E. School-based exercise program improves fitness, body composition and cardiovascular risk profile in overweight/obese children. Acta Physiol. Hung. 2009, 96, 337–347. [Google Scholar] [CrossRef]
- Chae, H.-W.; Kwon, Y.-N.; Rhie, Y.-J.; Kim, H.-S.; Kim, Y.-S.; Paik, I.-Y.; Suh, S.-H.; Kim, D.-H. Effects of a Structured Exercise Program on Insulin Resistance, Inflammatory Markers and Physical Fitness in Obese Korean Children. J. Pediatr. Endocrinol. Metab. 2010, 23, 1065–1072. [Google Scholar] [CrossRef]
- Roberts, C.K.; Izadpanah, A.; Angadi, S.S.; Barnard, R.J. Effects of an intensive short-term diet and exercise intervention: Comparison between normal-weight and obese children. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013, 305, R552–R557. [Google Scholar] [CrossRef] [PubMed]
- Korsten-Reck, U.; Kromeyer-Hauschild, K.; Wolfarth, B.; Dickhuth, H.H.; Berg, A. Freiburg Intervention Trial for Obese Children (FITOC): Results of a clinical observation study. Int. J. Obes. 2005, 29, 356–361. [Google Scholar] [CrossRef] [PubMed]
- Kelishadi, R.; Hashemi, M.; Mohammadifard, N.; Asgary, S.; Khavarian, N. Association of changes in oxidative and proinflammatory states with changes in vascular function after a lifestyle modification trial among obese children. Clin. Chem. 2008, 54, 147–153. [Google Scholar] [CrossRef]
- Zehsaz, F.; Farhangi, N.; Ghahramani, M. The response of circulating omentin-1 concentration to 16-week exercise training in male children with obesity. Phys. Sport. 2016, 44, 355–361. [Google Scholar] [CrossRef]
- Meyer, A.A.; Kundt, G.; Lenschow, U.; Schuff-Werner, P.; Kienast, W. Improvement of early vascular changes and cardiovascular risk factors in obese children after a six-month exercise program. J. Am. Coll. Cardiol. 2006, 48, 1865–1870. [Google Scholar] [CrossRef] [PubMed]
- Farpour-Lambert, N.J.; Aggoun, Y.; Marchand, L.M.; Martin, X.E.; Herrmann, F.R.; Beghetti, M. Physical activity reduces systemic blood pressure and improves early markers of atherosclerosis in pre-pubertal obese children. J. Am. Coll. Cardiol. 2009, 54, 2396–2406. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.X.; Huang, X.Q.; Yan, Y.; Li, B.W.; Zhong, W.J.; Chen, J.F.; Zhang, Y.M.; Wang, Z.Z.; Wang, L.; Shi, X.C.; et al. One-hour after-school exercise ameliorates central adiposity and lipids in overweight Chinese adolescents: A randomized controlled trial. Chin. Med. J. 2011, 124, 323–329. [Google Scholar]
- Sung, R.; Yu, C.; Chang, S.; Mo, S.; Woo, K.; Lam, K.C. Effects of dietary intervention and strength training on blood lipid level in obese children. Arch. Dis. Child. 2002, 86, 407–410. [Google Scholar] [CrossRef] [PubMed]
- Migueles, J.; Cadenas-Sanchez, C.; Lubans, D.; Henriksson, P.; Torres-Lopez, L.; Rodriguez-Ayllon, M.; Plaza-Florido, A.; Gil-Cosano, J.; Henriksson, H.; Escolano-Margarit, M.; et al. Effects of an Exercise Program on Cardiometabolic and Mental Health in Children With Overweight or Obesity: A Secondary Analysis of a Randomized Clinical Trial. JAMA Netw. Open 2023, 6, e2324839. [Google Scholar] [CrossRef] [PubMed]
- Benson, A.C.; Torode, M.E.; Fiatarone Singh, M.A. The effect of high-intensity progressive resistance training on adiposity in children: A randomized controlled trial. Int. J. Obes. 2008, 32, 1016–1027. [Google Scholar] [CrossRef] [PubMed]
- Wong, P.C.; Chia, M.Y.; Tsou, I.Y.; Wansaicheong, G.K.; Tan, B.; Wang, J.C.; Tan, J.; Kim, C.G.; Boh, G.; Lim, D. Effects of a 12-week exercise training programme on aerobic fitness, body composition, blood lipids and C-reactive protein in adolescents with obesity. Ann. Acad. Med. Singap. 2008, 37, 286–293. [Google Scholar] [CrossRef]
- Taylor, P.N.; Lansdown, A.; Witczak, J.; Khan, R.; Rees, A.; Dayan, C.M.; Okosieme, O. Age-related variation in thyroid function—A narrative review highlighting important implications for research and clinical practice. Thyroid. Res. 2023, 16, 7. [Google Scholar] [CrossRef] [PubMed]
- Maeda, S.; Miyauchi, T.; Iemitsu, M.; Sugawara, J.; Nagata, Y.; Goto, K. Resistance exercise training reduces plasma endothelin-1 concentration in healthy young humans. J. Cardiovasc. Pharmacol. 2004, 44 (Suppl. S1), S443–S446. [Google Scholar] [CrossRef] [PubMed]
- Zoladz, J.A.; Majerczak, J.; Duda, K.; Chłopicki, S. Endurance training increases exercise-induced prostacyclin release in young, healthy men--relationship with VO2max. Pharmacol. Rep. 2010, 62, 494–502. [Google Scholar] [CrossRef]
- Arefirad, T.; Seif, E.; Sepidarkish, M.; Mohammadian Khonsari, N.; Mousavifar, S.A.; Yazdani, S.; Rahimi, F.; Einollahi, F.; Heshmati, J.; Qorbani, M. Effect of exercise training on nitric oxide and nitrate/nitrite (NOx) production: A systematic review and meta-analysis. Front. Physiol. 2022, 13, 953912. [Google Scholar] [CrossRef] [PubMed]
- Dékány, M.; Nemeskéri, V.; Györe, I.; Harbula, I.; Malomsoki, J.; Pucsok, J. Antioxidant status of interval-trained athletes in various sports. Int. J. Sports Med. 2006, 27, 112–116. [Google Scholar] [CrossRef]
- Souissi, W.; Bouzid, M.A.; Farjallah, M.A.; Ben Mahmoud, L.; Boudaya, M.; Engel, F.A.; Sahnoun, Z. Effect of Different Running Exercise Modalities on Post-Exercise Oxidative Stress Markers in Trained Athletes. Int. J. Env. Res. Public Health 2020, 17, 3729. [Google Scholar] [CrossRef] [PubMed]
- Jung, E.; Kong, S.Y.; Ro, Y.S.; Ryu, H.H.; Shin, S.D. Serum Cholesterol Levels and Risk of Cardiovascular Death: A Systematic Review and a Dose-Response Meta-Analysis of Prospective Cohort Studies. Int. J. Env. Res. Public Health 2022, 19, 8272. [Google Scholar] [CrossRef]
- Gujral, J.; Gupta, J. Pediatric Dyslipidemia. In StatPearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2025. [Google Scholar]
- Haferanke, J.; Baumgartner, L.; Willinger, L.; Schulz, T.; Mühlbauer, F.; Engl, T.; Weberruß, H.; Hofmann, H.; Wasserfurth, P.; Köhler, K.; et al. The MuCAYAplus Study—Influence of Physical Activity and Metabolic Parameters on the Structure and Function of the Cardiovascular System in Young Athletes. CJC Open 2024, 6, 1549–1557. [Google Scholar] [CrossRef] [PubMed]
- Leon-Mimila, P.; Wang, J.; Huertas-Vazquez, A. Relevance of Multi-Omics Studies in Cardiovascular Diseases. Front. Cardiovasc. Med. 2019, 6, 91. [Google Scholar] [CrossRef] [PubMed]
Healthy Individuals | ||||||
---|---|---|---|---|---|---|
Reference | N | Age | Population/Source/ Testing | Intervention | Duration/ Intensity | Result |
Souza et al. (2019) [104] | 40 | 7–11 | Healthy children / Blood plasma / Nitrate/Nitrite | Moderate to vigorous physical activity | 45 min, 4x per week, for 10 weeks / 75–85% HRR | NO ↑ (p < 0.001) |
Stergioulas et al. (2006) a [105] | 38 | 10–14 | Healthy children / Urine / Prostanoid metabolite | Aerobic exercise on cycle ergometer | 60 min, 4x per week, for 8 weeks / 80% of physical working capacity | Prostacyclin ↑ (74.3 ± 6.5 to 115.9 ± 11.2 pg/ng, p < 0.001) |
Healthy athletes | ||||||
Hamurcu et al. (2010) [106] | 18 | 13.89 ± 0.95 | Male adolescent wrestlers / Blood serum / Nitrate/Nitrite | Mixed aerobic endurance, wrestling skill and strength training | 90 min, 6x per week | NO ↑ (11.79 ± 3.73 to 15.94 ± 5.09 μM, p = 0.002) |
Djordjevic et al. (2011) b [107] | 33 | 16–19 | Male handball players / Blood plasma / Nitrate/Nitrite | Maximal progressive testing on cycle ergometer | Start at 2 W/kg, increase every 3 min for 50 W; 60 rpm, until oxygen consumption plateau | NO ↔ (athletes vs. non-athlete control) |
Pre-existing condition | ||||||
Park et al. (2012) [108] | 29 | 12–13 | Obese children / Blood plasma / Nitrate/Nitrite | After school combined aerobic and resistance exercise | 80 min, 3x per week, for 12 weeks / Aerobic: 50–70%HRR Resistance: 60% 1 RM, 8–12 repetitions | NO ↑ (8.1 ± 0.6 to 10.6 ± 1.0 μM, p < 0.001) |
Wong et al. (2018) [109] | 30 | 15.2 ± 1.2 | Female obese adolescents / Blood plasma / Nitrate/Nitrite (NO), Protein level (ET1) | Treadmill and resistance band exercises | 60 min, 3x per week, for 12 weeks / Increasing from 40–50%HRR to 60–70% HRR | NO ↑ (53.7 ± 4.9 to 57.7 ± 4.1 μM, p = 0.03) ET1 ↔ |
Onur et al. (2011) c [110] | 15 | 8–13 | Asthmatic children / Blood serum / Nitrate/Nitrite | Cycle ergometer exercise + pharmacological treatment | 60 min, 2x per week, for 8 weeks / 80% of submaximal HR | NO ↓ (11.84 ± 2.24 to 9.09 ± 1.96 μmol/L, p = 0.001) |
Son et al. (2017) [111] | 40 | 14–16 | Obese girls / Blood plasma / Protein level | Combined exercise training | 60 min, 3x per week For 12 weeks / 60–70% HRR, RPE 15–16 | ET1 ↓ (14.35 ± 1.76 μmol/mL, p < 0.05) |
Gunay et al. (2012) c [112] | 30 | 8–13 | Asthmatic children / Blood serum / Protein level | Cycle ergometer exercise + pharmacological treatment | 60 min, 2x per week, for 8 weeks / 80% of submaximal HR | ET1 ↓ (26.5 ± 3.6 to 21.3 ± 2.4 pg/mL, p < 0.001) |
Vasconcellos et al. (2016) d [43] | 10 | 12–17 | Obese adolescents / Blood plasma / Protein level | Soccer training program | 60 min, 3x per week, for 12 weeks | ET1 ↓ (2.1 ± 0.5 to 1.7 ± 0.5 pg/mL, p < 0.042) |
Donghui et al. (2019) [113] | 57 | 12–18 | Obese adolescents / Blood serum / Protein level | Exercise + dietary restriction | Aerobic: 80 min, 5x per week, For 6 weeks / 60–70% max HR Resistance: 60 min, 2x per week, For 6 weeks / 60–70% 1 RM, 8.12 repetitions | Ratio NO/ET1 ↑ (1.73 ± 0.51 vs. 2.72 ± 0.92, p < 0.01) |
Starkoff et al. (2015) [114] | 27 | 14.7 ± 1.5 | Obese adolescents / Blood serum / Protein level | High-intensity interval training or moderate-intensity training | HIIT: 30 min, 3x per week, for 6 weeks / 90–95% HRmax MOD: 30 min, 3x per week, for 6 weeks / 65–70% HRmax | ET1 ↔ |
Healthy Individuals | ||||||
---|---|---|---|---|---|---|
Reference | N | Age | Population/Source/ Testing | Intervention | Duration/ Intensity | Result |
Gonenc et al. (2000) [115] | 12 | 6–11 | Untrained healthy children / Isolated RBC / Enzyme activity | Swimming exercise | 120 min, 7x per week, for 4 weeks | SOD ↑ (581.1 ± 146.2 to 791.1 ± 221.9 U/gHb, p < 0.01) GPX↔ |
Paltoglou et al. (2019) e [116] | 65 | 10.32 ± 0.24 (pre-pubertal) 11.53 ± 0.22 (early pubertal) | Normal weight pre- and early pubertal boys / Whole blood / Enzyme activity | Aerobic exercise bout on cycle ergometer | 70% VO2max until exhaustion | GPX ↑ prepubertal (3350.85 ± 68.69 to 4202 ± 60.02 U/L, p < 0.05) early pubertal (3329.40 ± 189.35 to 4261.40 ± 234.3 U/L, p < 0.05) |
Healthy athletes | ||||||
Djordjevic et al. (2011) b [107] | 33 | 16–19 | Male handball players / Isolated RBC / Enzyme activity | Maximal progressive testing on cycle ergometer | Start at 2 W/kg, increase every 3 min for 50 W; 60 rpm, until oxygen consumption plateau | SOD ↑ (2175.52 ± 362.0 vs. 1172.16 ± 747.40 U/g, athletes vs. non-athlete control, p < 0.05) |
Zivkovic et al. (2013) [117] | 6 | 12–13 | Male soccer players / Isolated RBC / Enzyme activity | 6-month training program, soccer-specific skill and endurance training | 75–90 min, at least 12 h per week, for 6 months | SOD ↑ (p < 0.05) |
Tong et al. (2013) [118] | 10 | 14–17 | Experienced adolescent runners / Blood serum / Enzyme activity | 21 km endurance run time trial pre- and post-1-year training | 180–240 min per day, 6.5x per week / 7–21 km per day, 60–80 km per week | SOD ↓ (pre) (69.2 ± 12.3 to 63.4 ± 15.6 U/mL, p < 0.05) SOD ↓ (post) (67.0 ± 13.5 to 60.9 ± 13.9 U/mL, p < 0.05) |
Alshammari et al. (2010) [119] | 38 | 8–17 | Adolescent female gymnasts / Blood serum / Enzyme activity | 3 year-longitudinal observation | Training volume >10 h/week | GPX ↑ (156.92 ± 11.07 vs. 125.14 ± 8.79 U/mL; athletes vs. non-athlete control, p < 0.05) SOD ↓ (7.23 ± 0.41 vs. 8.57 ± 0.385 U/mL; athletes vs. non-athlete control p < 0.05) |
Pre-existing condition | ||||||
Paltoglou et al. (2019) e [116] | 27 | 10.43 ± 0.38 (pre-pubertal) 11.71 ± 0.33 (early pubertal) | Obese pre- and early pubertal boys / Whole blood / Enzyme activity | Aerobic exercise bout on cycle ergometer | 70% VO2max until exhaustion | GPX ↑ prepubertal (2804.11 ± 143.94 to 3671.44 ± 161.67) U/L, p < 0.05) early pubertal (3227.33 ± 97.72 to 4065.22 ± 132.31 U/L, p < 0.05) |
Onur et al. (2011) c [110] | 30 | 8–13 | Asthmatic children / Blood plasma / Enzyme activity | Cycle ergometer exercise + pharmacological treatment | 60 min, 2x per week, for 8 weeks / HR at 50% above resting HR | SOD ↑ (5.49 ± 3.80 to 13.03 ± 5.54 U/mL, p = 0.001) GPX ↑ (160.13 ± 56.03 to 242.06 ± 81.94 U/L, p = 0.003) |
Woo et al. (2010) [44] | 10 | 10–14 | Physically active boys with T1DM / Blood plasma / Enzyme activity | Treadmill exercise | 3x per week, for 12 weeks / 45–55% HRR | SOD ↑ (p < 0.05) GPX ↑ (p < 0.05) |
Healthy Individuals | ||||||
---|---|---|---|---|---|---|
Reference | N | Age | Population/Source/ Testing | Intervention | Duration/ Intensity | Result |
Pomerants et al. (2006) [120] | 60 | 10–18 | Healthy schoolboys / Blood serum / Protein level | Acute cycle ergometer exercise | 30 min at 95% of IVT | Leptin ↔ |
Healthy athletes | ||||||
Güllü et al. (2020) [121] | 16 | 9.88 ± 1.41 | Pre-pubertal swimmer Girls / Blood serum / Protein level | Stepwise maximal aerobic endurance test | Progressive protocol until exhaustion | Leptin ↓ (11.67 ng/mL to 8.53 ng/mL, p < 0.004) |
Jürimäe et al. (2017) [122] | 60 | 10–12 | Girl athletes from gymnastics, ballet and acrobatics / Blood plasma / Protein level | Testing of nationally competing athletes compared to non-athlete control | Athletes trained: 5–7x per week, 10–12 h per week for at least 5 years | Leptin ↓ 2.4 ± 1.1 ng/mL vs. 7.6 ± 4.2 ng/mL, p < 0.05, athletes vs-non-athlete control) |
Pre-existing condition | ||||||
Lopes et al. (2016) [42] | 17 | 13–17 | Overweight girls / Blood serum / Protein level | Combined aerobic and resistance training | 60 min, 3x per week, for 4 weeks / Resistance: 6–10 repetitions on machines Aerobic: 50–85% VO2peak running on track | Leptin ↓ (p < 0.05) |
Karacabey et al. (2009) f [123] | 20 | 10–12 | Obese boys / Blood serum / Protein level | Aerobic exercise walking/jogging | 30–60 min, 3x per week, for 12 weeks / 60–65% HRR | Leptin ↓ (23.3 ± 9.9 to 16.7 ± 9.6 ng/mL, p < 0.001) |
Seabra et al. (2016) d [124] | 58 | 8–12 | Obese boys / Blood plasma / Protein level | Aerobic exercise group and soccer group | Both groups: 60–90 min, 3x per week, for 6 months / 70–80% HRmax | Leptin ↓ (Soccer: 21.6 + 16.1 to 16.1 + 13.3 ng/mL, p < 0.05) (Aerobic: 27.1 + 21.0 to 20.9 + 19.8 ng/mL, p < 0.05) |
Fazelifar et al. (2013) [125] | 12 | 11–13 | Obese boys / Blood serum / Protein level | Concurrent training | 3x per week, for 12 weeks | Leptin ↓ (p < 0.05) |
Li et al. (2022) [126] | 16 | 12.04 ± 0.96 | Obese girls / Blood serum / Protein level | Aerobic exercise | 60 min, 4x per week, for 16 weeks / 65–70% HRmax | Leptin ↓ (22.05 ± 4.80 to 19.17 ± 4.51 ug/L, p < 0.01) |
Kelishadi et al. (2008) g [127] | 45 | 7.7 ± 1.2 | Obese children / Blood serum / Protein level | Aerobic exercise | 40 min, 5x per week, for 6 months | Leptin ↓ (p < 0.05) |
Siegrist et al. (2013) [128] | 402 | 13.9 + 2.3 | Obese children / Blood serum / Protein level | Aerobic exercise group sports/walking | 16 h/week, for 6 weeks | Leptin ↓ (39.5 + 23.7 to 18.6 + 14.0 ng/mL, p < 0.001) |
Kamal et al. (2012) h [129] | 44 | 8–12 | Obese children with/without metabolic syndrome / Blood plasma / Protein level | Aerobic exercise walking/jogging | 30–60 min, 3x per week, for 12 weeks / 60–65%HRR | Leptin ↓ (for w/o MS, p < 0.05) |
Racil et al. (2016) i [130] | 49 | 16.6 ± 1.3 | Obese adolescents / Blood plasma / Protein level | HIIT group and plyometric exercise + HIIT group | HIIT: 3x per week, for 12 weeks / 6–8 bouts of 30 s runs at 100% velocity HIIT + P: 3x per week, for 12 weeks / HIIT program + 3x 2 min plyometric exercises | Leptin ↓ (HIIT: 20.2 ± 2.6 to 17.3 ± 1.8 ng/mL, p = 0.033) (HIIT + P: 17.6 ± 2.3 to 13.5 ± 2.0 ng/mL, p = 0.019) |
Elloumi et al. (2009) [131] | 7 | 13.2 ± 0.9 | Obese adolescent boys / Blood plasma / Protein level | Exercise group and energy restriction + exercise group | Exercise: 90 min, 4x per week, for 8 weeks / HR corresponding to LipoMax Exercise + Diet: identical exercise + 500 kcal below initial dietary record | Leptin ↓ (Exercise: p < 0.05) (Energy Restriction + Exercise: p < 0.01) |
Vasconcellos et al. (2016) d [43] | 10 | 12–17 | Obese adolescents / Blood plasma / Protein level | Soccer training program | 60 min, 3x per week, for 12 weeks | Leptin ↔ |
Souza et al. (2004) [132] | 40 | 6–11 | Obese children / Blood serum / Protein level | Stepwise maximal aerobic endurance test | Progressive protocol until exhaustion | Leptin ↔ |
Lau et al. (2010) [133] | 18 | 12.45 ± 1.77 | Overweight adolescents / Blood serum / Protein level | Resistance exercise | 60 min, 3x per week, for 6 weeks / Up to 85% of 1 RM | Leptin ↔ |
Healthy Athletes | ||||||
---|---|---|---|---|---|---|
Reference | N | Age | Population/Source/ Testing | Intervention | Duration/ Intensity | Result |
Eliakim et al. (2000) [134] | 20 | 15–17 | Healthy adolescents / Blood serum / Protein level | Endurance exercise | 12–150 min, 5x per week, for 5 weeks / Duration and intensity varied | HDL ↑ (32.6 ± 1.4 to 36.8 ± 1.6 mg/dL, p < 0.05) LDL ↔ |
Stergioulas et al. (2006) a [105] | 38 | 10–14 | Healthy children / Blood serum / Protein level | Aerobic exercise on cycle ergometer | 60 min, 4x per week, for 8 weeks / 80% of physical working capacity | HDL ↑ (1.24 + 0.17 to 1.45 + 0.31 mmol/L, p < 0.01) |
Buchan et al. (2013) [135] | 42 | 16.7 ± 0.6 | Healthy adolescents / Blood plasma / Protein level | Sprint running | 3x per week, for 7 weeks / 4–6 repeats of max. 20 m sprint | LDL↓ (2.5 + 1.5 to 1.5 + 1.0 mmol/L, p < 0.019) HDL ↔ |
Rosenkranz et al. (2012) [136] | 16 | 7–12 | Healthy children / Whole blood / Protein level | High intensity aerobic exercise | 30 min, 2x per week, for 8 weeks / 5 × 20 s Running intervals at 100–130% max. aerobic speed | LDL↓ (97.5 + 18.8 to 62.7 + 20.2 mg/dL, p < 0.05) HDL ↔ |
Tolfrey et al. (2004) [137] | 34 | 10.6 ± 0.6 | Healthy children / Blood plasma / Protein level | Aerobic stationary cycling exercise | Individual duration, 3x per week, for 12 weeks / 80% of HRmax | LDL/HDL ↔ |
Balas-Nakash et al. (2010) [138] | 319 | 8–12 | Healthy children / Blood plasma / Protein level | Aerobic exercise | 40 min, 5x per week, for 12 weeks | LDL/HDL ↔ |
Stoedefalke et al. (2000) [139] | 20 | 13–14 | Healthy girls / Blood serum / Protein level | Aerobic exercise | 20 min, 3x per week, for 20 weeks / 75–85% HRmax | LDL/HDL ↔ |
Ghorbanian et al. (2013) [140] | 30 | 14–17 | Healthy male adolescents / Blood plasma / Protein level | Rope training | 40 min, 4x per week, for 8 weeks | LDL ↔ |
Healthy athletes | ||||||
Koozehchian et al. (2014) [141] | 27 | 11.81 ± 1.38 | Swimmers and soccer players / Blood plasma / Protein level | Swimming training or soccer training | 60 min, 3x per week, for 12 weeks | LDL↓ (p < 0.01, only for soccer) HDL ↑ (p < 0.05, for swimming and soccer) |
Pre-existing condition | ||||||
Kelly et al. (2004) [142] | 25 | 10.9 ± 0.4 | Overweight children and adolescents / Blood serum / Protein level | Aerobic exercise cycle ergometer | 30–50 min, 4x per week, for 8 weeks / 50–80% VO2peak | HDL ↑ (1.02 ± 0.03 to 1.10 ± 0.04 mmol/L, p < 0.05) LDL ↔ |
Ribeiro et al. (2005) [143] | 21 | 10 ± 0.2 | Obese children / Blood serum / Protein level | Diet and aerobic exercise | 60 min, 3x per week, for 4 months / HR levels correspond to anaerobic threshold up to 10% below respiratory compensation point | HDL ↑ (39 ± 0.8 to 44 ± 0.5 mg/dL, p < 0.05) LDL ↔ |
Karacabey et al. (2009) f [123] | 20 | 10–12 | Obese boys / Blood serum / Protein level | Aerobic exercise walking/jogging | 30–60 min, 3x per week, for 12 weeks / 60–65% HRR | LDL↓ (87.2 ± 9.4 to 67.5 ± 9.4 mg/dL, p < 0.001) HDL ↑ (51.9 ± 7.5 to 59.0 ± 7.5 mg/dL, p < 0.001) |
Seabra et al. (2016) d [124] | 58 | 8–12 y | Obese boys / Blood plasma / Protein level | Aerobic exercise group and soccer group | Both groups:60–90 min, 3x per week, for 6 months / 70–80% HRmax | LDL↓ only soccer (104.3 + 42.2 to 90.9 + 32.3 mg/dL, p < 0.05) HDL ↑ only soccer (53.6 + 9.5 to 57.7 + 12.1 mg/dL, p < 0.05) |
Zorba et al. (2011) f [144] | 20 | 11 ± 1.0 | Obese children / Blood serum / Protein level | Aerobic exercise walking/jogging | 20–45 min, 3x per week, for 12 weeks / 60–65% HRmax | LDL ↓ (87.2 + 9.4 to 67.5 + 9.4 mg/dL, p < 0.001) HDL ↑ (51.9 + 7.5 to 59 + 7.5 mg/dL, p < 0.001) |
Kamal et al. (2012) h [129] | 44 | 8–12 | Obese children with/without metabolic syndrome / Blood serum / Protein level | Aerobic exercise walking/jogging | 30–60 min, 3x per week, for 12 weeks / 60–65%HRR | LDL ↓ (w/o MS: 107 ± 10.2 to 99.4 ± 15.4 mg/dL, p < 0.05) (w MS: non-significant changes) HDL ↑ (w/o MS: 45.8 ± 5.9 to 49.3 ± 6.5 mg/dL, p < 0.05) (w MS: 32 ± 2.7 to 43.4 ± 6.2 mg/dL, p < 0.05) |
Aouadi et al. (2011) [145] | 11 | 13.5 ± 0.8 | Children with T1DM / Blood serum / Protein level | Aerobic exercise | 60 min, 4x per week, for 6 months / 50–65% HRmax | LDL ↓ (81.6 + 11.8 to 69.2 + 8.5 mg/dL, p < 0.01) HDL ↑ (56.7 + 7.2 to 68.8 + 5.7 mg/dL, p < 0.01) |
Racil et al. (2013) i [146] | 22 | 15.9 ± 0.3 | Obese adolescent girls / Blood plasma / Protein level | High-intensity interval training or Moderate-intensity interval training | 3x per week, for 12 weeks / HIIT: 100–110% max aerobic speed MIIT: 70–80% max aerobic speed | LDL ↓ (HIIT: 2.49 ± 0.32 to 2.18 ± 0.4 mmol/L, p < 0.01 MIIT: 2.77 ± 0.3 to 2.55 ± 0.32 mmol/L, p < 0.05) HDL ↑ (HIIT: 1.02 ± 0.06 to 1.08 ± 0.08 mmol/L, p < 0.05 MIIT: 1.01 ± 0.08 to 1.09 ± 0.07 mmol/L, p < 0.05) |
Woo et al. (2004) j [147] | 41 | 9–12 | Overweight children / Blood serum / Protein level | Diet + aerobic exercise | 75 min, 2x per week, for 6 weeks / 60–70% HRmax | LDL ↓ (2.9 + 0.9 to 2.6 + 0.8 mmol/L, p < 0.002) HDL ↔ |
Woo et al. (2004) j [147] | 22 | 9–12 | Overweight children / Blood serum / Protein level | Diet + aerobic exercise | 75 min, 2x per week, for 12 months / 60–70% HRmax | LDL ↓ (3.0 + 0.9 to 2.7 + 1.0 mmol/L, p < 0.05) HDL ↑ (1.2 + 0.3 to 1.4 + 0.3 mmol/L, p < 0.01) |
Lee et al. (2010) k [148] | 16 | 12–14 | Obese children / Blood serum / Protein level | Aerobic exercise | 60 min, 3x per week, for 10 weeks / 70–90% HRmax | LDL ↓ (116.07 ± 28.08 mg/dL vs. 103.73 ± 27.48 mg/d, p < 0.05) |
Lee et al. (2010) k [148] | 20 | 12–14 | Obese children / Blood serum / Protein level | Aerobic and resistance exercise | 60 min, 3x per week, for 10 weeks / Resistance:70–80% max. strength Aerobic: 70–90% HRmax | LDL ↓ (115.42 ± 14.13 mg/dL vs. 105.68 ± 16.43 mg/dL, p < 0.05) HDL ↑ (45.26 ± 7.07 mg/dL vs. 49.47 ± 9.13 mg/dL, p < 0.05) |
Kovács et al. (2009) [149] | 38 | 6.5–12.5 | Obese children / Blood plasma / Protein level | Aerobic exercise | 60 min, 3x per week, for 5 weeks / Working HR 120–185 bpm | LDL ↓ (2.4 ± 0.6 vs. 1.9 ± 0.6 mM/L, p < 0.0001) HDL ↔ |
Chae et al. (2010) [150] | 19 | 9–15 | Obese children / Blood plasma / Protein level | Intensive aerobic and resistance exercise | 90 min, 2x per week, for 12 weeks | LDL ↓ (101.3 ± 6.3 to 90.2 ± 6.5 mg/dL, p < 0.05) HDL ↔ |
Roberts et al. (2013) [151] | 19 | 8–17 | Obese children / Blood serum / Protein level | Diet + aerobic exercise | 120–150 min, 7x per week, for 2 weeks | LDL ↓ (95.0 ± 6.1 to 71.8 ± 5.0 mg/dL, p < 0.01) HDL ↔ |
Korsten-Reck et al. (2005) [152] | 461 | 10.5 | Obese children / Blood plasma / Protein level | Diet + aerobic exercise | 60 min, 3x per week, for 8 months | LDL ↓ (106.0 + 28.9 to 100.2 + 25.8 mg/dL, p < 0.001) HDL ↔ |
Kelishadi et al. (2008) g [153] | 35 | 12–18 | Obese children / Blood serum / Protein level | Diet and exercise | 60 min, 3x per week, for 6 weeks / Moderate to vigorous intensity | LDL ↓ (3.1 ± 0.5 to 2.7 ± 0.4 mmol/L, p < 0.02) HDL ↔ |
Zehsaz et al. (2016) [154] | 16 | 9–12 | Obese male children / Blood serum / Protein level | Aerobic and resistance training | Aerobic: 30 min, 2x per week, for 16 weeks / 55–75% HRmax Resistance: 55 min, 2x per week, for 16 weeks / 70% 1 RM | LDL ↓ (87.2 ± 9.4 to 72.4 ± 9.5 mg/dL, p < 0.001) HDL ↔ |
Meyer et al. (2006) [155] | 33 | 14.7 ± 2.2 | Obese adolescents / Blood plasma / Protein level | Aerobic exercise | 60–90 min, 3x per week, for 6 months | LDL ↓ (2.71 + 0.7 to 2.57 + 0.66 mmol/L, p = 0.025) HDL ↔ |
Farpour-Lambert et al. (2009) [156] | 22 | 8.9 ± 1.5 | Obese children / Blood plasma / Protein level | Aerobic and strengthening exercise | Aerobic: 30–40 min, 3x per week, for 12 weeks Strength: 20 min, 3x per week, for 12 weeks | LDL ↓ (p < 0.05) HDL ↓ (p < 0.01) |
Sun et al. (2011) [157] | 25 | 13.6 ± 0.7 | Obese adolescents / Blood serum / Protein level | Aerobic exercise | 60 min, 4x per week, 10 weeks / 40–60% VO2max | LDL ↓ (2.6 ± 0.6 to 2.3 ± 0.5 mmol/L, p < 0.01) HDL ↓ (1.2 ± 0.2 to 1.1 ± 0.2 mmol/L, p < 0.01) |
Sung et al. (2002) [158] | 41 | 8–11 | Obese children / Blood serum / Protein level | Diet + aerobic and resistance exercise | 75 min/session, for 6 weeks / 60–70% HRmax | LDL ↓ (2.9 ± 0.8 to 2.6 ± 0.8 mmol/L, p < 0.05) |
Migueles et al. (2023) [159] | 47 | 8–11 | Obese children / Blood serum / Protein level | Aerobic and resistance exercise | 60 min aerobic, 30 min resistance, 3x per week, for 20 weeks | LDL/HDL ↔ |
Benson et al. (2008) [160] | 32 | 12.2 ± 1.3 | Obese and overweight children / Blood serum / Protein level | Progressive resistance training | 2x per week, for 8 weeks / 80% 1 RM | LDL/HDL ↔ |
Wong et al. (2008) [161] | 12 | 13–14 | Obese adolescents / Blood serum / Protein level | Aerobic and resistance exercise | 2x per week, for 12 weeks / 65–85% HRmax | LDL/HDL ↔ |
Kelishadi et al. (2008) g [127] | 45 | 7.7 ± 1.2 | Obese children / Blood serum / Protein level | Aerobic exercise | 40 min, 5x per week, for 6 months | LDL/HDL ↔ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haferanke, J.; Baumgartner, L.; Willinger, L.; Oberhoffer-Fritz, R.; Schulz, T. Molecular Mechanisms of Vascular Tone in Exercising Pediatric Populations: A Comprehensive Overview on Endothelial, Antioxidative, Metabolic and Lipoprotein Signaling Molecules. Int. J. Mol. Sci. 2025, 26, 1027. https://doi.org/10.3390/ijms26031027
Haferanke J, Baumgartner L, Willinger L, Oberhoffer-Fritz R, Schulz T. Molecular Mechanisms of Vascular Tone in Exercising Pediatric Populations: A Comprehensive Overview on Endothelial, Antioxidative, Metabolic and Lipoprotein Signaling Molecules. International Journal of Molecular Sciences. 2025; 26(3):1027. https://doi.org/10.3390/ijms26031027
Chicago/Turabian StyleHaferanke, Jonas, Lisa Baumgartner, Laura Willinger, Renate Oberhoffer-Fritz, and Thorsten Schulz. 2025. "Molecular Mechanisms of Vascular Tone in Exercising Pediatric Populations: A Comprehensive Overview on Endothelial, Antioxidative, Metabolic and Lipoprotein Signaling Molecules" International Journal of Molecular Sciences 26, no. 3: 1027. https://doi.org/10.3390/ijms26031027
APA StyleHaferanke, J., Baumgartner, L., Willinger, L., Oberhoffer-Fritz, R., & Schulz, T. (2025). Molecular Mechanisms of Vascular Tone in Exercising Pediatric Populations: A Comprehensive Overview on Endothelial, Antioxidative, Metabolic and Lipoprotein Signaling Molecules. International Journal of Molecular Sciences, 26(3), 1027. https://doi.org/10.3390/ijms26031027