Effect of High Viscosity on Energy Metabolism and Kinematics of Spermatozoa from Three Mouse Species Incubated under Capacitating Conditions
Abstract
1. Introduction
2. Results
2.1. Effect of High Viscosity on Capacitation
2.2. Effect of Different Viscosities on Sperm Kinematics and ATP Content
2.2.1. Effect of Different Viscosities on Sperm Kinematics
2.2.2. Effect of Different Viscosities on ATP Levels
2.2.3. Relationship between ATP Levels and Sperm Kinematics
2.3. Effect of High Viscosity on Sperm Kinematics and ATP Content at Different Times of Incubation
2.3.1. Effect of High Viscosity on Kinematics at Different Times of Incubation
2.3.2. Effect of High Viscosity on ATP Content at Different Times of Incubation
2.4. Comparison between Sperm Incubated in Non-Capacitating or Capacitating Conditions in High Viscosity
3. Discussion
4. Materials and Methods
4.1. Animals and Sperm Collection
4.2. Experimental Design: Effects of Low and High Viscosities
4.3. Sperm Viability and Motility
4.4. Sperm Capacitation
4.5. Sperm Swimming Parameters
4.6. Sperm ATP Content
4.7. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Austin, C.R. The capacitation of the mammalian sperm. Nature 1952, 170, 326. [Google Scholar] [CrossRef] [PubMed]
- De Jonge, C. Biological basis for human capacitation. Hum. Reprod. Update 2005, 11, 205–214. [Google Scholar] [CrossRef] [PubMed]
- De Jonge, C. Biological basis for human capacitation-revisited. Hum. Reprod. Update 2017, 23, 289–299. [Google Scholar] [CrossRef] [PubMed]
- Nixon, B.; Bromfield, E.G. Sperm capacitation. In Encyclopedia of Reproduction; Skinner, M.K., Ed.; Academic Press: Oxford, UK, 2018; pp. 272–278. [Google Scholar]
- Yanagimachi, R. Mechanisms of fertilization in mammals. In Fertilization and Embryonic Development In Vitro; Mastroiani, L., Biggers, J.D., Eds.; Springer: Boston, MA, USA, 1981; pp. 81–182. [Google Scholar]
- Suarez, S.S.; Osman, R.A. Initiation of hyperactivated flagellar bending in mouse sperm within the female reproductive tract. Biol. Reprod. 1987, 36, 1191–1198. [Google Scholar] [CrossRef]
- Goodson, S.G.; Zhang, Z.; Tsuruta, J.K.; Wang, W.; O’Brien, D.A. Classification of mouse sperm motility patterns using an automated multiclass support vector machines model. Biol. Reprod. 2011, 84, 1207–1215. [Google Scholar] [CrossRef]
- Suarez, S.S.; Katz, D.F.; Owen, D.H.; Andrew, J.B.; Powell, R.L. Evidence of the funciton of hyperactivated motility in sperm. Biol. Reprod. 1991, 44, 375–381. [Google Scholar] [CrossRef]
- Suarez, S.S.; Dai, X. Hyperactivation enhances mouse sperm capacity for penetrating viscoelastic media. Biol. Reprod. 1992, 46, 686–691. [Google Scholar] [CrossRef]
- Tung, C.K.; Lin, C.; Harvey, B.; Fiore, A.G.; Ardon, F.; Wu, M.; Suarez, S.S. Fluid viscoelasticity promotes collective swimming of sperm. Sci. Rep. 2017, 7, 3152. [Google Scholar] [CrossRef]
- Qu, Y.; Chen, Q.; Guo, S.; Ma, C.; Lu, Y.; Shi, J.; Liu, S.; Zhou, T.; Noda, T.; Qian, J.; et al. Cooperation-based sperm clusters mediate sperm oviduct entry and fertilization. Protein Cell 2021, 12, 810–817. [Google Scholar] [CrossRef]
- Phuyal, S.; Suarez, S.S.; Tung, C.K. Biological benefits of collective swimming of sperm in a viscoelastic fluid. Front. Cell Dev. Biol. 2022, 10, 961623. [Google Scholar] [CrossRef]
- Jansen, R.P. Fallopian tube isthmic mucus and ovum transport. Science 1978, 201, 349–351. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.J.; Gaffney, E.A.; Gadelha, H.; Kapur, N.; Kirkman-Brown, J.C. Bend propagation in the flagella of migrating human sperm, and its modulation by viscosity. Cell Motil. Cytoskelet. 2009, 66, 220–236. [Google Scholar] [CrossRef] [PubMed]
- Miki, K.; Clapham, D.E. Rheotaxis guides mammalian sperm. Curr. Biol. 2013, 23, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Armon, L.; Eisenbach, M. Behavioral mechanism during human sperm chemotaxis: Involvement of hyperactivation. PLoS ONE 2011, 6, e28359. [Google Scholar] [CrossRef][Green Version]
- Boryshpolets, S.; Perez-Cerezales, S.; Eisenbach, M. Behavioral mechanism of human sperm in thermotaxis: A role for hyperactivation. Hum. Reprod. 2015, 30, 884–892. [Google Scholar] [CrossRef]
- Kantsler, V.; Dunkel, J.; Blayney, M.; Goldstein, R.E. Rheotaxis facilitates upstream navigation of mammalian sperm cells. eLife 2014, 3, e02403. [Google Scholar] [CrossRef]
- Perez-Cerezales, S.; Lopez-Cardona, A.P.; Gutierrez-Adan, A. Progesterone effects on mouse sperm kinetics in conditions of viscosity. Reproduction 2016, 151, 501–507. [Google Scholar] [CrossRef]
- Bohnensack, R.; Halangk, W. Control of respiration and of motility in ejaculated bull spermatozoa. Biochim. Biophys. Acta 1986, 850, 72–79. [Google Scholar] [CrossRef]
- Jeulin, C.; Soufir, J.C. Reversible intracellular ATP changes in intact rat spermatozoa and effects on flagellar sperm movement. Cell Motil. Cytoskelet. 1992, 21, 210–222. [Google Scholar] [CrossRef]
- Berlinguer, F.; Madeddu, M.; Pasciu, V.; Succu, S.; Spezzigu, A.; Satta, V.; Mereu, P.; Leoni, G.G.; Naitana, S. Semen molecular and cellular features: These parameters can reliably predict subsequent ART outcome in a goat model. Reprod. Biol. Endocrinol. 2009, 7, 125. [Google Scholar] [CrossRef]
- Goodson, S.G.; Qiu, Y.; Sutton, K.A.; Xie, G.; Jia, W.; O’Brien, D.A. Metabolic substrates exhibit differential effects on functional parameters of mouse sperm capacitation. Biol. Reprod. 2012, 87, 75. [Google Scholar] [CrossRef] [PubMed]
- Tourmente, M.; Rowe, M.; Gonzalez-Barroso, M.M.; Rial, E.; Gomendio, M.; Roldan, E.R. Postcopulatory sexual selection increases ATP content in rodent spermatozoa. Evolution 2013, 67, 1838–1846. [Google Scholar] [CrossRef] [PubMed]
- Tourmente, M.; Villar-Moya, P.; Varea-Sanchez, M.; Luque-Larena, J.J.; Rial, E.; Roldan, E.R. Performance of rodent spermatozoa over time is enhanced by increased ATP concentrations: The role of sperm competition. Biol. Reprod. 2015, 93, 64. [Google Scholar] [CrossRef] [PubMed]
- Travis, A.J.; Jorgez, C.J.; Merdiushev, T.; Jones, B.H.; Dess, D.M.; Diaz-Cueto, L.; Storey, B.T.; Kopf, G.S.; Moss, S.B. Functional relationships between capacitation-dependent cell signaling and compartmentalized metabolic pathways in murine spermatozoa. J. Biol. Chem. 2001, 276, 7630–7636. [Google Scholar] [CrossRef] [PubMed]
- Visconti, P.E.; Krapf, D.; de la Vega-Beltran, J.L.; Acevedo, J.J.; Darszon, A. Ion channels, phosphorylation and mammalian sperm capacitation. Asian J. Androl. 2011, 13, 395–405. [Google Scholar] [CrossRef]
- Cosson, J. ATP: The sperm movement energizer. In Adenosine Triphosphate: Chemical Properties, Biosynthesis and Functions in Cells; Kuester, E., Traugott, G., Eds.; Nova Science Publishers: Hauppauge, NY, USA, 2013; pp. 1–46. [Google Scholar]
- Ruiz-Pesini, E.; Díez-Sánchez, C.; López-Pérez, M.J.; Enríquez, J.A. The role of the mitochondrion in sperm function: Is there a place for oxidative phosphorylation or is this a purely glycolytic process? Curr. Top. Dev. Biol. 2007, 77, 3–19. [Google Scholar] [CrossRef]
- Storey, B.T. Mammalian sperm metabolism: Oxygen and sugar, friend and foe. Int. J. Dev. Biol. 2008, 52, 427–437. [Google Scholar] [CrossRef]
- Gardner, D.K.; Leese, H.J. Concentrations of nutrients in mouse oviduct fluid and their effects on embryo development and metabolism in vitro. J. Reprod. Fertil. 1990, 88, 361–368. [Google Scholar] [CrossRef]
- Harris, S.E.; Gopichandran, N.; Picton, H.M.; Leese, H.J.; Orsi, N.M. Nutrient concentrations in murine follicular fluid and the female reproductive tract. Theriogenology 2005, 64, 992–1006. [Google Scholar] [CrossRef]
- Tourmente, M.; Varea-Sanchez, M.; Roldan, E.R.S. Faster and more efficient swimming: Energy consumption of murine spermatozoa under sperm competition. Biol. Reprod. 2019, 100, 420–428. [Google Scholar] [CrossRef]
- Sansegundo, E.; Tourmente, M.; Roldan, E.R.S. Energy metabolism and hyperactivation of spermatozoa from three mouse species under capacitating conditions. Cells 2022, 11, 220. [Google Scholar] [CrossRef] [PubMed]
- Balbach, M.; Gervasi, M.G.; Hidalgo, D.M.; Visconti, P.E.; Levin, L.R.; Buck, J. Metabolic changes in mouse sperm during capacitation. Biol. Reprod. 2020, 103, 791–801. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Wen, Y.; Wang, L.; Peng, Z.; Yeerken, R.; Zhen, L.; Li, P.; Li, X. Ca2+ ionophore A23187 inhibits ATP generation reducing mouse sperm motility and PKA-dependent phosphorylation. Tissue Cell 2020, 66, 101381. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J.J.; Cassina, A.; Irigoyen, P.; Ford, M.; Pietroroia, S.; Peramsetty, N.; Radi, R.; Santi, C.M.; Sapiro, R. Increased mitochondrial activity upon CatSper channel activation is required for mouse sperm capacitation. Redox Biol. 2021, 48, 102176. [Google Scholar] [CrossRef]
- Giaccagli, M.M.; Gomez-Elias, M.D.; Herzfeld, J.D.; Marin-Briggiler, C.I.; Cuasnicu, P.S.; Cohen, D.J.; Da Ros, V.G. Capacitation-induced mitochondrial activity is required for sperm fertilizing ability in mice by modulating hyperactivation. Front. Cell Dev. Biol. 2021, 9, 767161. [Google Scholar] [CrossRef]
- Tourmente, M.; Sansegundo, E.; Rial, E.; Roldan, E.R.S. Capacitation promotes a shift in energy metabolism in murine sperm. Front. Cell Dev. Biol. 2022, 10, 950979. [Google Scholar] [CrossRef]
- Brokaw, C.J. Effects of increased viscosity on the movements of some invertebrate spermatozoa. J. Exp. Biol. 1966, 45, 113–139. [Google Scholar] [CrossRef]
- Gibbons, B.H.; Gibbons, I.R. Flagellar movement and adenosine triphosphatase activity in sea urchin sperm extracted with triton X-100. J. Cell Biol. 1972, 54, 75–97. [Google Scholar] [CrossRef] [PubMed]
- Brokaw, C.J. Effects of viscosity and ATP concentration on the movement of reactivated sea-urchin sperm flagella. J. Exp. Biol. 1975, 62, 701–719. [Google Scholar] [CrossRef]
- Chen, D.T.N.; Heymann, M.; Fraden, S.; Nicastro, D.; Dogic, Z. ATP Consumption of eukaryotic flagella measured at a single-cell level. Biophys. J. 2015, 109, 2562–2573. [Google Scholar] [CrossRef]
- Visconti, P.E.; Bailey, J.L.; Moore, G.D.; Pan, D.; Olds-Clarke, P.; Kopf, G.S. Capacitation of mouse spermatozoa. I. Correlation between the capacitation state and protein tyrosine phosphorylation. Development 1995, 121, 1129–1137. [Google Scholar] [CrossRef]
- Visconti, P.E.; Moore, G.D.; Bailey, J.L.; Leclerc, P.; Connors, S.A.; Pan, D.; Olds-Clarke, P.; Kopf, G.S. Capacitation of mouse spermatozoa. II. Protein tyrosine phosphorilation and capacitation are regulated by a cAMP-dependent pathway. Development 1995, 121, 1139–1150. [Google Scholar] [CrossRef] [PubMed]
- Gomez Montoto, L.; Varea Sanchez, M.; Tourmente, M.; Martin-Coello, J.; Luque-Larena, J.J.; Gomendio, M.; Roldan, E.R. Sperm competition differentially affects swimming velocity and size of spermatozoa from closely related muroid rodents: Head first. Reproduction 2011, 142, 819–830. [Google Scholar] [CrossRef] [PubMed]
- Hyakutake, T.; Suzuki, H.; Yamamoto, S. Effect of non-Newtonian fluid properties on bovine sperm motility. J. Biomech. 2015, 48, 2941–2947. [Google Scholar] [CrossRef] [PubMed]
- Quill, T.A.; Sugden, S.A.; Rossi, K.L.; Doolittle, L.K.; Hammer, R.E.; Garbers, D.L. Hyperactivated sperm motility driven by CatSper2 is required for fertilization. Proc. Natl. Acad. Sci. USA 2003, 100, 14869–14874. [Google Scholar] [CrossRef] [PubMed]
- Hyakutake, T.; Mori, K.; Sato, K. Effects of surrounding fluid on motility of hyperactivated bovine sperm. J. Biomech. 2018, 71, 183–189. [Google Scholar] [CrossRef]
- Lee, M.A.; Kopf, G.S.; Storey, B.T. Effects of phorbol esters and a diacylglycerol on the mouse sperm acrosome reaction induced by the zona pellucida. Biol. Reprod. 1987, 36, 617–627. [Google Scholar] [CrossRef]
- Leyton, L.; Saling, P. Evidence that aggregation of mouse sperm receptors by ZP3 triggers the acrosome reaction. J. Cell Biol. 1989, 108, 2163–2168. [Google Scholar] [CrossRef]
- Fraser, L.R.; Herod, J.E. Expression of capacitation-dependent changes in chlortetracycline fluorescence patterns in mouse spermatozoa requires a suitable glycolysable substrate. J. Reprod. Fertil. 1990, 88, 611–621. [Google Scholar] [CrossRef]
- da Fonseca Junior, A.M.; Gaita, V.; Argumedo, D.R.; de Castro, L.S.; Losano, J.D.A.; Ferreira Leite, R.; Nichi, M.; Assumpcao, M.; de Araujo, D.R.; Neves, A.A.R.; et al. Changes in fertilization medium viscosity using hyaluronic acid impact bull sperm motility and acrosome status. Reprod. Domest. Anim. 2020, 55, 974–983. [Google Scholar] [CrossRef]
- Mukai, C.; Okuno, M. Glycolysis plays a major role for adenosine triphosphate supplementation in mouse sperm flagellar movement. Biol. Reprod. 2004, 71, 540–547. [Google Scholar] [CrossRef]
- Hidalgo, D.M.; Romarowski, A.; Gervasi, M.G.; Navarrete, F.; Balbach, M.; Salicioni, A.M.; Levin, L.R.; Buck, J.; Visconti, P.E. Capacitation increases glucose consumption in murine sperm. Mol. Reprod. Dev. 2020, 87, 1037–1047. [Google Scholar] [CrossRef]
- Magdanz, V.; Boryshpolets, S.; Ridzewski, C.; Eckel, B.; Reinhardt, K. The motility-based swim-up technique separates bull sperm based on differences in metabolic rates and tail length. PLoS ONE 2019, 14, e0223576. [Google Scholar] [CrossRef] [PubMed]
- Roldan, E.R.S. Sperm competition and the evolution of sperm form and function in mammals. Reprod. Domest. Anim. 2019, 54 (Suppl. 4), 14–21. [Google Scholar] [CrossRef] [PubMed]
- Teves, M.E.; Roldan, E.R.S. Sperm bauplan and function and underlying processes of sperm formation and selection. Physiol. Rev. 2022, 102, 7–60. [Google Scholar] [CrossRef] [PubMed]
- Parker, G.A. Sperm Competition and its evolutionary consequences in the insects. Biol. Rev. 1970, 45, 525–567. [Google Scholar] [CrossRef]
- Gomendio, M.; Martin-Coello, J.; Crespo, C.; Magana, C.; Roldan, E.R. Sperm competition enhances functional capacity of mammalian spermatozoa. Proc. Natl. Acad. Sci. USA 2006, 103, 15113–15117. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Nunome, M.; Kinoshita, G.; Aplin, K.P.; Vogel, P.; Kryukov, A.P.; Jin, M.L.; Han, S.H.; Maryanto, I.; Tsuchiya, K.; et al. Evolutionary and dispersal history of Eurasian house mice Mus musculus clarified by more extensive geographic sampling of mitochondrial DNA. Heredity 2013, 111, 375–390. [Google Scholar] [CrossRef] [PubMed]
- Cazaux, B.; Catalan, J.; Justy, F.; Escude, C.; Desmarais, E.; Britton-Davidian, J. Evolution of the structure and composition of house mouse satellite DNA sequences in the subgenus Mus (Rodentia: Muridea): A cytogenomic approach. Chromosoma 2013, 122, 209–220. [Google Scholar] [CrossRef]
- Gomez Montoto, L.; Magana, C.; Tourmente, M.; Martin-Coello, J.; Crespo, C.; Luque-Larena, J.J.; Gomendio, M.; Roldan, E.R. Sperm competition, sperm numbers and sperm quality in muroid rodents. PLoS ONE 2011, 6, e18173. [Google Scholar] [CrossRef]
- Varea-Sanchez, M.; Tourmente, M.; Bastir, M.; Roldan, E.R. Unraveling the Sperm Bauplan: Relationships between sperm head morphology and sperm function in rodents. Biol. Reprod. 2016, 95, 25. [Google Scholar] [CrossRef]
- Tourmente, M.; Villar-Moya, P.; Rial, E.; Roldan, E.R. Differences in ATP generation via glycolysis and oxidative phosphorylation and relationships with sperm motility in mouse species. J. Biol. Chem. 2015, 290, 20613–20626. [Google Scholar] [CrossRef] [PubMed]
- Ivic, A.; Onyeaka, H.; Girling, A.; Brewis, I.A.; Ola, B.; Hammadieh, N.; Papaioannou, S.; Barratt, C.L. Critical evaluation of methylcellulose as an alternative medium in sperm migration tests. Hum. Reprod. 2002, 17, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Eamer, L.; Nosrati, R.; Vollmer, M.; Zini, A.; Sinton, D. Microfluidic assessment of swimming media for motility-based sperm selection. Biomicrofluidics 2015, 9, 044113. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Park, J.W.; Kim, D.; Kwon, H.; Cho, M.J.; Lee, E.J.; Shin, T.E.; Kim, D.K.; Lee, S.; Byeun, D.G.; et al. Viscous cervical environment-on-a-chip for selecting high-quality sperm from human semen. Biomedicines 2021, 9, 1439. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Abreu, D.; Garcia-Martinez, S.; Fernandez-Espin, V.; Romar, R.; Gadea, J. Incubation of boar spermatozoa in viscous media by addition of methylcellulose improves sperm quality and penetration rates during in vitro fertilization. Theriogenology 2017, 92, 14–23. [Google Scholar] [CrossRef]
- Shi, Q.X.; Roldan, E.R. Bicarbonate/CO2 is not required for zona pellucida- or progesterone-induced acrosomal exocytosis of mouse spermatozoa but is essential for capacitation. Biol. Reprod. 1995, 52, 540–546. [Google Scholar] [CrossRef] [PubMed]
- Ward, C.R.; Storey, B.T. Determination of the time course of capacitation in mouse spermatozoa using a chlortetracycline fluorescence assay. Dev. Biol. 1984, 104, 287–296. [Google Scholar] [CrossRef]
Swimming Parameter | Non-Capacitating Conditions | Capacitating Conditions | ||||||
---|---|---|---|---|---|---|---|---|
% PVP | % PVP | |||||||
0 | 1 | 2 | 4 | 0 | 1 | 2 | 4 | |
VCL | 149.2 ± 9.8 | 139.2 ± 9.5 | 136.1 ± 9.1 | 125.1 ± 7.9 a | 144.4 ± 14.0 | 123.1 ± 40.0 | 149.5 ± 19.2 | 120.8 ± 2.0 |
VSL | 42.4 ± 8.6 | 38.3 ± 3.6 | 40.9 ± 2.8 | 34.8 ± 1.8 | 40.8 ± 6.0 | 35.7 ± 10.1 | 45.0 ± 6.1 | 34.0 ± 1.7 |
VAP | 69.6 ± 9.4 | 63.5 ± 4.3 | 65.9 ± 3.9 | 60.4 ± 0.2 | 66.6 ± 7.9 | 58.4 ± 19.3 | 71.7 ± 7.6 | 57.4 ± 0.3 |
LIN | 28.9 ± 2.7 | 29.0 ± 2.2 | 31.4 ± 2.7 | 30.8 ± 1.3 | 28.2 ± 3.1 | 28.1 ± 4.0 | 30.9 ± 3.0 | 31.2 ± 0.3 |
STR | 55.9 ± 4.2 | 56.4 ± 2.0 | 57.1 ± 3.0 | 55.1 ± 2.4 | 56.4 ± 2.4 | 52.0 ± 7.7 | 57.1 ± 2.5 | 56.4 ± 3.0 |
WOB | 48.5 ± 2.6 | 48.0 ± 1.9 | 51.7 ± 1.5 | 52.4 ± 2.8 | 47.1 ± 3.3 | 47.4 ± 6.9 | 50.9 ± 2.4 | 51.7 ± 1.3 |
ALH | 3.3 ± 0.2 | 3.2 ± 0.1 | 3.2 ± 0.1 | 3.1 ± 0.2 | 3.3 ± 0.2 | 2.8 ± 1.0 | 3.3 ± 0.3 | 3.1 ± 0.2 |
BCF | 24.7 ± 1.6 | 23.7 ± 1.2 | 22.9 ± 0.6 | 21.4 ± 3.0 | 23.6 ± 2.7 | 23.0 ± 0.9 | 22.1 ± 0.9 | 20.7 ± 0.4 |
Swimming Parameter | Non-Capacitating Conditions | Capacitating Conditions | ||||||
---|---|---|---|---|---|---|---|---|
% PVP | % PVP | |||||||
0 | 1 | 2 | 4 | 0 | 1 | 2 | 4 | |
VCL | 244.0 ± 36.8 | 193.6 ± 25.6 b | 159.4 ± 23.6 d | 139.0 ± 8.1 d | 247.8 ± 45.8 | 168.8 ± 20.9 c | 141.9 ± 29.6 d | 131.3 ± 18.4 d |
VSL | 76.6 ± 19.4 | 61.3 ± 13.1 | 46.3 ± 9.1 b | 39.6 ± 5.0 c | 82.2 ± 22.6 | 44.8 ± 10.9 c | 38.2 ± 12.4 d | 35.1 ± 7.2 d |
VAP | 108.7 ± 18.5 | 90.2 ± 15.9 | 74.5 ± 12.8 b | 66.4 ± 7.8 d | 116.2 ± 24.6 | 74.6 ± 13.9 c | 63.1 ± 16.7 d | 59.9 ± 11.6 d |
LIN | 30.3 ± 3.7 | 30.3 ± 3.6 | 29.0 ± 2.1 | 30.0 ± 2.4 | 29.6 ± 3.1 | 26.0 ± 3.9 | 26.1 ± 4.3 | 27.4 ± 2.6 |
STR | 61.6 ± 6.2 | 61.5 ± 4.1 | 57.6 ± 2.8 | 56.7 ± 2.4 | 61.1 ± 4.0 | 55.3 ± 3.1 a | 56.0 ± 3.4 | 55.4 ± 3.7 a |
WOB | 46.1 ± 3.3 | 46.8 ± 4.0 | 47.8 ± 2.3 | 49.8 ± 3.3 | 46.2 ± 3.5 | 44.7 ± 4.6 | 44.4 ± 5.9 | 46.8 ± 4.6 |
ALH | 5.0 ± 0.6 | 4.5 ± 0.6 | 4.0 ± 0.4 b | 3.6 ± 0.3 c | 5.2 ± 1.3 | 4.1 ± 0.3 | 3.6 ± 0.6 b | 3.4 ± 0.2 c |
BCF | 25.8 ± 3.8 | 23.6 ± 1.7 | 23.3 ± 0.8 | 22.5 ± 0.8 | 23.9 ± 3.4 | 22.6 ± 2.8 | 22.3 ± 2.2 | 21.5 ± 2.6 |
Swimming Parameter | Non-Capacitating Conditions | Capacitating Conditions | ||||||
---|---|---|---|---|---|---|---|---|
% PVP | % PVP | |||||||
0 | 1 | 2 | 4 | 0 | 1 | 2 | 4 | |
VCL | 222.1 ± 45.4 | 191.5 ± 32.0 | 140.7 ± 19.2 b | 115.5 ± 21.2 d | 171.3 ± 30.3 | 123.7 ± 21.9 b | 128.5 ± 9.6 a | 105.1 ± 18.5 c |
VSL | 88.2 ± 22.3 | 62.0 ± 14.8 a | 53.5 ± 10.6 b | 36.7 ± 7.6 d | 57.6 ± 19.4 | 43.7 ± 12.3 | 41.8 ± 3.0 | 29.3 ± 3.8 b |
VAP | 94.9 ± 36.9 | 91.3 ± 19.1 | 79.9 ± 11.2 | 63.6 ± 16.9 | 88.7 ± 25.9 | 84.4 ± 18.7 | 66.2 ± 4.1 | 50.2 ± 6.4 b |
LIN | 38.2 ± 5.2 | 36.4 ± 3.9 | 36.6 ± 2.0 | 33.0 ± 3.7 | 31.8 ± 6.9 | 32.8 ± 5.0 | 31.7 ± 6.0 | 30.1 ± 3.9 |
STR | 67.7 ± 3.8 | 66.5 ± 5.0 | 63.2 ± 2.9 | 59.0 ± 3.8 b | 59.0 ± 6.1 | 58.7 ± 6.7 | 57.5 ± 2.9 | 55.9 ± 2.6 |
WOB | 53.1 ± 5.5 | 51.9 ± 2.6 | 54.9 ± 3.6 | 52.7 ± 3.9 | 51.0 ± 9.0 | 53.6 ± 7.8 | 52.1 ± 9.5 | 51.5 ± 6.0 |
ALH | 4.4 ± 1.3 | 4.0 ± 0.7 | 3.6 ± 0.4 | 3.3 ± 0.6 | 4.0 ± 0.7 | 3.4 ± 0.6 | 3.0 ± 0.4 a | 3.0 ± 0.3 b |
BCF | 26.0 ± 1.8 | 24.4 ± 1.7 | 23.7 ± 1.6 | 21.0 ± 1.4 c | 20.8 ± 2.9 | 21.0 ± 4.1 | 20.2 ± 2.5 | 18.8 ± 2.2 |
Time (min) | Non-Capacitating | Capacitating | ||||||
---|---|---|---|---|---|---|---|---|
% PVP | % PVP | |||||||
0 | 1 | 2 | 4 | 0 | 1 | 2 | 4 | |
M. musculus | ||||||||
0 | 87.7 ± 40.2 | 68.9 ± 27.5 | 87.6 ± 24.8 | 68.0 ± 29.5 | 82.1 ± 31.9 | 85.8 ± 29.7 | 78.9 ± 24.2 | 90.9 ± 34.6 |
15 | 79.9 ± 37.9 | 69.7 ± 34.1 | 65.1 ± 40.8 | 70.2 ± 30.9 | 69.2 ± 29.4 * | 75.5 ± 31.7 * | 76.6 ± 33.1 | 84.1 ± 56.8 |
30 | 70.4 ± 34.0 | 58.7 ± 29.2 | 96.2 ± 59.7 | 83.4 ± 35.2 | 65.7 ± 39.2 * | 79.5 ± 42.0 | 64.4 ± 37.6 | 90.3 ± 67.8 |
M. spretus | ||||||||
0 | 354.6 ± 69.9 | 296.6 ± 76.4 | 274.5 ± 55.3 | 257.0 ± 68.8 | 291.3 ± 49.6 | 266.2 ± 61.7 | 277.0 ± 53.6 | 170.6 ± 48.6 a |
15 | 263.9 ± 83.2 * | 271.7 ± 88.6 | 334.8 ± 50.3 | 219.1 ± 36.2 | 248.6 ± 32.7 | 279.8 ± 16.3 | 257.5 ± 38.9 | 182.3 ± 61.0 |
30 | 258.9 ± 75.8 * | 203.1 ± 63.6 | 198.2 ± 65.6 | 153.8 ± 48.9 * | 202.6 ± 57.7 * | 179.7 ± 62.4 * | 151.3 ± 66.7 | 124.4 ± 18.1 a |
M. spicilegus | ||||||||
0 | 99.2 ± 50.8 | 98.4 ± 59.0 | 82.2 ± 34.1 | 90.3 ± 52.3 | 89.1 ± 42.5 | 57.9 ± 30.8 | 78.9 ± 50.5 | 77.3 ± 62.4 |
15 | 96.9 ± 41.5 | 81.3 ± 44.0 | 62.9 ± 36.0 * | 36.3 ± 27.6 | 73.1 ± 28.7 | 45.5 ± 19.3 | 49.9 ± 28.0 | 22.6 ± 16.0 |
30 | 72.5 ± 24.4 | 57.7 ± 28.0 | 47.3 ± 18.3 * | 30.0 ± 22.0 | 61.4 ± 23.1 | 30.5 ± 12.1 a | 25.1 ± 16.8 a | 16.0 ± 9.3 a |
Dependent Variable | Independent Variable | Mus musculus | Mus spretus | Mus spicilegus | ||||
---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | |||
Non-capacitating conditions | OSV | Viscosity | 133.52 | <0.0001 | 227.53 | <0.0001 | 290.01 | <0.0001 |
Time | 4.91 | 0.023 | 6.63 | 0.011 | 15.53 | <0.0001 | ||
Interaction | 1.5 | 0.256 | 4.94 | 0.27 | 16.12 | <0.0001 | ||
OTS 1 | Viscosity | 67.30 | <0.0001 | 63.85 | <0.0001 | 34.32 | <0.0001 | |
Time | 4.98 | 0.019 | 3.63 | 0.05 | 6.67 | 0.009 | ||
Interaction | 2.08 | 0.153 | 1.05 | 0.372 | 0.83 | 0.454 | ||
OTS 2 | Viscosity | 6.56 | 0.02 | 1.52 | 0.23 | 19.02 | 0.001 | |
Time | 7.16 | 0.005 | 6.61 | 0.008 | 9.21 | 0.003 | ||
Interaction | 0.29 | 0.753 | 0.01 | 0.992 | 0.26 | 0.775 | ||
Capacitating conditions | OSV | Viscosity | 108.25 | <0.0001 | 201.64 | <0.0001 | 266.43 | <0.0001 |
Time | 14.94 | <0.0001 | 2.28 | 0.134 | 60.76 | <0.0001 | ||
Interaction | 1.72 | 0.212 | 0.14 | 0.868 | 12.51 | <0.0001 | ||
OTS 1 | Viscosity | 82.52 | <0.0001 | 228.50 | <0.0001 | 46.55 | <0.0001 | |
Time | 5.87 | 0.014 | 2.42 | 0.121 | 10.13 | 0.001 | ||
Interaction | 0.84 | 0.453 | 2.43 | 0.121 | 0.51 | 0.608 | ||
OTS 2 | Viscosity | 10.29 | 0.006 | 0.08 | 0.787 | 32.4 | <0.0001 | |
Time | 13.61 | 0.001 | 2.16 | 0.147 | 56.29 | <0.0001 | ||
Interaction | 1.08 | 0.365 | 0.08 | 0.927 | 0.22 | 0.806 |
Dependent Variable | Independent Variable | Mus musculus | Mus spretus | Mus spicilegus | ||||
---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | |||
Non-capacitating conditions | ATP amount per sperm (amol spz−1) | Viscosity | 11.42 | 0.004 | 0.77 | 0.395 | 31.27 | <0.0001 |
Time | 26.75 | <0.0001 | 32.46 | <0.0001 | 217.90 | <0.0001 | ||
Interaction | 0.221 | 0.804 | 1.17 | 0.336 | 11.15 | 0.001 | ||
Capacitating conditions | ATP amount per sperm (amol spz−1) | Viscosity | 34.46 | <0.0001 | 6.33 | 0.021 | 39.03 | <0.0001 |
Time | 42.77 | <0.0001 | 14.25 | <0.0001 | 145.39 | <0.0001 | ||
Interaction | 1.19 | 0.330 | 0.02 | 0.977 | 5.99 | 0.012 |
Dependent Variable | Independent Variable | Mus musculus | Mus spretus | Mus spicilegus | |||
---|---|---|---|---|---|---|---|
F | p | F | p | F | p | ||
OSV | Medium | 10.83 | 0.005 | 26.68 | <0.0001 | 66.23 | <0.0001 |
Time | 40.75 | <0.0001 | 22.41 | <0.0001 | 25.64 | <0.0001 | |
Interaction | 4.97 | 0.022 | 8.28 | 0.005 | 15.59 | <0.0001 | |
OTS 1 | Medium | 0.3 | 0.592 | 5.92 | 0.027 | 0.38 | 0.545 |
Time | 5.87 | 0.013 | 3.11 | 0.072 | 3.74 | 0.046 | |
Interaction | 0.6 | 0.563 | 1.97 | 0.172 | 0.09 | 0.916 | |
OTS 2 | Medium | 5.15 | 0.038 | 0.9 | 0.361 | 10.02 | 0.007 |
Time | 22.68 | <0.0001 | 30.87 | <0.0001 | 25.19 | <0.0001 | |
Interaction | 2.30 | 0.134 | 2.64 | 0.112 | 2.73 | 0.101 | |
ATP amount per sperm (amol spz−1) | Medium | 1.16 | 0.299 | 0.34 | 0.569 | 0.03 | 0.861 |
Time | 44.7 | <0.0001 | 13.8 | <0.0001 | 87.97 | <0.0001 | |
Interaction | 1.03 | 0.380 | 0.36 | 0.701 | 0.26 | 0.775 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanchez-Rodriguez, A.; Sansegundo, E.; Tourmente, M.; Roldan, E.R.S. Effect of High Viscosity on Energy Metabolism and Kinematics of Spermatozoa from Three Mouse Species Incubated under Capacitating Conditions. Int. J. Mol. Sci. 2022, 23, 15247. https://doi.org/10.3390/ijms232315247
Sanchez-Rodriguez A, Sansegundo E, Tourmente M, Roldan ERS. Effect of High Viscosity on Energy Metabolism and Kinematics of Spermatozoa from Three Mouse Species Incubated under Capacitating Conditions. International Journal of Molecular Sciences. 2022; 23(23):15247. https://doi.org/10.3390/ijms232315247
Chicago/Turabian StyleSanchez-Rodriguez, Ana, Ester Sansegundo, Maximiliano Tourmente, and Eduardo R. S. Roldan. 2022. "Effect of High Viscosity on Energy Metabolism and Kinematics of Spermatozoa from Three Mouse Species Incubated under Capacitating Conditions" International Journal of Molecular Sciences 23, no. 23: 15247. https://doi.org/10.3390/ijms232315247
APA StyleSanchez-Rodriguez, A., Sansegundo, E., Tourmente, M., & Roldan, E. R. S. (2022). Effect of High Viscosity on Energy Metabolism and Kinematics of Spermatozoa from Three Mouse Species Incubated under Capacitating Conditions. International Journal of Molecular Sciences, 23(23), 15247. https://doi.org/10.3390/ijms232315247