The Use of Fitness Influencers’ Websites by Young Adult Women: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Survey
2.2. Statistical Analysis
2.3. Variables
3. Results
3.1. Characteristics of the Study Group
3.2. Factors Associated with the Use of Influencers’ Websites
3.3. Determinants of Health Behaviours
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
References
- Gough, C. Health & Fitness Clubs-Statistics & Facts. Available online: https://www.statista.com/topics/1141/health-and-fitness-clubs/ (accessed on 10 July 2020).
- Statista Total Number of Health and Fitness Clubs Worldwide 2009 to 2017. Available online: https://www.statista.com/statistics/275056/total-number-of-health-clubs-worldwide/ (accessed on 9 July 2020).
- Global Wellness Institute. Global Wellness Economy Monitor; Global Wellness Institute: Miami, FL, USA, 2018; Available online: https://globalwellnessinstitute.org/industry-research/2018-global-wellness-economy-monitor/ (accessed on 9 July 2020).
- Global Wellness Institute. Move to Be Well: The Global Economy of Physical Activity; Global Wellness Institute: Miami, FL, USA, 2019; Available online: https://globalwellnessinstitute.org/industry-research/global-economy-physical-activity/ (accessed on 8 July 2020).
- Dibiase, L. The Evolution of Instagram & YouTube Fitness Influencers. Available online: https://unamo.com/blog/guest-posts/fitness-influencers (accessed on 9 July 2020).
- GlobalWebIndex. Influencer Marketing; Trend Report 2019; GlobalWebIndex: London, UK, 2019; Available online: https://www.globalwebindex.com/reports/influencer-marketing (accessed on 8 July 2020).
- Collective Bias. Influencer Marketing Update: Non-Celebrity Influencers 10 Times More Likely to Drive In-Store Purchases. Available online: https://www.prnewswire.com/news-releases/influencer-marketing-update-non-celebrity-influencers-10-times-more-likely-to-drive-in-store-purchases-300241060.html (accessed on 10 July 2020).
- Thompson, W.R. Worldwide survey of fitness trends for 2020. ACSM Health Fit. J. 2019, 23, 10–18. [Google Scholar] [CrossRef]
- Szczepański, C. Najpopularniejsi polscy fit-influencerzy. My Co. Pol. 2020, 2, 53. [Google Scholar]
- Dahlgren, G.; Whitehead, M. Policies and Strategies to Promote Social Equity in Health. Background document to WHO—Strategy Paper for Europe; Stockholm Institute for Further Studies: Stockholm, Sweden, 1991. [Google Scholar]
- Fiolet, T.; Srour, B.; Sellem, L.; Kesse-Guyot, E.; Allès, B.; Méjean, C.; Deschasaux, M.; Fassier, P.; Latino-Martel, P.; Beslay, M.; et al. Consumption of ultra-processed foods and cancer risk: Results from NutriNet-Santé prospective cohort. BMJ 2018, 360, 322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.; Hu, E.A.; Rebholz, C.M. Ultra-processed food intake and mortality in the USA: Results from the Third National Health and Nutrition Examination Survey (NHANES III, 1988–1994). Public Health Nutr. 2019, 22, 1777–1785. [Google Scholar] [CrossRef] [PubMed]
- Srour, B.; Fezeu, L.K.; Kesse-Guyot, E.; Allès, B.; Méjean, C.; Andrianasolo, R.M.; Chazelas, E.; Deschasaux, M.; Hercberg, S.; Galan, P.; et al. Ultra-processed food intake and risk of cardiovascular disease: Prospective cohort study (NutriNet-Santé). BMJ 2019, 365, l1451. [Google Scholar] [CrossRef] [Green Version]
- Blanco-Rojo, R.; Sandoval-Insausti, H.; López-Garcia, E.; Graciani, A.; Ordovás, J.M.; Banegas, J.R.; Rodríguez-Artalejo, F.; Guallar-Castillón, P. Consumption of Ultra-Processed Foods and Mortality: A National Prospective Cohort in Spain. Mayo Clin. Proc. 2019, 94, 2178–2188. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Donoso, C.; Sánchez-Villegas, A.; Martínez-González, M.A.; Gea, A.; De, R.; Mendonça, D.; Lahortiga-Ramos, F.; Bes-Rastrollo, M. Ultra-processed food consumption and the incidence of depression in a Mediterranean cohort: The SUN Project. Eur. J. Nutr. 2020, 59, 1093–1103. [Google Scholar] [CrossRef]
- Meneguelli, T.S.; Hinkelmann, J.V.; Hermana, H.; Hermsdorff, M.; Ángeles Zulet, M.; Alfredo Martínez, J.; Bressan, J.; Hinkelmann, V.; Zulet, M.A.; Mart Inez, J.A. Food consumption by degree of processing and cardiometabolic risk: A systematic review Food consumption by degree of processing and cardiometabolic risk: A systematic review. Int. J. Food Sci. Nutr. 2020, 678–692. [Google Scholar] [CrossRef]
- Vandevijvere, S.; Jaacks, L.M.; Monteiro, C.A.; Moubarac, J.; Girling-Butcher, M.; Lee, A.C.; Pan, A.; Bentham, J.; Swinburn, B. Global trends in ultraprocessed food and drink product sales and their association with adult body mass index trajectories. Obes. Rev. 2019, 20, 10–19. [Google Scholar] [CrossRef]
- Ferretti, F.; Mariani, M. Sugar-sweetened beverage affordability and the prevalence of overweight and obesity in a cross section of countries. Glob. Health 2019, 15, 30. [Google Scholar] [CrossRef]
- Moodie, R.; Stuckler, D.; Monteiro, C.; Sheron, N.; Neal, B.; Thamarangsi, T.; Lincoln, P.; Casswell, S. Profits and pandemics: Prevention of harmful effects of tobacco, alcohol, and ultra-processed food and drink industries. Lancet 2013, 381, 670–679. [Google Scholar] [CrossRef]
- Baker, P.; Friel, S. Food systems transformations, ultra-processed food markets and the nutrition transition in Asia. Glob. Health 2016, 12, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marrón-Ponce, J.A.; Flores, M.; Cediel, G.; Monteiro, C.A.; Batis, C. Associations between Consumption of Ultra-Processed Foods and Intake of Nutrients Related to Chronic Non-Communicable Diseases in Mexico. J. Acad. Nutr. Diet. 2019, 119, 1852–1865. [Google Scholar] [CrossRef]
- Law, C.; Green, R.; Kadiyala, S.; Shankar, B.; Knai, C.; Brown, K.A.; Dangour, A.D.; Cornelsen, L. Purchase trends of processed foods and beverages in urban India. Glob. Food Secur. 2019, 23, 191–204. [Google Scholar] [CrossRef] [PubMed]
- Dunford, E.K.; Popkin, B.M.; Ng, S.W. Recent Trends in Junk Food Intake in U.S. Children and Adolescents, 2003–2016. Am. J. Prev. Med. 2020, 59, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Saha, A.; Alleyne, G. Recognizing noncommunicable diseases as a global health security threat. Bull. World Health Organ. 2018, 96, 792–793. [Google Scholar] [CrossRef] [PubMed]
- Williams, G.A.; Rechel, B.; Mcdaid, D.; Wismar, M.; Mckee, M. Getting and keeping people healthy: Reflecting on the successes and failures of public health policy in Europe. Eurohealth Syst. Policies Eurohealth 2018, 24, 29–33. [Google Scholar]
- Reubi, D. Of neoliberalism and global health: Human capital, market failure and sin/social taxes. Crit. Public Health 2016, 25, 481–486. [Google Scholar] [CrossRef] [Green Version]
- Iriart, C.; Franco, T.; Merhy, E.E. The creation of the health consumer: Challenges on health sector regulation after managed care era. Glob. Health 2011, 7, 2. [Google Scholar] [CrossRef] [Green Version]
- López-Fernández, J.; Jimenez, A. It Is Time for the Fitness & Wellness Industry to Lead the Agenda against Physical Inactivity. Res. Investig. Sports Med. 2018, 2, 127–129. [Google Scholar] [CrossRef] [Green Version]
- Pojednic, R.; Bantham, A.; Arnstein, F.; Kennedy, M.A.; Phillips, E. Bridging the gap between clinicians and fitness professionals: A challenge to implementing exercise as medicine. BMJ Open Sport Exerc. Med. 2018, 4, 369. [Google Scholar] [CrossRef] [Green Version]
- Pandey, S. The Economics of Weight Loss. Undergrad. Econ. Rev. 2018, 15, Art.21. [Google Scholar]
- Pettitt, C.D.; Joy, E. Connecting Health Care And Health And Fitness Professionals. ACSM Health Fit. J. 2019, 23, 9–13. [Google Scholar] [CrossRef]
- Andreasson, J.; Johansson, T. The Fitness Revolution. Historical Transformations in the Global Gym and Fitness Culture. Sport Sci. Rev. 2014, 23, 91–112. [Google Scholar] [CrossRef]
- Jong, S.T.; Drummond, M.J.N. Exploring online fitness culture and young females. Leis. Stud. 2016, 35, 758–770. [Google Scholar] [CrossRef] [Green Version]
- Norton, M. Fitspiration: Social Media’s Fitness Culture and Its Effect on Body Image; California State University: Monterey Bay, CA, USA, 2017. [Google Scholar]
- Zawadzki, P. Blisko 3 Miliony Polaków Korzysta z Klubów Fitness. Available online: https://www2.deloitte.com/pl/pl/pages/press-releases/articles/blisko-3-miliony-polakow-korzysta-z-klubow-fitness.html (accessed on 9 July 2020).
- Ewa Chodakowska. Available online: https://www.facebook.com/chodakowskaewa (accessed on 10 July 2020).
- Anna Lewandowska & Healthyplanbyann. Available online: https://www.facebook.com/healthyplanbyann (accessed on 10 July 2020).
- Annalewandowskahpba. Available online: https://www.instagram.com/annalewandowskahpba/?hl=pl (accessed on 10 July 2020).
- Organizacja Firm Badania Opinii i Rynku. Program Kontroli Jakości Pracy Ankieterów; OFBOR: Warszawa, Poland, 2019; Available online: https://www.pkjpa.pl/images/Standardy_PKJPA_2019.pdf (accessed on 7 July 2020).
- Interviewer Quality Control Scheme. Available online: https://iqcs.org/ (accessed on 9 July 2020).
- Statistics Poland. Wykorzystanie Technologii Informacyjno-Komunikacyjnych w Jednostkach Administracji Publicznej, Przedsiębiorstwach i Gospodarstwach Domowych w 2019 Roku; Głowny Urząd Statystyczny: Warszawa, Poland, 2020.
- Pelikan, J.M.; Röthlin, F.; Ganahl, K. Measuring Comprehensive Health Literacy in General Populations: Validation of Instrument, Indices and Scales of the HLS-EU Study. In Proceedings of the 6th Annual Health Literacy Research Conference, Rockville, MD, USA, 3–4 November 2014; Available online: http://www.bumc.bu.edu/healthliteracyconference/files/2014/06/Pelikan-et-al-HARC-2014-fin.pdf (accessed on 29 December 2019).
- Norman, C.D.; Skinner, H.A. eHEALS: The eHealth literacy scale. J. Med. Internet Res. 2006, 8, e27. [Google Scholar] [CrossRef] [Green Version]
- Duplaga, M.; Sobecka, K.; Wójcik, S. The reliability and validity of the telephone-based and online Polish ehealth literacy scale based on two nationally representative samples. Int. J. Environ. Res. Public Health 2019, 16, 3216. [Google Scholar] [CrossRef] [Green Version]
- Duplaga, M. Determinants and Consequences of Limited Health Literacy in Polish Society. Int. J. Environ. Res. Public Health 2020, 17, 642. [Google Scholar] [CrossRef] [Green Version]
- US Department of Health and Human Service; US Department of Agriculture. 2015–2020 Dietary Guidelines for Americans; USDA: Washington, DC, USA, 2015.
- Rao, R. Guidelines on safe alcohol drinking are probably about right. BMJ 2015, 351, h5082. [Google Scholar] [CrossRef]
- Griswold, M.G.; Fullman, N.; Hawley, C.; Arian, N.; Zimsen, S.R.M.; Tymeson, H.D.; Venkateswaran, V.; Tapp, A.D.; Forouzanfar, M.H.; Salama, J.S.; et al. Alcohol use and burden for 195 countries and territories, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2018, 392, 1015–1035. [Google Scholar] [CrossRef] [Green Version]
- Rock, C.L.; Thomson, C.; Gansler, T.; Gapstur, S.M.; McCullough, M.L.; Patel, A.V.; Andrews, K.S.; Bandera, E.V.; Spees, C.K.; Robien, K.; et al. American Cancer Society guideline for diet and physical activity for cancer prevention. CA Cancer J. Clin. 2020, 70, 245–271. [Google Scholar] [CrossRef] [PubMed]
- Odone, A.; Buttigieg, S.; Ricciardi, W.; Azzopardi-Muscat, N.; Staines, A. Public Health Digitalization in Europe | European Journal of Public Health. Eur. J. Public Health 2019, 29 (Suppl. 3), 28–35. [Google Scholar] [CrossRef] [PubMed]
- Milne-Ives, M.; LamMEng, C.; de Cock, C.; van Velthoven, M.H.; Ma, E.M. Mobile apps for health behavior change in physical activity, diet, drug and alcohol use, and mental health: Systematic review. JMIR mHealth uHealth 2020, 8, e17046. [Google Scholar] [CrossRef] [PubMed]
- Rose, T.; Barker, M.; Maria Jacob, C.; Morrison, L.; Lawrence, W.; Strömmer, S.; Vogel, C.; Woods-Townsend, K.; Farrell, D.; Inskip, H.; et al. A Systematic Review of Digital Interventions for Improving the Diet and Physical Activity Behaviors of Adolescents. J. Adolesc. Health 2017, 61, 669–677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Celik, R.; Toruner, E.K. The Effect of Technology-Based Programmes on Changing Health Behaviours of Adolescents: Systematic Review. Compr. Child Adolesc. Nurs. 2020, 43, 92–110. [Google Scholar] [CrossRef]
- Wadham, E.; Green, C.; Debattista, J.; Somerset, S.A.; Sav, A. New digital media interventions for sexual health promotion among young people: A systematic review. Sex. Health 2019, 16, 101–123. [Google Scholar] [CrossRef] [Green Version]
- Paramastri, R.; Pratama, S.A.; Ho, D.K.N.; Purnamasari, S.D.; Mohammed, A.Z.; Galvin, C.J.; Hsu, Y.H.E.; Tanweer, A.; Humayun, A.; Househ, M.; et al. The use of mobile applicatiosn to improve nutrition behaviour: A systematic review. Comput. Methods Programs Biomed. 2020, 192, 105459. [Google Scholar] [CrossRef]
- Cavero-redondo, I.; Martinez-vizcaino, V.; Fernandez-rodriguez, R.; Saz-lara, A.; Pascual-morena, C.; Álvarez-bueno, C. Effect of behavioral weight management interventions using lifestyle mhealth self-monitoring on weight loss: A systematic review and meta-analysis. Nutrients 2020, 12, 1977. [Google Scholar] [CrossRef]
- Furness, K.; Sarkies, M.N.; Huggins, C.E.; Croagh, D.; Haines, T.P. Impact of the Method of Delivering Electronic Health Behavior Change Interventions in Survivors of Cancer on Engagement, Health Behaviors, and Health Outcomes: Systematic Review and Meta-Analysis. J. Med. Internet Res. 2020, 22, e16112. [Google Scholar] [CrossRef]
- Ballin, M.; Hult, A.; Björk, S.; Dinsmore, J.; Nordström, P.; Nordström, A. Digital exercise interventions for improving measures of central obesity: A systematic review. Int. J. Public Health 2020, 65, 593–605. [Google Scholar] [CrossRef]
- Fawcett, E.; van Velthoven, M.H.; Meinert, E. Long-term weight management using wearable technology in overweight and obese adults: Systematic review. JMIR mHealth uHealth 2020, 8, e13461. [Google Scholar] [CrossRef]
- Williams, G.; Hamm, M.P.; Shulhan, J.; Vandermeer, B.; Hartling, L. Social media interventions for diet and exercise behaviours: A systematic review and meta-analysis of randomised controlled trials. BMJ Open 2014, 4, 3926. [Google Scholar] [CrossRef] [PubMed]
- Simeon, R.; Dewidar, O.; Trawin, J.; Duench, S.; Manson, H.; Pardo Pardo, J.; Petkovic, J.; Hatcher Roberts, J.; Tugwell, P.; Yoganathan, M.; et al. Behavior Change Techniques Included in Reports of Social Media Interventions for Promoting Health Behaviors in Adults: Content Analysis Within a Systematic Review. J. Med. Internet Res. 2020, 22, e16002. [Google Scholar] [CrossRef] [PubMed]
- Luo, T.; Li, M.S.; Williams, D.; Phillippi, S.; Yu, Q.; Kantrow, S.; Kao, Y.H.; Celestin, M.; Lin, W.T.; Tseng, T.S. Using social media for smoking cessation interventions: A systematic review. Perspect. Public Health 2020. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Chau, M.M.; Burgermaster, M.; Mamykina, L. The use of social media in nutrition interventions for adolescents and young adults—A systematic review. Int. J. Med. Inform. 2018, 120, 77–91. [Google Scholar] [CrossRef]
- Hudnut-Beumler, J.; Po’e, E.; Barkin, S. The Use of Social Media for Health Promotion in Hispanic Populations: A Scoping Systematic Review. JMIR Public Health Surveill. 2016, 2, e32. [Google Scholar] [CrossRef]
- Hagg, E.; Dahinten, V.S.; Currie, L.M. The emerging use of social media for health-related purposes in low and middle-income countries: A scoping review. Int. J. Med. Inform. 2018, 115, 92–105. [Google Scholar] [CrossRef]
- Moorhead, S.A.; Hazlett, D.E.; Harrison, L.; Carroll, J.K.; Irwin, A.; Hoving, C. A new dimension of health care: Systematic review of the uses, benefits, and limitations of social media for health communication. J. Med. Internet Res. 2013, 15, e85. [Google Scholar] [CrossRef] [Green Version]
- Giustini, D.M.; Ali, S.M.; Fraser, M.; Boulos, M.N.K. Effective uses of social media in public health and medicine: A systematic review of systematic reviews. Online J. Public Health Inform. 2018, 10, e215. [Google Scholar] [CrossRef] [Green Version]
- Rounsefell, K.; Gibson, S.; McLean, S.; Blair, M.; Molenaar, A.; Brennan, L.; Truby, H.; McCaffrey, T.A. Social media, body image and food choices in healthy young adults: A mixed methods systematic review. Nutr. Diet. 2020, 77, 19–40. [Google Scholar] [CrossRef]
- Keogh, A.; Chadwick, B. Health food blogger: Friend or foe? BDJ Team 2020, 7, 26–32. [Google Scholar] [CrossRef]
- Park, M.; Sun, Y.; McLaughlin, M.L. Social Media Propagation of Content Promoting Risky Health Behavior. Cyberpsychol. Behav. Soc. Netw. 2017, 20, 278–285. [Google Scholar] [CrossRef]
- Vannucci, A.; Simpson, E.G.; Gagnon, S.; Ohannessian, C.M. Social media use and risky behaviors in adolescents: A meta-analysis. J. Adolesc. 2020, 79, 258–274. [Google Scholar] [CrossRef] [PubMed]
- Fox, S.; Jones, S. The Social Life of Health Information; Pew Research Center: Washington, DC, USA, 2009. [Google Scholar]
- Commission European. Flash Eurobarometer 404 European Citizens. Digital Health Literacy; European Union: Brussels, Belgium, 2014. [Google Scholar]
- Carrotte, E.R.; Vella, A.M.; Lim, M.S.C. Predictors of “Liking” Three Types of Health and Fitness-Related Content on Social Media: A Cross-Sectional Study. J. Med. Internet Res. 2015, 17, e205. [Google Scholar] [CrossRef] [PubMed]
- Elavsky, S.; Smahel, D.; Machackova, H. Who are mobile app users from healthy lifestyle websites? Analysis of patterns of app use and user characteristics. Transl. Behav. Med. 2017, 7, 891–901. [Google Scholar] [CrossRef] [Green Version]
- Wartella, E.; Rideout, V.; Montague, H.; Beaudoin-Ryan, L.; Lauricella, A. Teens, Health and Technology: A National Survey. Media Commun. 2016, 4, 13–23. [Google Scholar] [CrossRef]
- Dahl, A.J.; Peltier, J.W.; Milne, G.R. Development of a Value Co-Creation Wellness Model: The Role of Physicians and Digital Information Seeking on Health Behaviors and Health Outcomes. J. Consum. Aff. 2018, 52, 562–594. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.J.; Boden-Albala, B.; Jia, H.; Wilcox, A.; Bakken, S. The association between online health information-seeking behaviors and health behaviors among hispanics in New York city: A community-based cross-sectional study. J. Med. Internet Res. 2015, 17, e261. [Google Scholar] [CrossRef]
Variable | Response Categories | Number of Subjects % (n) |
---|---|---|
Education level | lower than upper secondary | 34.1 (362) |
upper secondary or post-secondary non-tertiary | 39.0 (401) | |
bachelor’s degree | 12.1 (124) | |
masters’ degree or higher | 13.8 (143) | |
Place of residence | rural | 41.7 (430) |
urban < 20,000 | 9.7 (100) | |
urban from 20,000 to <100,000 | 21.5 (222) | |
urban from 100,000 to <500,000 | 16.2 (167) | |
urban from 500,000 | 10.8 (111) | |
Marital status | single | 56.0 (577) |
widowed, divorced or separated | 4.0 (41) | |
married | 40.0 (412) | |
Vocational status | employee | 31.1 (320) |
self-employed or farmer | 10.3 (107) | |
university or school student | 18.4 (190) | |
vocationally inactive including those on a disability pension | 40.2 (414) | |
Net monthly income per household inhabitant | ≤1000 PLN * | 26.1 (268) |
1000–2000 PLN | 34.6 (356) | |
>2000 PLN | 23.7 (245) | |
refused to disclose | 15.6 (161) | |
Children | no | 39.6 (408) |
yes | 60.4 (622) | |
Prolonged intake of diet supplements | no | 55.5 (614) |
yes | 34.5 (324) | |
Prolonged use of OTC | no | 54.3 (524) |
yes | 45.7 (441) | |
Long-term use of prescribed medication | no | 62.7 (623) |
yes | 37.3 (370) | |
Self-assessment of health status | not better than satisfactory | 16.0 (164) |
good | 39.6 (408) | |
very good | 31.6 (325) | |
perfect | 12.9 (132) | |
Body weight # | underweight | 7.5 (77) |
normal | 59.9 (616) | |
overweight | 20.6 (212) | |
obese | 12.0 (124) | |
Weekly Internet use for non-professional purposes | not more than 3 h | 42.3 (435) |
between 3 and 6 h | 31.7 (326) | |
more than 6 h | 26.0 (268) | |
Health literacy | inadequate | 20.9 (179) |
problematic | 20.8 (178) | |
sufficient | 58.3 (499) | |
The use of fitness influencers’ sites | not at all or less often than once weekly | 70.7 (729) |
at least once weekly | 29.3 (301) |
Health Behaviors | Categories of the Variable | % (n) |
---|---|---|
Smoking | yes | 37.9 (390) |
no | 62.1 (640) | |
E-cigarettes in the previous 30 days | at least once | 18.5 (191) |
not used | 81.5 (839) | |
Alcohol consumption in the previous 30 days | at least once | 42.5 (437) |
no use | 57.5 (593) | |
Physical activity in the previous 30 days | every day or nearly every day | 11.8 (121) |
a few times a week | 21.6 (222) | |
not often than once a week | 62.3 (642) | |
not able to exercise | 4.3 (45) | |
Consumption of five portions of fruits and vegetables daily in the previous 30 days | every day or nearly every day | 18.2 (187) |
a few times a week | 25.7 (264) | |
once a week | 13.6 (140) | |
less often than once a week | 42.6 (438) | |
Breast self-examination | more frequently than once yearly | 29.3 (302) |
once yearly or less frequently | 70.7 (727) |
Variable | Response Categories | The Use of Influencers’ Sites at least Once Weekly | p * | OR | 95% CI | p& | |
---|---|---|---|---|---|---|---|
No | Yes | ||||||
Education level | lower than upper secondary # | 70.7 (256) | 29.3 (106) | 0.33 | 0.33 | ||
upper secondary or post-secondary non-tertiary | 71.4 (287) | 28.6 (115) | 0.97 | 0.71–1.32 | 0.84 | ||
bachelor’s degree | 75.0 (93) | 25.0 (31) | 0.81 | 0.51–1.29 | 0.38 | ||
masters’ degree or higher | 65.0 (93) | 35.0 (50) | 1.31 | 0.87–1.97 | 0.20 | ||
Place of residence | rural # | 74.4 (319) | 25.6 (110) | 0.023 | |||
urban < 20,000 | 65.0 (65) | 35.0 (35) | 1.57 | 0.99–2.50 | 0.055 | ||
urban from 20,000 to <100,000 | 64.4 (143) | 35.6 (79) | 1.59 | 1.12–2.26 | 0.009 | ||
urban from 100,000 to <500,000 | 68.9 (115) | 31.1 (52) | 1.31 | 0.89–1.94 | 0.17 | ||
urban from 500,000 | 77.5 (86) | 22.5 (25) | 0.83 | 0.51–1.36 | 0.46 | ||
Marital status | single | 72.3 (417) | 27.7 (160) | 0.24 | |||
married, widowed, divorced or separated | 68.9 (312) | 31.1 (141) | 1.18 | 0.9–1.54 | 0.24 | ||
Net monthly income per household member | ≤1000 PLN %,# | 73.1 (196) | 26.9 (72) | 0.005 | |||
1000–2000 PLN | 69.9 (249) | 30.1 (107) | 1.16 | 0.82–1.65 | 0.40 | ||
>2000 PLN | 63.7 (156) | 36.3 (89) | 1.54 | 1.06–2.24 | 0.025 | ||
refusal | 79.5 (128) | 20.5 (33) | 0.70 | 0.44–1.12 | 0.14 | ||
Vocational status | employee # | 70.6 (226) | 29.4 (94) | 0.45 | |||
self-employed or farmer | 64.5 (69) | 35.5 (38) | 1.30 | 0.81–2.06 | 0.27 | ||
university or school student | 70.5 (134) | 29.5 (56) | 0.99 | 0.67–1.47 | 0.96 | ||
vocationally inactive or on a disability pension | 72.5 (300) | 27.5 (114) | 0.91 | 0.66–1.25 | 0.55 | ||
Children | no # | 72.7 (296) | 27.3 (111) | 0.26 | |||
yes | 69.5 (432) | 30.5 (190) | 1.17 | 0.88–1.54 | 0.28 | ||
Prolonged intake of supplements | no # | 76.4 (469) | 23.6 (145) | <0.001 | |||
yes | 60.1 (194) | 39.9 (129) | 0.47 | 0.35–0.62 | <0.001 | ||
Long-term use of prescribed medication | no # | 73.0 (455) | 27.0 (168) | 0.054 | |||
yes | 67.3 (249) | 32.7 (121) | 0.76 | 0.57–1.001 | 0.051 | ||
Prolonged use of OTC @ | no # | 73.9 (387) | 26.1 (137) | ||||
yes | 67.8 (299) | 32.2 (142) | 0.75 | 0.57–0.99 | 0.041 | ||
Weekly Internet use for non-professional purposes | not more than 3 h # | 69.7 (304) | 30.3 (132) | 0.69 | 0.68 | ||
between 3 and 6 h | 70.6 (230) | 29.4 (96) | 0.96 | 0.7–1.32 | 0.82 | ||
more than 6 h | 72.8 (195) | 27.2 (73) | 0.86 | 0.61–1.21 | 0.39 | ||
Self-assessment of health status | not better than satisfactory # | 77.1 (37) | 22.9 (11) | 0.084 | 0.087 | ||
good | 73.3 (85) | 26.7 (31) | 1.23 | 0.56–2.7 | 0.61 | ||
very good | 73.8 (301) | 26.2 (107) | 1.19 | 0.59–2.42 | 0.62 | ||
perfect | 66.7 (305) | 33.3 (152) | 1.67 | 0.83–3.37 | 0.15 | ||
Body weight | underweight # | 79.2 (61) | 20.8 (16) | 0.22 | |||
normal | 69.3 (427) | 30.7 (189) | 1.70 | 0.95–3.03 | 0.073 | ||
overweight | 69.7 (147) | 30.3 (64) | 1.68 | 0.90–3.13 | 0.11 | ||
obese | 74.8 (92) | 25.2 (31) | 1.31 | 0.66–2.59 | 0.45 | ||
Health literacy | inadequate # | 64.8 (116) | 35.2 (63) | 0.071 | 0.078 | ||
problematic | 75.8 (135) | 24.2 (43) | 0.59 | 0.37–0.94 | 0.025 | ||
sufficient | 70.9 (354) | 29.1 (145) | 0.75 | 0.52–1.08 | 0.13 | ||
Age $ | 26.22 (4.96) | 25.78 (4.64) | 0.12 | 0.98 | 0.95–1.01 | 0.18 | |
eHealth literacy $ | 29.19 (5.07) | 30.31 (4.85) | <0.001 | 1.05 | 1.02–1.08 | 0.001 |
Independent Variables | Categories of an Independent Variable | Smoking | e-Cigarettes | Alcohol Consumption | ||||||
---|---|---|---|---|---|---|---|---|---|---|
OR | 95% CI | p& | OR | 95% CI | p& | OR | 95% CI | p& | ||
The use of influencers’ websites | less often # vs. more often than once weekly | 1.21 | 0.87–1.69 | 0.25 | 1.63 | 1.09–2.43 | 0.016 | 1.37 | 1.01–1.88 | 0.046 |
Health literacy | inadequate # | |||||||||
problematic | 1.48 | 0.94–2.34 | 0.092 | 1.28 | 0.75–2.17 | 0.37 | 1.21 | 0.78–1.86 | 0.39 | |
sufficient | 0.94 | 0.63–1.4 | 0.75 | 0.63 | 0.39–1.02 | 0.059 | 0.79 | 0.54–1.14 | 0.21 | |
eHealth literacy | 1.01 | 0.98–1.05 | 0.40 | 1.02 | 0.98–1.06 | 0.43 | 1.00 | 0.97–1.03 | 0.88 | |
Age | 0.99 | 0.96–1.04 | 0.82 | 0.91 | 0.86–0.96 | 0.001 | 0.98 | 0.94–1.02 | 0.39 | |
Place of residence | rural # | |||||||||
urban < 20,000 | 1.10 | 0.64–1.91 | 0.73 | 0.77 | 0.36–1.65 | 0.50 | 1.02 | 0.63–1.77 | 0.83 | |
urban from 20,000 to <100,000 | 1.12 | 0.75–1.68 | 0.57 | 1.51 | 0.92–2.5 | 0.11 | 1.10 | 0.74–1.62 | 0.65 | |
urban from 100,000 to <500,000 | 1.59 | 0.99–2.52 | 0.052 | 1.19 | 0.66–2.14 | 0.57 | 1.21 | 0.78–1.86 | 0.39 | |
urban from 500,000 | 1.07 | 0.61–1.89 | 0.82 | 1.37 | 0.69–2.68 | 0.37 | 1.51 | 0.90–2.51 | 0.12 | |
Net income per household member | ≤1000 PLN %,# | |||||||||
1000–2000 PLN | 1.25 | 0.85–1.83 | 0.26 | 1.01 | 0.61–1.66 | 0.98 | 0.98 | 0.67–1.42 | 0.89 | |
>2000 PLN | 1.14 | 0.74–1.76 | 0.55 | 0.99 | 0.57–1.75 | 0.99 | 1.10 | 0.73–1.67 | 0.65 | |
refused to disclose | 0.99 | 0.61–1.62 | 0.97 | 1.74 | 0.98–3.1 | 0.058 | 1.41 | 0.89–2.23 | 0.14 | |
Education level | lower than upper secondary # | |||||||||
upper secondary or post-secondary non-tertiary | 0.67 | 0.48–0.95 | 0.023 | 0.89 | 0.58–1.35 | 0.57 | 1.10 | 0.78–1.56 | 0.58 | |
bachelor’s degree | 0.13 | 0.07–0.25 | <0.001 | 0.28 | 0.12–0.67 | 0.004 | 1.62 | 0.97–2.70 | 0.063 | |
masters’ degree or higher | 0.23 | 0.13–0.4 | <0.001 | 0.48 | 0.23–1.00 | 0.050 | 1.19 | 0.72–1.97 | 0.49 | |
Vocational status | employee # | |||||||||
self-employed or farmer | 1.01 | 0.59–1.74 | 0.96 | 0.98 | 0.5–1.92 | 0.94 | 0.68 | 0.41–1.13 | 0.14 | |
university or school student | 0.36 | 0.21–0.63 | <0.001 | 0.82 | 0.44–1.51 | 0.52 | 1.09 | 0.66–1.79 | 0.75 | |
vocationally inactive | 0.99 | 0.68–1.44 | 0.95 | 0.55 | 0.34–0.90 | 0.018 | 0.64 | 0.45–0.92 | 0.017 | |
Marital status | singles # vs. other | 0.65 | 0.46–0.92 | 0.015 | 1.26 | 0.80–1.99 | 0.32 | 0.87 | 0.63–1.21 | 0.40 |
Independent Variables | Categories of an Independent Variable | Consumption of Fruits and Vegetables | Physical Activity | Breast Self-Examination | ||||||
---|---|---|---|---|---|---|---|---|---|---|
OR | 95% CI | p& | OR | 95% CI | p& | OR | 95% CI | p& | ||
The use of influencers’ websites | less often # vs. more often than once weekly | 2.77 | 2.01–3.82 | <0.001 | 1.74 | 1.27–2.38 | 0.001 | 1.54 | 1.11–2.13 | 0.010 |
Health literacy | inadequate # | |||||||||
problematic | 1.89 | 1.19–2.98 | 0.007 | 1.18 | 0.74–1.88 | 0.48 | 1.26 | 0.77–2.06 | 0.37 | |
sufficient | 1.90 | 1.28–2.82 | 0.001 | 1.45 | 0.98–2.16 | 0.066 | 1.80 | 1.18–2.74 | 0.006 | |
eHealth literacy | 1.04 | 1.003–1.07 | 0.031 | 1.02 | 0.99–1.06 | 0.14 | 1.02 | 0.98–1.05 | 0.39 | |
Age | 0.99 | 0.95–1.03 | 0.62 | 0.99 | 0.95–1.03 | 0.59 | 1.03 | 0.98–1.07 | 0.24 | |
Place of residence | rural # | |||||||||
urban < 20,000 | 1.11 | 0.65–1.88 | 0.71 | 0.93 | 0.54–1.61 | 0.80 | 0.77 | 0.44–1.36 | 0.37 | |
urban from 20,000 to <100,000 | 0.77 | 0.52–1.14 | 0.19 | 1.17 | 0.78–1.74 | 0.45 | 0.88 | 0.58–1.33 | 0.55 | |
urban from 100,000 to <500,000 | 0.71 | 0.45–1.12 | 0.14 | 1.21 | 0.77–1.89 | 0.40 | 1.15 | 0.73–1.8 | 0.56 | |
urban from 500,000 | 1.07 | 0.63–1.81 | 0.80 | 1.07 | 0.63–1.82 | 0.81 | 0.91 | 0.52–1.58 | 0.73 | |
Net income per household member | ≤1000 PLN %,# | |||||||||
1000–2000 PLN | 0.90 | 0.61–1.31 | 0.58 | 1.40 | 0.95–2.07 | 0.088 | 1.42 | 0.95–2.12 | 0.086 | |
>2000 PLN | 1.37 | 0.90–2.10 | 0.14 | 1.19 | 0.77–1.84 | 0.44 | 1.20 | 0.77–1.88 | 0.42 | |
refused to disclose | 1.34 | 0.83–2.14 | 0.23 | 1.11 | 0.68–1.81 | 0.67 | 1.07 | 0.64–1.78 | 0.79 | |
Education level | lower than upper secondary# | |||||||||
upper secondary or post-secondary non-tertiary | 1.08 | 0.76–1.54 | 0.65 | 1.01 | 0.71–1.45 | 0.95 | 1.36 | 0.94–1.97 | 0.11 | |
bachelor’s degree | 1.05 | 0.62–1.78 | 0.85 | 0.96 | 0.56–1.64 | 0.89 | 1.52 | 0.89–2.59 | 0.13 | |
masters’ degree or higher | 1.40 | 0.84–2.33 | 0.20 | 1.64 | 0.98–2.73 | 0.058 | 1.22 | 0.71–2.07 | 0.47 | |
Vocational status | employee # | |||||||||
self-employed or farmer | 1.17 | 0.7–1.95 | 0.55 | 0.87 | 0.51–1.49 | 0.61 | 1.08 | 0.64–1.83 | 0.78 | |
university or school student | 0.54 | 0.32–0.91 | 0.02 | 1.32 | 0.78–2.21 | 0.30 | 0.95 | 0.55–1.65 | 0.87 | |
vocationally inactive | 0.87 | 0.6–1.25 | 0.45 | 1.00 | 0.69–1.46 | 0.98 | 0.98 | 0.67–1.44 | 0.92 | |
Marital status | singles # vs. other | 1.17 | 0.84–1.63 | 0.36 | 0.94 | 0.67–1.33 | 0.73 | 0.95 | 0.67–1.35 | 0.77 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duplaga, M. The Use of Fitness Influencers’ Websites by Young Adult Women: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2020, 17, 6360. https://doi.org/10.3390/ijerph17176360
Duplaga M. The Use of Fitness Influencers’ Websites by Young Adult Women: A Cross-Sectional Study. International Journal of Environmental Research and Public Health. 2020; 17(17):6360. https://doi.org/10.3390/ijerph17176360
Chicago/Turabian StyleDuplaga, Mariusz. 2020. "The Use of Fitness Influencers’ Websites by Young Adult Women: A Cross-Sectional Study" International Journal of Environmental Research and Public Health 17, no. 17: 6360. https://doi.org/10.3390/ijerph17176360
APA StyleDuplaga, M. (2020). The Use of Fitness Influencers’ Websites by Young Adult Women: A Cross-Sectional Study. International Journal of Environmental Research and Public Health, 17(17), 6360. https://doi.org/10.3390/ijerph17176360