Effects of Processing and Cooking on Physicochemical, Sensory, and Functional Properties of Food: Second Edition
1. Introduction
2. Influence of Processing and Cooking Technologies on Food Quality Characteristics
3. Enhancing the Nutritional Value of Traditional Foods Through the Incorporation of Functional Ingredients
4. Development and Functional Potential of Agro-Industrial By-Products
5. Applications and Advances of Emerging Food Processing Technologies
6. Conclusions
Funding
Acknowledgments
Conflicts of Interest
List of Contributions
- Xu, Y.; Jia, F.;Wu, Y.; Jiang, J.; Zheng, T.; Zheng, H.; Yang, Y. The Impact of Extrusion Cooking on the Physical Properties, Functional Components, and Pharmacological Activities of Natural Medicinal and Edible Plants: A Review. Foods 2025, 14, 1869. https://doi.org/10.3390/foods14111869.
- Heaney, D.; Padilla-Zakour, O.I. Microstructural and Enzymatic Contributions to Texture in High Pressure Processed Fruits and Vegetables. Foods 2025, 14, 3267. https://doi.org/10.3390/foods14183267.
- Lewko, P.;Wójtowicz, A.; Kamiński, D.M. The Influence of Processing Using Conventional and Hybrid Methods on the Composition, Polysaccharide Profiles and Selected Properties of Wheat Flour Enriched with Baking Enzymes. Foods 2024, 13, 2957. https://doi.org/10.3390/foods13182957.
- Draszanowska, A.; Kurp, L.; Starowicz, M.; Paszczyk, B.; Czarnowska-Kujawska, M.; Olszewska, M.A. Effect of the Addition of Yellow Mealworm (Tenebrio molitor) on the Physicochemical, Antioxidative, and Sensory Properties of Oatmeal Cookies. Foods 2024, 13, 3166. https://doi.org/10.3390/foods13193166.
- Zheng, F.; Nie, F.; Qiu, Y.; Xing, Y.; Xu, Q.; Chen, J.; Zhang, P.; Liu, H. Changes in Functional Properties and In Vitro Digestibility of Black Tartary Buckwheat Starch by Autoclaving Combination with Pullulanase Treatment. Foods 2024, 13, 4114. https://doi.org/10.3390/foods13244114.
- Sarkisyan, V.; Bilyalova, A.; Vorobyeva, V.; Vorobyeva, I.; Malinkin, A.; Zotov, V.; Kochetkova, A. Optimization of the Meat Flavoring Production Process for Plant-Based Products Using the Taguchi Method. Foods 2025, 14, 116. https://doi.org/10.3390/foods14010116.
- Shim, Y.Y.; Burnett, P.-G.G.; Olivia, C.M.; Zou, X.-G.; Lee, S.J.; Kim, H.-J.; Kim, Y.J.; Reaney, M.J.T. Oxidative Stability of Novel Peptides (Linusorbs) in Flaxseed Meal-Fortified Gluten-Free Bread. Foods 2025, 14, 439. https://doi.org/10.3390/foods14030439.
- Mohamed, R.; Xie, J.;Wei, F.; Luo, L.; Luo, W.; Zeng, L. Effects of Extraction Temperature of Protein from Date Palm Pollen on the Astringency Taste of Tea. Foods 2025, 14, 508. https://doi.org/10.3390/foods14030508.
- Xu, J.-X.; Zhang, X.; Fu, B.-F.; Qiao, X.-Y.;Wang, Z.-Y.; Xu, X.-B.; Cheng, S.-Z.; Du, M. Impact of Cooking Processes on Volatile Flavor Compounds and Free Amino Acids in Fish Sauce. Foods 2025, 14, 586. https://doi.org/10.3390/foods14040586.
- Alija, D.; Ol˛edzki, R.; Nikolovska Nedelkoska, D.; Pejcz, E.; Wojciechowicz-Budzisz, A.; Stamatovska, V.; Harasym, J. Cucurbita maxima Plomo Peel as a Valuable Ingredient for Bread-Making. Foods 2025, 14, 597. https://doi.org/10.3390/foods14040597.
- Li, M.; Liu, S.;Wang, Z.; Liu, F.; Dong, H.; Qiao, X.;Wang, X. Comparing the Drying Characteristics, Phytochemicals, and Antioxidant Characterization of Panax quinquefolium L. Treated by Different Processing Techniques. Foods 2025, 14, 815. https://doi.org/10.3390/foods14050815.
- Chen, S.-Y.; Zhang, Q.-F.; Shen, H.-S.; Lin, S.-D. Metabolic Syndrome Prevention Potential of Tamarillo: Phytochemical Composition, Antioxidant Activity, and Enzyme Inhibition Before and After Digestion. Foods 2025, 14, 1282. https://doi.org/10.3390/foods14071282.
- Montero-Fernandez, I.; Fernandez, V.M.; Perez-Nevado, F.; Saravia-Maldonado, S.A.; Fuentes, J.A.M.; Martin-Vertedor, D. Enhancing Nutrient Profile and Reducing Acrylamide in California-Style Table Olives with Cassia grandis Fortification. Foods 2025, 14, 1426. https://doi.org/10.3390/foods14081426.
- Karaca Çelik, K.E.; Irkin, R.; Çarıkçı, S.; Sipahi, S.; Yakar, S.; Yaman, C.; Öneş, E. Passion Fruit Seeds as a Functional Ingredient in Snack Bars: A Nutritional and Sustainable Approach. Foods 2025, 14, 1857. https://doi.org/10.3390/foods14111857.
- Lee, Y.-C.; Chiang, Y.-C.; Chen, M.-H.; Chiang, P.-Y. Micronization Combined Ultrasound-Assisted Extraction Enhances the Sustainability of Polyphenols from Pineapple and Lemon Peels Utilizing Acidified Ethanol. Foods 2025, 14, 2872. https://doi.org/10.3390/foods14162872.
- Abellan, A.; Gomez, P.; Villegas, A.; Buendia-Moreno, L.; Tejada, L. Influence of Cutting Dimensions and Cooking Methods on the Nutritional Composition and Sensory Attributes of Zucchini (Cucurbita pepo L.). Foods 2025, 14, 3213. https://doi.org/10.3390/foods14183213.
References
- Cai, L.M.; Choi, I.; Park, C.S.; Baik, B.K. Bran hydration and physical treatments improve the bread-baking quality of whole grain wheat flour. Cereal Chem. 2015, 92, 557–564. [Google Scholar] [CrossRef]
- Wu, J.; Zhu, K.; Zhang, S.; Shi, M.; Liao, L. Impact of oat supplementation on the structure, digestibility, and sensory properties of extruded instant rice. Foods 2024, 13, 217. [Google Scholar] [CrossRef]
- Kong, C.; Duan, C.; Zhang, S.; Liu, R.; Sun, Y.; Zhou, S. Effects of co-modification by extrusion and enzymatic hydrolysis on physicochemical properties of black wheat bran and its prebiotic potential. Foods 2023, 12, 2367. [Google Scholar] [CrossRef]
- Melim Miguel, A.S.; Souza, T.; da Costa Figueiredo, E.V.; Paulo Lobo, B.W.; Maria, G. Enzymes in Bakery: Current and Future Trends. In Food Industry; Muzzalupo, I., Ed.; InTech Open (Ebook): London, UK, 2013. [Google Scholar] [CrossRef]
- Zhu, F. Buckwheat starch: Structures, properties, and applications. Trends Food Sci. Technol. 2016, 49, 121–135. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, M.; Xing, B.; Liang, Y.; Zou, L.; Li, M.; Fan, X.; Ren, G.; Zhang, L.; Qin, P. Effects of extrusion on structural properties, physicochemical properties and in vitro starch digestibility of Tartary buckwheat flour. Food Hydrocoll. 2023, 135, 108197. [Google Scholar] [CrossRef]
- Liu, H.; Wang, L.; Shen, M.; Guo, X.; Lv, M.; Wang, M. Changes in physicochemical properties and in vitro digestibility of tartary buckwheat and sorghum starches induced by annealing. Starch Starke 2016, 68, 709–718. [Google Scholar] [CrossRef]
- Cai, Q.; Li, X.; Ding, X.; Wang, H.; Hu, X. Effects of quercetin and Ca (OH)2 addition on gelatinization and retrogradation properties of Tartary buckwheat starch. LWT 2023, 178, 114488. [Google Scholar] [CrossRef]
- Kacker, R.N.; Lagergren, E.S.; Filliben, J.J. Taguchi’s Orthogonal Arrays Are Classical Designs of Experiments. J. Res. Natl. Inst. Stand. Technol. 1991, 96, 577–591. [Google Scholar] [CrossRef]
- Zhang, L.; Cao, Q.Q.; Granato, D.; Xu, Y.Q.; Ho, C.T. Association between chemistry and taste of tea: A review. Trends Food Sci. Technol. 2020, 101, 139–149. [Google Scholar] [CrossRef]
- Dai, Y.-H.; Wei, J.-R.; Chen, X.-Q. Interactions between tea polyphenols and nutrients in food. Compr. Rev. Food Sci. Food Saf. 2023, 22, 3130–3150. [Google Scholar] [CrossRef]
- Hassan, H.M.M. Chemical composition and nutritional value of palm pollen grains. Glob. J. Biotechnol. Biochem. 2011, 6, 1–7. [Google Scholar]
- Han, J.; Kong, T.; Wang, Q.; Jiang, J.; Zhou, Q.; Li, P.; Zhu, B.; Gu, Q. Regulation of microbial metabolism on the formation of characteristic flavor and quality formation in the traditional fish sauce during fermentation: A review. Crit. Rev. Food Sci. Nutr. 2022, 63, 7564–7583. [Google Scholar] [CrossRef]
- Wang, Y.; Choi, H.K.; Brinckmann, J.A.; Jiang, X.; Huang, L. Chemical analysis of Panax quinquefolius (North American ginseng): A review. J. Chromatogr. A 2015, 1426, 1–15. [Google Scholar] [CrossRef]
- Chen, S.-Y.; Zhang, Q.-F.; Lin, S.-D. Nutritional and phytochemical composition of the red tamarillo grown in Taiwan. J. Food Compost. Anal. 2024, 131, 106258. [Google Scholar] [CrossRef]
- González Ramos, C. Ensayo Comparativo de Cultivares de Calabacín Redondo (Cucurbita pepo L.), Bajo Invernadero. Bachelor’s Thesis, Facultad Ingeniería Agrícola y del Medio Rural, Universidad de La Laguna, Tenerife, Spain, 2019. [Google Scholar]
- Toviho, O.A.; Barsony, P. Nutrient composition and growth of yellow mealworm (Tenebrio molitor) at different ages and stages of the life cycle. Agriculture 2022, 12, 1924. [Google Scholar] [CrossRef]
- Zielínska, E.; Pankiewicz, U.; Sujka, M. Nutritional, physiochemical, and biological value of muffins enriched with edible insects flour. Antioxidants 2021, 10, 1122. [Google Scholar] [CrossRef]
- Marti, A.; Pagani, M.A. What can play the role of gluten in gluten free pasta? Trends Food Sci. Technol. 2013, 31, 63–71. [Google Scholar] [CrossRef]
- Kaneda, T.; Yoshida, H.; Nakajima, Y.; Toishi, M.; Nugroho, A.E.; Morita, H. Cyclolinopeptides, cyclic peptides from flaxseed with osteoclast differentiation inhibitory activity. Bioorg. Med. Chem. Lett. 2016, 26, 1760–1761. [Google Scholar] [CrossRef]
- Zou, X.-G.; Hu, J.-N.; Li, J.; Yang, J.-Y.; Du, Y.-X.; Yu, Y.-F.; Deng, Z.-Y. iCellular uptake of [1–9-NαC]-linusorb B2 and [1–9-NαC]-linusorb B3 isolated from flaxseed, and their antitumor activities in human gastric SGC-7901 cells. J. Funct. Foods 2018, 48, 692–703. [Google Scholar] [CrossRef]
- Zou, X.-G.; Shim, Y.Y.; Cho, J.Y.; Jeong, D.; Yang, J.; Deng, Z.-Y.; Reaney, M.J.T. Flaxseed orbitides, linusorbs, inhibit LPS-induced THP-1 macrophage inflammation. RSC Adv. 2020, 10, 22622–22630. [Google Scholar] [CrossRef]
- Li, K.-Y.; Ye, J.-T.; Yang, J.; Shao, J.-Q.; Jin, W.-P.; Zheng, C.; Wan, C.-Y.; Peng, D.-F.; Deng, Q.-C. Co-extraction of flaxseed protein and polysaccharide with a high emulsifying and foaming property: Enrichment through the sequence extraction approach. Foods 2023, 12, 1256. [Google Scholar] [CrossRef]
- Martin-Vertedor, D.; Fernandez, A.; Mesias, M.; Martinez, M.; Diaz, M.; Martin-Tornero, E. Industrial Strategies to Reduce Acrylamide Formation in Californian-Style Green Ripe Olives. Foods 2020, 9, 1202. [Google Scholar] [CrossRef]
- Shukla, P.; Sahu, N.K.; Kumar, R.; Dhalla, D.K.; Rakshit, S.; Bhadauria, M.; Das Agrawal, N.; Shrivastava, S.; Shukla, S.; Nirala, S.K. Quercetin ameliorates acute acrylamide induced spleen injury. Biotech. Histochem. 2023, 98, 221–229. [Google Scholar] [CrossRef]
- Marcía, J.A.F.; Montero, I.F.; Fernández, M.Z.; Sánchez, J.L.; Alemán, R.S.; Navarro-Alarcón, M.; Borrás-Linares, I.; Saravia, S.A.S. Quantification of Bioactive Molecules, Minerals and Bromatological Analysis in Carao (Cassia grandis). J. Agric. Sci. 2020, 12, 88–94. [Google Scholar] [CrossRef]
- Medina, L.; Aleman, R.S.; Cedillos, R.; Aryana, K.; Olson, D.W.; Marcia, J.; Boeneke, C. Effects of carao (Cassia grandis L.) on physico-chemical, microbiological and rheological characteristics of yogurt. LWT 2023, 1833, 114891. [Google Scholar] [CrossRef]
- Gavril, R.N.; Stoica, F.; Lipșa, F.D.; Constantin, O.E.; Stănciuc, N.; Aprodu, I.; Râpeanu, G. Pumpkin and Pumpkin By-Products: A Comprehensive Overview of Phytochemicals, Extraction, Health Benefits, and Food Applications. Foods 2024, 13, 2694. [Google Scholar] [CrossRef]
- Hussain, A.; Kausar, T.; Din, A.; Murtaza, M.A.; Jamil, M.A.; Iqbal, M.A.; Majeed, M.A.; Rafique, A.; Iftikhar, A.; Noreen, S.; et al. Production, characterization, food application and biological study of powder of pumpkin (Cucurbita maxima) parts (peel, flesh and seeds). Pure Appl. Biol. 2023, 12, 48–60. [Google Scholar] [CrossRef]
- Bai, Y.; Zhang, M.; Atluri, S.C.; Chen, J.; Gilbert, R.G. Relations between digestibility and structures of pumpkin starches and pectins. Food Hydrocoll. 2020, 106, 105894. [Google Scholar] [CrossRef]
- Krambeck, K.; Oliveira, A.; Santos, D.; Pintado, M.M.; Baptista Silva, J.; Sousa Lobo, J.M.; Amaral, M.H. Identification and quantification of stilbenes (piceatannol and resveratrol) in Passiflora edulis by-products. Pharmaceuticals 2020, 13, 73. [Google Scholar] [CrossRef]
- Kawakami, S.; Morinaga, M.; Tsukamoto-Sen, S.; Mori, S.; Matsui, Y.; Kawama, T. Constituent characteristics and functional properties of passion fruit seed extract. Life 2021, 12, 38. [Google Scholar] [CrossRef]
- Fonseca, A.M.; Geraldi, M.V.; Junior, M.R.M.; Silvestre, A.J.; Rocha, S.M. Purple passion fruit (Passiflora edulis f. edulis): A comprehensive review on the nutritional value, phytochemical profile and associated health effects. Food Res. Int. 2022, 160, 111665. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Peiyi, S.; Wei, L.; Chengmei, L.; Ruihong, L.; Na, Y.; Chen, J. Major Polyphenolics in Pineapple Peels and their Antioxidant Interactions. Int. J. Food Prop. 2014, 17, 1805–1817. [Google Scholar] [CrossRef]
- Chuang, K.C.; Chiang, Y.C.; Chang, Y.J.; Lee, Y.C.; Chiang, P.Y. Evaluation of Antioxidant and Anti-Glycemic Characteristics of Aged Lemon Peel Induced by Three Thermal Browning Models: Hot-Air Drying, High Temperature and Humidity, and Steam-Drying Cycle. Foods 2024, 13, 3053. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.-H.; Jin, M.-L.; Morris, G.A.; Zha, X.-Q.; Chen, H.-Q.; Yi, Y.; Li, J.-E.; Wang, Z.-J.; Gao, J.; Nie, S.-P.; et al. Advances on Bioactive Polysaccharides from Medicinal Plants. Crit. Rev. Food. Sci. Nutr. 2016, 56 (Suppl. 1), S60–S84. [Google Scholar] [CrossRef]
- Shen, N.; Wang, T.; Gan, Q.; Liu, S.; Wang, L.; Jin, B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem. 2022, 383, 132531. [Google Scholar] [CrossRef]
- Balasubramaniam, V.M.; Barbosa-Canovas, G.V.; Lelieveld, H.L.M. (Eds.) High Pressure Processing of Food: Principles, Technology and Applications; Food Engineering Series; Springer: New York, NY, USA, 2016; ISBN 978-1-4939-3233-7. [Google Scholar]
- Tonello, C. Zhang, H.Q., Barbosa-Canovas, G.V., Balasubramaniam, V.M., Dunne, C.P., Farkas, D.F., Yuan, J.T.C., Eds.; Case Studies on High-Pressure Processing of Foods. In Nonthermal Processing Technologies for Food; Wiley-Blackwell: Oxford, UK, 2010; pp. 36–50. ISBN 978-0-470-95836-0. [Google Scholar]
- Terefe, N.S.; Buckow, R.; Versteeg, C. Quality-Related Enzymes in Fruit and Vegetable Products: Effects of Novel Food Processing Technologies, Part 1: High-Pressure Processing. Crit. Rev. Food Sci. Nutr. 2014, 54, 24–63. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, S.-D. Effects of Processing and Cooking on Physicochemical, Sensory, and Functional Properties of Food: Second Edition. Foods 2025, 14, 3601. https://doi.org/10.3390/foods14213601
Lin S-D. Effects of Processing and Cooking on Physicochemical, Sensory, and Functional Properties of Food: Second Edition. Foods. 2025; 14(21):3601. https://doi.org/10.3390/foods14213601
Chicago/Turabian StyleLin, Sheng-Dun. 2025. "Effects of Processing and Cooking on Physicochemical, Sensory, and Functional Properties of Food: Second Edition" Foods 14, no. 21: 3601. https://doi.org/10.3390/foods14213601
APA StyleLin, S.-D. (2025). Effects of Processing and Cooking on Physicochemical, Sensory, and Functional Properties of Food: Second Edition. Foods, 14(21), 3601. https://doi.org/10.3390/foods14213601

