Advances in Nanozyme Catalysis for Food Safety Detection: A Comprehensive Review on Progress and Challenges
Abstract
1. Introduction
2. Background and Significance of Food Safety Detection
3. Fundamental Principles of Nanozymes
4. Classification and Properties of Nanozymes
4.1. Noble Metals
4.1.1. Synthesis Methods
4.1.2. Properties
4.2. Metal Oxides
4.2.1. Synthesis Methods
4.2.2. Properties
4.3. Carbon-Based Nanostructures
4.3.1. Synthesis Methods
4.3.2. Properties
4.4. Metal-Organic Frameworks
4.4.1. Synthesis Methods
4.4.2. Properties
4.5. Covalent Organic Frameworks
4.5.1. Synthesis Methods
4.5.2. Properties
5. Sensing Applications of Nanozymes
5.1. Colorimetric Sensing
5.2. Fluorescence Sensing
5.3. Electrochemical Sensing
5.4. Raman Sensing
5.5. Chemiluminescence Sensing
6. Practical Implementation Challenges
7. Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, H.-T.; Li, Z.; Fox, G.P.; Gidley, M.J.; Dhital, S. Protein-starch matrix plays a key role in enzymic digestion of high-amylose wheat noodle. Food Chem. 2021, 336, 127719. [Google Scholar] [CrossRef]
- Wang, Z.; Dai, Y.Q.; Azi, F.; Wang, Z.J.; Xu, W.M.; Wang, D.Y.; Dong, M.S.; Xia, X.D. Constructing Protein-Scaffolded Multienzyme Assembly Enhances the Coupling Efficiency of the P450 System for Efficient Daidzein Biosynthesis from (2S)-Naringenin. J. Agric. Food Chem. 2024, 72, 5849–5859. [Google Scholar] [CrossRef]
- Wong, F.C.; Xiao, J.B.; Wang, S.Y.; Ee, K.Y.; Chai, T.T. Advances on the antioxidant peptides from edible plant sources. Trends Food Sci. Technol. 2020, 99, 44–57. [Google Scholar] [CrossRef]
- Ren, X.F.; Liang, Q.F.; Ma, H.L. Effects of sweeping frequency ultrasound pretreatment on the hydrolysis of zein: Angiotensin-converting enzyme inhibitory activity and thermodynamics analysis. J. Food Sci. Technol. Mysore 2018, 55, 4020–4027. [Google Scholar] [CrossRef]
- Sarpong, F.; Yu, X.J.; Zhou, C.S.; Yang, H.P.; Uzoejinwa, B.B.; Bai, J.W.; Wu, B.G.; Ma, H.L. Influence of anti-browning agent pretreatment on drying kinetics, enzymes inactivation and other qualities of dried banana (Musa ssp.) under relative humidity-convective air dryer. J. Food Meas. Charact. 2018, 12, 1229–1241. [Google Scholar] [CrossRef]
- Wang, L.; Li, W.X.; Liu, Y.Y.; Zhi, W.J.; Han, J.; Wang, Y.; Ni, L. Green separation of bromelain in food sample with high retention of enzyme activity using recyclable aqueous two-phase system containing a new synthesized thermo-responsive copolymer and salt. Food Chem. 2019, 282, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Sarpong, F.; Oteng-Darko, P.; Golly, M.K.; Amenorfe, L.P.; Rashid, M.T.; Zhou, C.S. Comparative study of enzymes inactivation and browning pigmentation of apple (Malus domestica) slices by selected gums during low temperature storage. J. Food Biochem. 2018, 42, 12681. [Google Scholar] [CrossRef]
- Ji, D.Y.; Ma, H.L.; Chen, X.M. Ultrasonication increases γ-aminobutyric acid accumulation in coffee leaves and affects total phenolic content and angiotensin-converting enzyme inhibitory activity. J. Food Process. Preserv. 2021, 45, e15777. [Google Scholar] [CrossRef]
- Wang, Y.C.; Li, L.; Wang, B.; Xu, J.J. Selective enzyme inactivation in a simulated system and in cabbage juice using electrospray technology. Innov. Food Sci. Emerg. Technol. 2022, 75, 102875. [Google Scholar] [CrossRef]
- Sun, Y.; Ji, D.Y.; Ma, H.L.; Chen, X.M. Ultrasound accelerated γ-aminobutyric acid accumulation in coffee leaves through influencing the microstructure, enzyme activity, and metabolites. Food Chem. 2022, 385, 132646. [Google Scholar] [CrossRef]
- Abdualrahman, M.A.Y.; Zhou, C.S.; Zhang, Y.Y.; Yagoub, A.A.; Ma, H.L.; Mao, L.; Wang, K. Effects of ultrasound pretreatment on enzymolysis of sodium caseinate protein: Kinetic study, angiotensin-converting enzyme inhibitory activity, and the structural characteristics of the hydrolysates. J. Food Process. Preserv. 2017, 41, 13276. [Google Scholar] [CrossRef]
- Yan, J.K.; Wang, Y.Y.; Qiu, W.Y.; Ma, H.L.; Wang, Z.B.; Wu, J.Y. Three-phase partitioning as an elegant and versatile platform applied to nonchromatographic bioseparation processes. Crit. Rev. Food Sci. Nutr. 2018, 58, 2416–2431. [Google Scholar] [CrossRef] [PubMed]
- Qu, W.J.; Sehemu, R.M.; Zhang, T.; Song, B.J.; Yang, L.; Ren, X.F.; Ma, H.L. Immobilized enzymolysis of corn gluten meal under triple-frequency ultrasound. Int. J. Food Eng. 2018, 14, 20170347. [Google Scholar] [CrossRef]
- Ding, X.; Ahmad, W.; Rong, Y.; Wu, J.; Ouyang, Q.; Chen, Q. A dual-mode fluorescence and colorimetric sensing platform for efficient detection of ofloxacin in aquatic products using iron alkoxide nanozyme. Food Chem. 2024, 442, 138417. [Google Scholar] [CrossRef]
- Yang, N.; Zhou, X.; Yu, D.F.; Jiao, S.Y.; Han, X.; Zhang, S.L.; Yin, H.; Mao, H.P. Pesticide residues identification by impedance time-sequence spectrum of enzyme inhibition on multilayer paper-based microfluidic chip. J. Food Process Eng. 2020, 43, e13544. [Google Scholar] [CrossRef]
- Guo, D.S.; Ling, X.T.; Zhou, X.G.; Li, X.; Wang, J.Y.; Qu, S.; Yang, Y.W.; Zhang, B.L. Evaluation of the Quality of a High-Resistant Starch and Low-Glutelin Rice (Oryza sativa L.) Generated through CRISPR/Cas9-Mediated Targeted Mutagenesis. J. Agric. Food Chem. 2020, 68, 9733–9742. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Z.; Huang, X.; Hu, X.; Li, Y.; Zhou, Y.; Wang, X.; Zhang, R.; Wei, X.; Zhai, X.; et al. H-Bond Modulation Mechanism for Moisture-driven Bacteriostat Evolved from Phytochemical Formulation. Adv. Funct. Mater. 2023, 34, 2312053. [Google Scholar] [CrossRef]
- Liao, D.Y.; Zhao, Y.; Zhou, Y.; Yi, Y.H.; Weng, W.C.; Zhu, G.B. Colorimetric detection of organophosphorus pesticides based on Nb2CTx MXene self-reducing PdPt nanozyme integrated with hydrogel and smartphone. J. Food Meas. Charact. 2024, 18, 9223–9232. [Google Scholar] [CrossRef]
- Arshad, A.; Ding, L.J.; Akram, R.; Zhu, W.R.; Long, L.L.; Wang, K. Construction of a novel Au@Os mediated TMB-H2O2 platform with dual-signal output for rapid and accurate detection of ziram in food. Food Chem. 2025, 462, 140988. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, Y.F.; Ming, L.; Chen, L.H.; Xue, M.Q.; Zhang, J.; Zhang, H.Y. Dual-mode strategy for the determination of vanillin in milk-based products based on molecular-imprinted nanozymes. Food Chem. 2025, 469, 142615. [Google Scholar] [CrossRef]
- Zhang, X.A.; Zhou, Y.; Wang, J.L.; Huang, X.W.; El-Mesery, H.S.; Shi, Y.Q.; Zou, Y.C.; Li, Z.H.; Li, Y.H.; Shi, J.Y.; et al. Simple-easy electrochemical sensing mode assisted with integrative carbon-based gel electrolyte for in-situ monitoring of plant hormone indole acetic acid. Food Chem. 2025, 467, 142342. [Google Scholar] [CrossRef]
- Zhang, X.N.; Zhou, Y.; Wang, H.; Huang, X.W.; Shi, Y.Q.; Zou, Y.C.; Hu, X.T.; Li, Z.H.; Shi, J.Y.; Zou, X.B. Energy difference-driven ROS reduction for electrochemical tracking crop growth sensitized with electron-migration nanostructures. Anal. Chim. Acta 2024, 1304, 342515. [Google Scholar] [CrossRef]
- Xie, G.; Zhu, M.; Liu, Z.J.; Zhang, B.; Shi, M.J.; Wang, S. Development and evaluation of the magnetic particle-based chemiluminescence immunoassay for rapid and quantitative detection of Aflatoxin B1 in foodstuff. Food Agric. Immunol. 2018, 29, 564–576. [Google Scholar] [CrossRef]
- Chen, H.L.; Huang, X.W.; Shi, Y.Q.; Li, Y.H.; Tan, W.L.; Zhang, X.A.; Zou, Y.C.; Wang, T.X.; Shi, J.Y.; Zou, X.B. Electrochemical Sensing toward Noninvasive Evaluation of High-Starch Food Digestion via Point-of-Use Monitoring Glucose Level in Saliva. J. Agric. Food Chem. 2025, 73, 11422–11434. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, M.; Jiang, Y.; Wang, X.; Guo, Z.; Shi, J.; Zou, X.; Han, E. Simple electrochemical sensing for mercury ions in dairy product using optimal Cu2+-based metal-organic frameworks as signal reporting. J. Hazard. Mater. 2020, 400, 123222. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.H.; Shao, D.; Wang, J.M.; Zheng, X.F.; Yang, Z.Q.; Wang, A.J.; Chen, Z.Y.; Gao, Y.J. Pre-ligand-induced porous MOF as a peroxidase mimic for electrochemical analysis of deoxynivalenol (DON). Food Chem. 2025, 480, 143860. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Cui, H.Y.; Han, Y.F.; Yu, F.F.; Shi, X.M. Development of a biomimetic enzyme-linked immunosorbent assay based on molecularly imprinted polymers on paper for the detection of carbaryl. Food Chem. 2018, 240, 893–897. [Google Scholar] [CrossRef] [PubMed]
- Manea, F.; Houillon, F.B.; Pasquato, L.; Scrimin, P. Nanozymes: Gold-Nanoparticle-Based Transphosphorylation Catalysts. Angew. Chem. Int. Ed. 2004, 43, 6165–6169. [Google Scholar] [CrossRef]
- Gao, L.; Zhuang, J.; Nie, L.; Zhang, J.; Zhang, Y.; Gu, N.; Wang, T.; Feng, J.; Yang, D.; Perrett, S.; et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.Y.; Yang, R.Q.; Chen, H.L.; Zhang, X.A. Recent Advances in Food Safety: Nanostructure-Sensitized Surface-Enhanced Raman Sensing. Foods 2025, 14, 1115. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.L.; Wang, J.L.; Zhang, W.W.; Li, Y.H.; Zhang, X.N.; Huang, X.W.; Shi, Y.Q.; Zou, Y.C.; Li, Z.H.; Shi, J.Y.; et al. Highly catalytic Ce-based MOF for powering electrochemical aptasensing toward evaluating dissolution rate of microelement copper from tea-leaves. J. Food Compos. Anal. 2025, 140, 107266. [Google Scholar] [CrossRef]
- Xu, D.; Wu, L.; Yao, H.; Zhao, L. Catalase-Like Nanozymes: Classification, Catalytic Mechanisms, and Their Applications. Small 2022, 18, 2203400. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.; Li, X.; Zhang, X.; Huang, Y. Recent advances in the development and analytical applications of oxidase-like nanozymes. TrAC Trends Anal. Chem. 2023, 166, 117220. [Google Scholar] [CrossRef]
- Gao, W.; He, J.; Chen, L.; Meng, X.; Ma, Y.; Cheng, L.; Tu, K.; Gao, X.; Liu, C.; Zhang, M.; et al. Deciphering the catalytic mechanism of superoxide dismutase activity of carbon dot nanozyme. Nat. Commun. 2023, 14, 160. [Google Scholar] [CrossRef]
- Wang, X.; Wang, H.; Zhou, S. Progress and Perspective on Carbon-Based Nanozymes for Peroxidase-like Applications. J. Phys. Chem. Lett. 2021, 12, 11751–11760. [Google Scholar] [CrossRef]
- Sepehrmansourie, H.; Alamgholiloo, H.; Noroozi Pesyan, N.; Zolfigol, M.A. A MOF-on-MOF strategy to construct double Z-scheme heterojunction for high-performance photocatalytic degradation. Appl. Catal. B Environ. 2023, 321, 122082. [Google Scholar] [CrossRef]
- Ajmal, Z.; Kizito, S.; Alalwan, B.; Kumar, A.; El-Jery, A.; Ashraf, G.A.; Hussain, I.; Al-Hadeethi, Y.; Ali, H.; Alshammari, A.; et al. Recent advances in COF-based framework: Synthesis, Potential application, Current challenges and Future direction. Mater. Today Chem. 2024, 39, 102140. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, A.; Wang, R.; Zhang, Q.; Cui, D. A Review on Metal- and Metal Oxide-Based Nanozymes: Properties, Mechanisms, and Applications. Nano Micro Lett. 2021, 13, 154. [Google Scholar] [CrossRef]
- Wang, D.; Xu, G.; Zhang, X.; Gong, H.; Jiang, L.; Sun, G.; Li, Y.; Liu, G.; Li, Y.; Yang, S.; et al. Dual-functional ultrathin wearable 3D particle-in-cavity SF-AAO-Au SERS sensors for effective sweat glucose and lab-on-glove pesticide detection. Sens. Actuators B Chem. 2022, 359, 131512. [Google Scholar] [CrossRef]
- Wu, J.; Wang, X.; Wang, Q.; Lou, Z.; Li, S.; Zhu, Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II). Chem. Soc. Rev. 2019, 48, 1004–1076. [Google Scholar] [CrossRef]
- Han, J.; Feng, H.; Wu, J.C.; Li, Y.Y.; Zhou, Y.; Wang, L.; Luo, P.; Wang, Y. Construction of Multienzyme Co-immobilized Hybrid Nanoflowers for an Efficient Conversion of Cellulose into Glucose in a Cascade Reaction. J. Agric. Food Chem. 2021, 69, 7910–7921. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Wang, L.K.; Miao, W.J.; Wu, Q.F.; Liu, Y.X.; Sun, Y.L.; Gao, C. Thermal versus Microwave Inactivation Kinetics of Lipase and Lipoxygenase from Wheat Germ. J. Food Process Eng. 2016, 39, 247–255. [Google Scholar] [CrossRef]
- Apaliya, M.T.; Zhang, H.Y.; Yang, Q.Y.; Zheng, X.F.; Zhao, L.N.; Kwaw, E.; Mahunu, G.K. Hanseniaspora uvarum enhanced with trehalose induced defense-related enzyme activities and relative genes expression levels against Aspergillus tubingensis in table. Postharvest Biol. Technol. 2017, 132, 162–170. [Google Scholar] [CrossRef]
- Golly, M.K.; Ma, H.L.; Duan, Y.Q.; Wu, P.; Dabbour, M.; Sarpong, F.; Farooq, M. Enzymolysis of walnut (Juglans regia L.) meal protein: Ultrasonication-assisted alkaline pretreatment impact on kinetics and thermodynamics. J. Food Biochem. 2019, 43, e12948. [Google Scholar] [CrossRef]
- Zandieh, M.; Liu, J. Nanozymes: Definition, Activity, and Mechanisms. Adv. Mater. 2023, 36, e2211041. [Google Scholar] [CrossRef]
- Liang, N.; Shi, B.; Hu, X.; Li, W.; Huang, X.; Li, Z.; Zhang, X.; Zou, X.; Shi, J. A ternary heterostructure aptasensor based on metal-organic framework and polydopamine nanoparticles for fluorescent detection of sulfamethazine. Food Chem. 2024, 460, 140570. [Google Scholar] [CrossRef]
- Gao, S.P.; Zhang, Y.; Sun, Q.; Guo, Z.M.; Zhang, D.; Zou, X.B. Enzyme-assisted patulin detoxification: Recent applications and perspectives. Trends Food Sci. Technol. 2024, 146, 104383. [Google Scholar] [CrossRef]
- Mehedi Hassan, M.; He, P.; Xu, Y.; Zareef, M.; Li, H.; Chen, Q. Rapid detection and prediction of chloramphenicol in food employing label-free HAu/Ag NFs-SERS sensor coupled multivariate calibration. Food Chem. 2022, 374, 131765. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.J.; Dai, X.L.; Yang, R.Q.; Liu, Z.Y.; Chen, H.L.; Zhang, Y.F.; Zhang, X.N. Fenton-like catalytic MOFs driving electrochemical aptasensing toward tracking lead pollution in pomegranate fruit. Food ControL 2025, 169, 111006. [Google Scholar] [CrossRef]
- Ouyang, Q.; Wang, L.; Ahmad, W.; Yang, Y.; Chen, Q. Upconversion Nanoprobes Based on a Horseradish Peroxidase-Regulated Dual-Mode Strategy for the Ultrasensitive Detection of Staphylococcus aureus in Meat. J. Agric. Food Chem. 2021, 69, 9947–9956. [Google Scholar] [CrossRef]
- Marimuthu, M.; Arumugam, S.S.; Sabarinathan, D.; Li, H.H.; Chen, Q.S. Metal organic framework based fluorescence sensor for detection of antibiotics. Trends Food Sci. Technol. 2021, 116, 1002–1028. [Google Scholar] [CrossRef]
- Ouyang, Q.; Zhang, M.; Yang, Y.; Din, Z.-u.; Chen, Q. Mesoporous silica-modified upconversion biosensor coupled with real-time ion release properties for ultrasensitive detection of Staphylococcus aureus in meat. Food Control 2023, 145, 109444. [Google Scholar] [CrossRef]
- Zhang, Z.P.; Zhang, Y.; Jayan, H.; Gao, S.P.; Zhou, R.Y.; Yosri, N.; Zou, X.B.; Guo, Z.M. Recent and emerging trends of metal-organic frameworks (MOFs)-based sensors for detecting food contaminants: A critical and comprehensive review. Food Chem. 2024, 448, 139501. [Google Scholar] [CrossRef]
- Zhao, F.; Wang, L.; Li, M.; Wang, M.; Liu, G.; Ping, J. Nanozyme-based biosensor for organophosphorus pesticide monitoring: Functional design, biosensing strategy, and detection application. TrAC Trends Anal. Chem. 2023, 165, 117152. [Google Scholar] [CrossRef]
- Yang, Z.; Guo, J.; Wang, L.; Zhang, J.; Ding, L.; Liu, H.; Yu, X. Nanozyme-Enhanced Electrochemical Biosensors: Mechanisms and Applications. Small 2023, 20, e2307815. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Ma, H.L.; Wang, B.; Qu, W.J.; Wali, A.; Zhou, C.S. Relationships between the structure of wheat gluten and ACE inhibitory activity of hydrolysate: Stepwise multiple linear regression analysis. J. Sci. Food Agric. 2016, 96, 3313–3320. [Google Scholar] [CrossRef]
- He, R.H.; Xing, H.; Wang, Z.P.; Ding, W.H.; Zhu, P.P.; Liu, B.; Ma, H.L. Establishment of an Enzymatic Membrane Reactor for Angiotensin-Converting Enzyme Inhibitory Peptides Preparation from Wheat Germ Protein Isolates. J. Food Process Eng. 2016, 39, 296–305. [Google Scholar] [CrossRef]
- Chen, Z.W.; Li, Y.L.; Wang, L.K.; Liu, S.Y.; Wang, K.K.; Sun, J.; Xu, B. Evaluation of the possible non-thermal effect of microwave radiation on the inactivation of wheat germ lipase. J. Food Process Eng. 2017, 40, e12506. [Google Scholar] [CrossRef]
- Osae, R.; Zhou, C.S.; Xu, B.G.; Tchabo, W.; Tahir, H.E.; Mustapha, A.T.; Ma, H.L. Effects of ultrasound, osmotic dehydration, and osmosonication pretreatments on bioactive compounds, chemical characterization, enzyme inactivation, color, and antioxidant activity of dried ginger slices. J. Food Biochem. 2019, 43, e12832. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.S.; Li, H.H.; Hassan, M.M.; Ali, S.; Chen, Q.S. SERS based artificial peroxidase enzyme regulated multiple signal amplified system for quantitative detection of foodborne pathogens. Food Control 2021, 123, 107733. [Google Scholar] [CrossRef]
- Sadalage, P.S.; Dar, M.A.; Bhor, R.D.; Bhalerao, B.M.; Kamble, P.N.; Paiva-Santos, A.C.; Nimbalkar, M.S.; Sonawane, K.D.; Pai, K.L.A.; Patil, P.S.; et al. Optimization of biogenic synthesis of biocompatible platinum nanoparticles with catalytic, enzyme mimetic and antioxidant activities. Food Biosci. 2022, 50, 102024. [Google Scholar] [CrossRef]
- Gan, Z.Y.; Hu, X.T.; Xu, X.C.; Zhang, W.; Zou, X.B.; Shi, J.Y.; Zheng, K.Y.; Arslan, M. A portable test strip based on fluorescent europium-based metal-organic framework for rapid and visual detection of tetracycline in food samples. Food Chem. 2021, 354, 129501. [Google Scholar] [CrossRef]
- Li, C.; Zhang, X.; Tang, Q.; Guo, Y.; Zhang, Z.; Zhang, W.; Zou, X.; Sun, Z. Molecularly imprinted electrochemical sensor for ethyl carbamate detection in Baijiu based on “on-off” nanozyme-catalyzing process. Food Chem. 2024, 453, 139626. [Google Scholar] [CrossRef]
- Dai, Y.; Peng, W.; Ji, Y.; Wei, J.; Che, J.; Huang, Y.; Huang, W.; Yang, W.; Xu, W. A self-powered photoelectrochemical aptasensor using 3D-carbon nitride and carbon-based metal-organic frameworks for high-sensitivity detection of tetracycline in milk and water. J. Food Sci. 2024, 89, 8022–8035. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Liu, C.; Zhang, B.; Wu, C.; Cao, Y.; Huang, W.; Xu, W. Construction of a Nitrogen-Doped Carbon Quantum Dot Fluorescent Molecularly Imprinted Sensor for Ultra-Sensitive Detection of Sulfadiazine in Pork Samples. Food Anal. Methods 2024, 17, 1689–1701. [Google Scholar] [CrossRef]
- Zhang, X.N.; Huang, X.Y.; Xu, Y.W.; Wang, X.; Guo, Z.M.; Huang, X.W.; Li, Z.H.; Shi, J.Y.; Zou, X.B. Single-step electrochemical sensing of ppt-level lead in leaf vegetables based on peroxidase-mimicking metal-organic framework. Biosens. Bioelectron. 2020, 168, 112544. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Geng, W.; Zheng, Z.; Haruna, S.A.; Chen, Q. Flexible SERS sensor using AuNTs-assembled PDMS film coupled chemometric algorithms for rapid detection of chloramphenicol in food. Food Chem. 2023, 418, 135998. [Google Scholar] [CrossRef]
- Liu, S.S.; Zhang, M.M.; Chen, Q.S.; Ouyang, Q. Multifunctional Metal-Organic Frameworks Driven Three-Dimensional Folded Paper-Based Microfluidic Analysis Device for Chlorpyrifos Detection. J. Agric. Food Chem. 2024, 72, 14375–14385. [Google Scholar] [CrossRef]
- Wang, J.; Huang, R.; Qi, W.; Su, R.; Binks, B.P.; He, Z. Construction of a bioinspired laccase-mimicking nanozyme for the degradation and detection of phenolic pollutants. Appl. Catal. B Environ. 2019, 254, 452–462. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Z.; Huang, X.; Huang, Q.; Wen, Y.; Li, B.; Holmes, M.; Shi, J.; Zou, X. Uniform stain pattern of robust MOF-mediated probe for flexible paper-based colorimetric sensing toward environmental pesticide exposure. Chem. Eng. J. 2023, 451, 138928. [Google Scholar] [CrossRef]
- Lin, H.; Wang, F.; Lin, J.; Yang, W.; Kang, W.; Jiang, H.; Adade, S.Y.-S.S.; Cai, J.; Xue, Z.; Chen, Q. Detection of wheat toxigenic Aspergillus flavus based on nano-composite colorimetric sensing technology. Food Chem. 2023, 405, 134803. [Google Scholar] [CrossRef]
- Liu, C.; Li, Y.; Chen, T.; Meng, S.; Liu, D.; Dong, D.; You, T. Electric Field-Induced Specific Preconcentration to Enhance DNA-Based Electrochemical Sensing of Hg2+ via the Synergy of Enrichment and Self-Cleaning. J. Agric. Food Chem. 2022, 70, 7412–7419. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, X.; Wang, Z.; Zhang, Y.; Huang, X.; Li, Z.; Daglia, M.; Xiao, J.; Shi, J.; Zou, X. Bioinspired nanozyme enabling glucometer readout for portable monitoring of pesticide under resource-scarce environments. Chem. Eng. J. 2022, 429, 132243. [Google Scholar] [CrossRef]
- Wang, X.; Hu, X.T.; Zhai, X.D.; Huang, X.W.; Li, Z.H.; Zou, X.B.; Shi, J.Y. A simple and sensitive electrochemical sensing based on amine-functionalized metal-organic framework and polypyrrole composite for detection of lead ions in meat samples. J. Food Meas. Charact. 2024, 18, 5813–5825. [Google Scholar] [CrossRef]
- Yang, W.; Cao, L.; Lu, H.; Huang, Y.; Yang, W.; Cai, Y.; Li, S.; Li, S.; Zhao, J.; Xu, W. Custom-printed microfluidic chips using simultaneous ratiometric fluorescence with “Green” carbon dots for detection of multiple antibiotic residues in pork and water samples. J. Food Sci. 2024, 89, 5980–5992. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Yin, L.; Gao, S.; Zhou, R.; Zhang, Y.; Xue, S.; Jayan, H.; El-Seedi, H.R.; Zou, X.; Guo, Z. Core-satellite nanoassembly system with aptamer-conjugated Au@Ag nanoparticles for SERS detection of patulin in apples. Food Control 2024, 159, 110293. [Google Scholar] [CrossRef]
- Zan, X.; Yan, Y.; Chen, G.; Sun, L.; Wang, L.; Wen, Y.; Xu, Y.; Zhang, Z.; Li, X.; Yang, Y.; et al. Recent Advances of Oxalate Decarboxylase: Biochemical Characteristics, Catalysis Mechanisms, and Gene Expression and Regulation. J. Agric. Food Chem. 2024, 72, 10163–10178. [Google Scholar] [CrossRef]
- Yin, L.; You, T.; Arslan, M.; El-Seedi, H.R.; Guo, Z.; Zou, X.; Cai, J. Dual-layers Raman reporter-tagged Au@Ag combined with core-satellite assemblies for SERS detection of Zearalenone. Food Chem. 2023, 429, 136834. [Google Scholar] [CrossRef]
- Han, E.; Li, L.; Gao, T.; Pan, Y.; Cai, J. Nitrite determination in food using electrochemical sensor based on self-assembled MWCNTs/AuNPs/poly-melamine nanocomposite. Food Chem. 2024, 437, 137773. [Google Scholar] [CrossRef]
- Hassan, M.M.; Wei, S.; Xu, Y.; Zareef, M.; Li, H.; Sayada, J.; Chen, Q. Ascorbate functionalized Au@AgNPs SERS sensor combined random frog-partial least squares for the prediction of chloramphenicol in milk. J. Food Compos. Anal. 2024, 129, 106106. [Google Scholar] [CrossRef]
- Shen, L.Q.; Zhou, X.; Zhang, C.X.; Yin, H.B.; Wang, A.L.; Wang, C.T. Functional characterization of bimetallic CuPdx nanoparticles in hydrothermal conversion of glycerol to lactic acid. J. Food Biochem. 2019, 43, e12931. [Google Scholar] [CrossRef]
- Yang, L.; Xu, X.; Song, Y.; Huang, J.; Xu, H. Research progress of nanozymes in colorimetric biosensing: Classification, activity and application. Chem. Eng. J. 2024, 487, 150612. [Google Scholar] [CrossRef]
- Liu, X.; Liang, X.; Yu, J.; Xu, K.; Shen, J.-W.; Duan, W.; Zeng, J. Recent development of noble metal-based bimetallic nanoparticles for colorimetric sensing. TrAC Trends Anal. Chem. 2023, 169, 117386. [Google Scholar] [CrossRef]
- Wang, C.Y.; Wu, B.D.; Jiang, K.; Wei, M.; Wang, S. Effects of different concentrations and types of Cu and Pb on soil N-fixing bacterial communities in the wheat rhizosphere. Appl. Soil Ecol. 2019, 144, 51–59. [Google Scholar] [CrossRef]
- Chen, P.; Yin, L.M.; El-Seedi, H.R.; Zou, X.B.; Guo, Z.M. Green reduction of silver nanoparticles for cadmium detection in food using surface-enhanced Raman spectroscopy coupled multivariate calibration. Food Chem. 2022, 394, 133481. [Google Scholar] [CrossRef]
- Wu, Q.Q.; Zhong, Y.T.; Chen, R.M.; Ling, G.Y.; Wang, X.H.; Shen, Y.R.; Hao, C. Cu-Ag-C@Ni3S4 with core shell structure and rose derived carbon electrode materials: An environmentally friendly supercapacitor with high energy and power density. Ind. Crops Prod. 2024, 222, 119676. [Google Scholar] [CrossRef]
- Yang, R.; Mu, W.Y.; Chen, Q.Y. Urazole-Au Nanocluster as a Novel Fluorescence Probe for Curcumin Determination and Mitochondria Imaging. Food Anal. Methods 2019, 12, 1805–1812. [Google Scholar] [CrossRef]
- Liu, Z.J.; Wang, X.Y.; Ren, X.X.; Li, W.B.; Sun, J.F.; Wang, X.W.; Huang, Y.Q.; Guo, Y.G.; Zeng, H.W. Novel fluorescence immunoassay for the detection of zearalenone using HRP-mediated fluorescence quenching of gold-silver bimetallic nanoclusters. Food Chem. 2021, 355, 129633. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Li, L.; Yang, S.; Gao, J.; Wang, R. Self-Assembly of Heterogeneously Shaped Nanoparticles into Plasmonic Metamolecules on DNA Origami. Chem. Eur. J. 2017, 23, 14177–14181. [Google Scholar] [CrossRef]
- Guo, K.; Teng, Y.; Guo, R.; Meng, Y.; Fan, D.; Hao, Q.; Zhang, Y.; Li, Y.; Xu, D. Engineering ultrathin PdAu nanoring via a facile process for electrocatalytic ethanol oxidation. J. Colloid Interface Sci. 2022, 628, 53–63. [Google Scholar] [CrossRef]
- Zhou, L.; Qiu, X.; Lyu, Z.; Zhao, M.; Xia, Y. Pd–Au Asymmetric Nanopyramids: Lateral vs Vertical Growth of Au on Pd Decahedral Seeds. Chem. Mater. 2021, 33, 5391–5400. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, W.; Li, J.; Wei, Z. Pt Alloy Nanocrystal Catalysts: Diminishing Sizes and Improving Stability. J. Phys. Chem. C 2023, 127, 12827–12840. [Google Scholar] [CrossRef]
- Liu, M.; Lyu, Z.; Zhang, Y.; Chen, R.; Xie, M.; Xia, Y. Twin-Directed Deposition of Pt on Pd Icosahedral Nanocrystals for Catalysts with Enhanced Activity and Durability toward Oxygen Reduction. Nano Lett. 2021, 21, 2248–2254. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Zhang, J.; Li, B.; Liu, J.; Xu, J.-J.; Chen, H.-Y. Dual-Mode SERS and Electrochemical Detection of miRNA Based on Popcorn-like Gold Nanofilms and Toehold-Mediated Strand Displacement Amplification Reaction. Anal. Chem. 2021, 93, 6120–6127. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhang, X.N.; Zhang, Z.Q.; Liu, Y. Full nitration-denitration versus partial nitration-denitration-anammox for treating high-strength ammonium-rich organic wastewater. Bioresour. Technol. 2018, 261, 379–384. [Google Scholar] [CrossRef]
- Zeng, K.; Chen, B.; Li, Y.X.; Meng, H.; Wu, Q.Y.; Yang, J.; Liang, H.F. Gold nanoparticle-carbon nanotube nanohybrids with peroxidase-like activity for the highly-sensitive immunoassay of kanamycin in milk. Int. J. Food Sci. Technol. 2022, 57, 6028–6037. [Google Scholar] [CrossRef]
- Wu, H.B.; Xie, R.Y.; Hao, Y.Q.; Pang, J.Y.; Gao, H.; Qu, F.Y.; Tian, M.M.; Guo, C.H.; Mao, B.D.; Chai, F. Portable smartphone-integrated AuAg nanoclusters electrospun membranes for multivariate fluorescent sensing of Hg2+, Cu2+ and L-histidine in water and food samples. Food Chem. 2023, 418, 135961. [Google Scholar] [CrossRef]
- Meng, Z.; Zhang, J.; Jiang, C.; Trapalis, C.; Zhang, L.; Yu, J. Dynamics of Electron Transfer in CdS Photocatalysts Decorated with Various Noble Metals. Small 2023, 20, e2308952. [Google Scholar] [CrossRef]
- Chen, T.; Lin, H.; Cao, Y.; Yao, Q.; Xie, J. Interactions of Metal Nanoclusters with Light: Fundamentals and Applications. Adv. Mater. 2021, 34, 2103918. [Google Scholar] [CrossRef]
- Chen, J.; Ma, Q.; Li, M.; Chao, D.; Huang, L.; Wu, W.; Fang, Y.; Dong, S. Glucose-oxidase like catalytic mechanism of noble metal nanozymes. Nat. Commun. 2021, 12, 3375. [Google Scholar] [CrossRef]
- Wang, K.; Sun, D.-W.; Pu, H.; Wei, Q. Polymer multilayers enabled stable and flexible Au@Ag nanoparticle array for nondestructive SERS detection of pesticide residues. Talanta 2021, 223, 121782. [Google Scholar] [CrossRef]
- Han, C.F.; Xiao, Y.; Liu, Z.J.; Du, D.L.; Li, M. Cascade amplifying aptasensor for positively correlated detecting OTA: Based on DNase I-assisted cyclic enzyme digestion and AgNPs@gel-enhanced fluorescence. Food Control 2023, 153, 109970. [Google Scholar] [CrossRef]
- Zhang, C.; Shi, X.; Yu, F.; Quan, Y. Preparation of dummy molecularly imprinted polymers based on dextran-modified magnetic nanoparticles Fe3O4 for the selective detection of acrylamide in potato chips. Food Chem. 2020, 317, 126431. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Huang, X.; Wang, C.; Tian, X.; Chang, X.; Ren, Y.; Yu, S. Applications of surface functionalized Fe3O4 NPs-based detection methods in food safety. Food Chem. 2021, 342, 128343. [Google Scholar] [CrossRef] [PubMed]
- Su, X.Y.; Zheng, K.Y.; Tian, X.Y.; Zhou, X.; Zou, X.B.; Xu, X.C.; Sun, Z.B.; Zhang, W. An advanced ratiometric molecularly imprinted sensor based on metal ion reoxidation for indirect and ultrasensitive glyphosate detection in fruit. Food Chem. 2023, 429, 136927. [Google Scholar] [CrossRef]
- Chouke, P.B.; Shrirame, T.; Potbhare, A.K.; Mondal, A.; Chaudhary, A.R.; Mondal, S.; Thakare, S.R.; Nepovimova, E.; Valis, M.; Kuca, K.; et al. Bioinspired metal/metal oxide nanoparticles: A road map to potential applications. Mater. Today Adv. 2022, 16, 100314. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Qian, K.; Huang, W. Metal–Support Interactions in Metal/Oxide Catalysts and Oxide–Metal Interactions in Oxide/Metal Inverse Catalysts. ACS Catal. 2022, 12, 1268–1287. [Google Scholar] [CrossRef]
- Ali, S.S.; Moawad, M.S.; Hussein, M.A.; Azab, M.; Abdelkarim, E.A.; Badr, A.; Sun, J.Z.; Khalil, M. Efficacy of metal oxide nanoparticles as novel antimicrobial agents against multi-drug and multi-virulent Staphylococcus aureus isolates from retail raw chicken meat and giblets. Int. J. Food Microbiol. 2021, 344, 109116. [Google Scholar] [CrossRef]
- Li, Z.H.; Zhang, X.; Huang, X.W.; Zou, X.B.; Shi, J.Y.; Xu, Y.W.; Hu, X.T.; Sun, Y.; Zhai, X.D. Hypha-templated synthesis of carbon/ZnO microfiber for dopamine sensing in pork. Food Chem. 2021, 335, 127646. [Google Scholar]
- Wang, Q.; Mei, S.H.; Manivel, P.; Ma, H.L.; Chen, X.M. Zinc oxide nanoparticles synthesized using coffee leaf extract assisted with ultrasound as nanocarriers for mangiferin. Curr. Res. Food Sci. 2022, 5, 868–877. [Google Scholar] [CrossRef]
- Alkallas, F.H.; Alghamdi, S.M.; Rashed, E.A.; Trabelsi, A.B.G.; Nafee, S.S.; Elsharkawy, W.B.; Alsubhe, E.; Alshreef, S.H.; Mostafa, A.M. Nanocomposite Fe3O4-MWCNTs based on femtosecond pulsed laser ablation for catalytic degradation. Diam. Relat. Mater. 2023, 140, 110445. [Google Scholar] [CrossRef]
- Peng, L.J.; Zhu, A.F.; Ahmad, W.; Adade, S.; Chen, Q.M.; Wei, W.Y.; Chen, X.M.; Wei, J.; Jiao, T.H.; Chen, Q.S. A three-channel biosensor based on stimuli-responsive catalytic activity of the Fe3O4@Cu for on-site detection of tetrodotoxin in fish. Food Chem. 2024, 460, 140566. [Google Scholar] [CrossRef]
- Lei, L.; Cao, Q.; Ma, J.; Hou, F. One-Step Hydrothermal/Solvothermal Preparation of Pt/TiO2: An Efficient Catalyst for Biobutanol Oxidation at Room Temperature. Molecules 2024, 29, 1450. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chen, L.; Li, Y.; Shen, K. Metal-Organic Frameworks as a New Platform to Construct Ordered Mesoporous Ce-Based Oxides for Efficient CO2 Fixation under Ambient Conditions. Small 2023, 19, e2303235. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.J.; Liu, X.H.; Ma, S.; Li, L.B.; You, T.Y. Quantification of zearalenone in mildewing cereal crops using an innovative photoelectrochemical aptamer sensing strategy based on ZnO-NGQDs composites. Food Chem. 2020, 322, 126778. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Wu, S.; Shen, Y.; Zhang, S.; Xiao, Y.; He, X.; Gong, J.; Farnell, Y.; Tang, Y.; Huang, Y.; et al. Iron oxide nanozyme suppresses intracellular Salmonella Enteritidis growth and alleviates infection in vivo. Theranostics 2018, 8, 6149–6162. [Google Scholar] [CrossRef]
- Liu, S.G.; Wang, H.; Zhao, Q.; Gao, W.; Shi, X.; Liu, Z. A portable colorimetric sensing platform for rapid and sensitive quantification of dichlorvos pesticide based on Fe-Mn bimetallic oxide nanozyme-participated highly efficient chromogenic catalysis. Anal. Chim. Acta 2024, 1292, 342243. [Google Scholar] [CrossRef]
- Zhao, D.; Bai, P.; Zhou, A.; Meng, H.-M.; Li, Z. Functionalized nanoscale metal oxides for biosensing, bioimaging and cancer therapy. TrAC Trends Anal. Chem. 2024, 174, 117684. [Google Scholar] [CrossRef]
- Gong, F.; Yang, N.; Wang, Y.; Zhuo, M.; Zhao, Q.; Wang, S.; Li, Y.; Liu, Z.; Chen, Q.; Cheng, L. Oxygen-Deficient Bimetallic Oxide FeWOX Nanosheets as Peroxidase-Like Nanozyme for Sensing Cancer via Photoacoustic Imaging. Small 2020, 16, 2003496. [Google Scholar] [CrossRef]
- Li, W.; Hu, X.; Li, Q.; Shi, Y.; Zhai, X.; Xu, Y.; Li, Z.; Huang, X.; Wang, X.; Shi, J.; et al. Copper nanoclusters @ nitrogen-doped carbon quantum dots-based ratiometric fluorescence probe for lead (II) ions detection in porphyra. Food Chem. 2020, 320, 126623. [Google Scholar] [CrossRef]
- Zhang, C.; Yu, X.; Shi, X.; Han, Y.; Guo, Z.; Liu, Y. Development of Carbon Quantum Dot–Labeled Antibody Fluorescence Immunoassays for the Detection of Morphine in Hot Pot Soup Base. Food Anal. Methods 2020, 13, 1042–1049. [Google Scholar] [CrossRef]
- Yuan, J.J.; Zhu, Y.; Wang, J.Z.; Gan, L.P.; He, M.Y.; Zhang, T.; Li, P.P.; Qiu, F.X. Preparation and application of Mg-Al composite oxide/coconut shell carbon fiber for effective removal of phosphorus from domestic sewage. Food Bioprod. Process. 2021, 126, 293–304. [Google Scholar] [CrossRef]
- Ji, Q.H.; Yu, X.J.; Chen, L.; Yarley, O.P.N.; Zhou, C.S. Facile preparation of sugarcane bagasse-derived carbon supported MoS2 nanosheets for hydrogen evolution reaction. Ind. Crops Prod. 2021, 172, 114064. [Google Scholar] [CrossRef]
- Liang, J.K.; Li, H.X.; Chen, L.; Ren, M.N.; Fakayode, O.A.; Han, J.Y.; Zhou, C.S. Efficient hydrogen evolution reaction performance using lignin-assisted chestnut shell carbon-loaded molybdenum disulfide. Ind. Crops Prod. 2023, 193, 116214. [Google Scholar] [CrossRef]
- Marimuthu, M.; Xu, K.C.; Song, W.; Chen, Q.S.; Wen, H.L. Safeguarding food safety: Nanomaterials-based fluorescent sensors for pesticide tracing. Food Chem. 2025, 463, 141288. [Google Scholar] [CrossRef] [PubMed]
- Guan, X.; Li, Z.; Geng, X.; Lei, Z.; Karakoti, A.; Wu, T.; Kumar, P.; Yi, J.; Vinu, A. Emerging Trends of Carbon-Based Quantum Dots: Nanoarchitectonics and Applications. Small 2023, 19, e2207181. [Google Scholar] [CrossRef] [PubMed]
- Levchenko, I.; Baranov, O.; Riccardi, C.; Roman, H.E.; Cvelbar, U.; Ivanova, E.P.; Mohandas, M.; Ščajev, P.; Malinauskas, T.; Xu, S.; et al. Nanoengineered Carbon-Based Interfaces for Advanced Energy and Photonics Applications: A Recent Progress and Innovations. Adv. Mater. Interfaces 2022, 10, 2201739. [Google Scholar] [CrossRef]
- Shoaib, M.; Li, H.H.; Khan, I.M.; Zareef, M.; Hassan, M.M.; Niazi, S.; Chen, Q.S. Emerging MXenes-based aptasensors: A paradigm shift in food safety detection. Trends Food Sci. Technol. 2024, 151, 104635. [Google Scholar] [CrossRef]
- Hu, X.T.; Shi, J.Y.; Shi, Y.Q.; Zou, X.B.; Tahir, H.E.; Holmes, M.; Zhang, W.; Huang, X.W.; Li, Z.H.; Xu, Y.W. A dual-mode sensor for colorimetric and fluorescent detection of nitrite in hams based on carbon dots-neutral red system. Meat Sci. 2019, 147, 127–134. [Google Scholar] [CrossRef]
- Hu, X.T.; Li, Y.X.; Xu, Y.W.; Gan, Z.Y.; Zou, X.B.; Shi, J.Y.; Huang, X.W.; Li, Z.H.; Li, Y.H. Green one-step synthesis of carbon quantum dots from orange peel for fluorescent detection of Escherichia coli in milk. Food Chem. 2021, 339, 127775. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.N.; Zhang, J.J.; Huang, X.W.; Zhai, X.D.; Li, Z.H.; Shi, J.Y.; Sobhy, R.; Khalifa, I.; Zou, X.B. Lemon-derived carbon quantum dots incorporated guar gum/sodium alginate films with enhanced the preservability for blanched asparagus active packaging. Food Res. Int. 2025, 202, 115736. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Zhao, B.C.; Chen, Q.Y.; Peng, X.M.; Yang, D.Y.; Qiu, F.X. Layered double hydroxide functionalized biomass carbon fiber for highly efficient and recyclable fluoride adsorption. Appl. Biol. Chem. 2019, 62, 12. [Google Scholar] [CrossRef]
- Zhang, D.-H.; Yang, L.; Li, N.; Su, K.; Liu, L.; Li, C.-Y. Detection of ciprofloxacin and pH by carbon dots and rapid, visual sensing analysis. Food Chem. 2024, 459, 140313. [Google Scholar] [CrossRef]
- Yuan, Z.C.; Huang, X.W.; Zhang, X.N.; Gao, S.J.; Chen, H.L.; Li, Z.H.; El-Mesery, H.S.; Shi, J.Y.; Zou, X.B. Unveiling rheological behavior of hydrogels toward Magic 3D printing patterns. Food Hydrocoll. 2025, 168, 111505. [Google Scholar] [CrossRef]
- Zeng, K.; Wei, W.; Jiang, L.; Zhu, F.; Du, D.L. Use of Carbon Nanotubes as a Solid Support To Establish Quantitative (Centrifugation) and Qualitative (Filtration) Immunoassays To Detect Gentamicin Contamination in Commercial Milk. J. Agric. Food Chem. 2016, 64, 7874–7881. [Google Scholar] [CrossRef]
- Ma, S.; Wang, M.; You, T.Y.; Wang, K. Using Magnetic Multiwalled Carbon Nanotubes as Modified QuEChERS Adsorbent for Simultaneous Determination of Multiple Mycotoxins in Grains by UPLC-MS/MS. J. Agric. Food Chem. 2019, 67, 8035–8044. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, C.; Zou, X.B.; Zhang, H.; Xu, Y.W. A β-CD/MWCNT-modified-microelectrode array for rapid determination of imidacloprid in vegetables. Food Anal. Methods 2019, 12, 2326–2333. [Google Scholar] [CrossRef]
- Shao, W.; Zeng, Z.; Star, A. An Ultrasensitive Norfentanyl Sensor Based on a Carbon Nanotube-Based Field-Effect Transistor for the Detection of Fentanyl Exposure. ACS Appl. Mater. Interfaces 2023, 15, 37784–37793. [Google Scholar] [CrossRef]
- Huang, X.W.; Sun, W.; Li, Z.H.; Shi, J.Y.; Zhang, N.; Zhang, Y.; Zhai, X.D.; Hu, X.T.; Zou, X.B. Hydrogen sulfide gas sensing toward on-site monitoring of chilled meat spoilage based on ratio-type fluorescent probe. Food Chem. 2022, 396, 133654. [Google Scholar] [CrossRef]
- Bi, J.R.; Li, Y.; Wang, H.T.; Song, Y.K.; Cong, S.; Yu, C.X.; Zhu, B.W.; Tan, M.Q. Presence and Formation Mechanism of Foodborne Carbonaceous Nanostructures from Roasted Pike Eel (Muraenesox cinereus). J. Agric. Food Chem. 2018, 66, 2862–2869. [Google Scholar] [CrossRef]
- Zhang, T.; Yuan, D.S.; Guo, Q.; Qiu, F.X.; Yang, D.Y.; Ou, Z.P. Preparation of a renewable biomass carbon aerogel reinforced with sisal for oil spillage clean-up: Inspired by green leaves to green Tofu. Food Bioprod. Process. 2019, 114, 154–162. [Google Scholar] [CrossRef]
- Sharma, A.S.; Ali, S.; Sabarinathan, D.; Murugavelu, M.; Li, H.H.; Chen, Q.S. Recent progress on graphene quantum dots-based fluorescence sensors for food safety and quality assessment applications. Compr. Rev. Food Sci. Food Saf. 2021, 20, 5765–5801. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Chen, W.Q.; Li, C.Z.; Cui, H.Y. Enhancing stability of Eucalyptus citriodora essential oil by solid nanoliposomes encapsulation. Ind. Crops Prod. 2019, 140, 111615. [Google Scholar] [CrossRef]
- Smith, A.T.; LaChance, A.M.; Zeng, S.; Liu, B.; Sun, L. Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Mater. Sci. 2019, 1, 31–47. [Google Scholar] [CrossRef]
- Li, Y.H.; Li, Y.X.; Zhang, D.; Tan, W.L.; Shi, J.Y.; Li, Z.H.; Liu, H.Y.; Yu, Y.Y.; Yang, L.; Wang, X.; et al. A fluorescence resonance energy transfer probe based on functionalized graphene oxide and upconversion nanoparticles for sensitive and rapid detection of zearalenone. LWT 2021, 147, 111541. [Google Scholar] [CrossRef]
- Du, X.J.; Du, W.H.; Sun, J.; Jiang, D. Self-powered photoelectrochemical sensor for chlorpyrifos detection in fruit and vegetables based on metal-ligand charge transfer effect by Ti3C2 based Schottky junction. Food Chem. 2022, 385, 132731. [Google Scholar] [CrossRef]
- Bin, Z.; Feng, L.; Yan, Y. Biomimetic metalloporphyrin oxidase modified carbon nanotubes for highly sensitive and stable quantification of anti-oxidants tert-butylhydroquinone in plant oil. Food Chem. 2022, 388, 132898. [Google Scholar] [CrossRef]
- Wu, X.; Yan, L.; Qin, R.; Zhang, Q.; Yang, W.; Wang, X.; Zhang, Y.; Luo, M.; Hou, J. Enhanced photocatalytic performance of Bi2O2CO3/Bi4O5Br2/reduced graphene oxide Z-schemehe terojunction via a one-pot room-temperature synthesis. J. Environ. Sci. 2024, 138, 418–427. [Google Scholar] [CrossRef]
- Zou, J.; Zhang, Q. Advances and Frontiers in Single-Walled Carbon Nanotube Electronics. Adv. Sci. 2021, 8, 2102860. [Google Scholar] [CrossRef]
- Yuan, C.; Lv, H.; Zhang, Y.; Fei, Q.; Xiao, D.; Yin, H.; Lu, Z.; Zhang, Y. Three-dimensional nanoporous heterojunction of CdS/np-rGO for highly efficient photocatalytic hydrogen evolution under visible light. Carbon 2023, 206, 237–245. [Google Scholar] [CrossRef]
- Krishna Saraswat, S.; Ahmed Mustafa, M.; Kamil Ghadir, G.; Kaur, M.; Guamán Lozada, D.F.; Hasen shuhata alubiady, M.; Muzahem Al-Ani, A.; Alshahrani, M.Y.; Kadhem Abid, M.; Salih Jumaa, S.; et al. Carbon quantum dots: A comprehensive review of green Synthesis, characterization and investigation their applications in bioimaging. Inorg. Chem. Commun. 2024, 162, 112279. [Google Scholar] [CrossRef]
- Patil, R.; Kumar, N.; Matsagar, B.; Wu, K.C.W.; Salunkhe, R.R.; Dutta, S. An improved Hummers method derived graphene oxide wrapped ZIF-8 polyhedron derived porous heterostructure for symmetric supercapacitor performance. RSC Sustain. 2024, 2, 233–238. [Google Scholar] [CrossRef]
- Li, H.H.; Murugesan, A.; Shoaib, M.; Sheng, W.; Chen, Q.S. Functionalized metal-organic frameworks with biomolecules for sensing and detection applications of food contaminants. Crit. Rev. Food Sci. Nutr. 2024, 26, 1–33. [Google Scholar] [CrossRef]
- Zhang, Z.P.; Zhou, R.Y.; Ke, L.J.; Li, J.B.; Jayan, H.; El-Seedi, H.R.; Zou, X.B.; Guo, Z.M. Development of multifunctional metal-organic frameworks (MOFs)-based nanofiller materials in food packaging: A comprehensive review. Trends Food Sci. Technol. 2024, 154, 104771. [Google Scholar] [CrossRef]
- Zhu, A.; Ali, S.; Jiao, T.; Wang, Z.; Xu, Y.; Ouyang, Q.; Chen, Q. Facile synthesis of fluorescence-SERS dual-probe nanocomposites for ultrasensitive detection of sulfur-containing gases in water and beer samples. Food Chem. 2023, 420, 136095. [Google Scholar] [CrossRef]
- Shi, Y.; Li, W.; Hu, X.; Zhang, X.; Huang, X.; Li, Z.; Zhai, X.; Shen, T.; Shi, J.; He, Y.; et al. A novel sustainable biomass-based fluorescent probe for sensitive detection of salicylic acid in rice. Food Chem. 2024, 434, 137260. [Google Scholar] [CrossRef]
- Zhang, X.N.; Jiang, Y.J.; Zhu, M.C.; Xu, Y.W.; Guo, Z.M.; Shi, J.Y.; Han, E.; Zou, X.B.; Wang, D. Electrochemical DNA sensor for inorganic mercury(II) ion at attomolar level in dairy product using Cu(II)-anchored metal-organic framework as mimetic catalyst. Chem. Eng. J. 2020, 383, 123182. [Google Scholar] [CrossRef]
- Xu, K.; Zhang, S.; Zhuang, X.; Zhang, G.; Tang, Y.; Pang, H. Recent progress of MOF-functionalized nanocomposites: From structure to properties. Adv. Colloid Interface Sci. 2024, 323, 103050. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, C.; Qian, W.; Lei, F.; Chen, Z.; Wu, X.; Lin, Y.; Wang, F. Recent advances in MOF-based nanozymes: Synthesis, activities, and bioapplications. Biosens. Bioelectron. 2024, 263, 116593. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.A.; Zhou, Y.; Huang, X.Y.; Hu, X.T.; Huang, X.W.; Yin, L.M.; Huang, Q.L.; Wen, Y.B.; Li, B.; Shi, J.Y.; et al. Switchable aptamer-fueled colorimetric sensing toward agricultural fipronil exposure sensitized with affiliative metal-organic framework. Food Chem. 2023, 407, 135115. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.H.; Rong, X.S.; Chen, C.; Wu, M.; Takai, Y.; Qiu, X.C.; Wang, C.C.; Shimasaki, Y.; Oshima, Y. Effects of ZIF-8 Nanoparticles on the Survival, Development, and Locomotor Activity of Early-life-stages of Zebrafish (Danio rerio). J. Fac. Agric. Kyushu Univ. 2021, 66, 211–216. [Google Scholar]
- Kang, L.X.; Liang, Q.F.; Abdul, Q.; Rashid, A.; Ren, X.F.; Ma, H.L. Preparation technology and preservation mechanism of γ-CD-MOFs biaological packaging film loaded with curcumin. Food Chem. 2023, 420, 136142. [Google Scholar] [CrossRef]
- Zhang, L.; He, Y.; Wu, Y.; Zhang, J.; Li, S.; Zhang, Z. Highly sensitive ratiometric fluorescence detection of tetracycline residues in food samples based on Eu/Zr-MOF. Food Chem. 2024, 436, 137717. [Google Scholar] [CrossRef]
- Tang, X.; Zhao, S.; Wu, J.; He, Z.; Zhang, Y.; Huang, K.; Zou, Z.; Xiong, X. Construction of rose flower-like NiCo-LDH electrode derived from bimetallic MOF for highly sensitive electrochemical sensing of hydrazine in food samples. Food Chem. 2023, 427, 136648. [Google Scholar] [CrossRef]
- Liu, C.; Lin, L.; Sun, Q.; Wang, J.; Huang, R.; Chen, W.; Li, S.; Wan, J.; Zou, J.; Yu, C. Site-specific growth of MOF-on-MOF heterostructures with controllable nano-architectures: Beyond the combination of MOF analogues. Chem. Sci. 2020, 11, 3680–3686. [Google Scholar] [CrossRef]
- Qin, Y.Y.; Yu, H.D.; Chen, K.J.; Cui, R.; Cao, J.X.; Wang, Z.X.; Zhang, Z.H.; Soteyome, T. Effects of chitosan/eugenol-loaded IRMOF-3 nanoparticles composite films on reactive oxygen species metabolism and microbial community dynamics in postharvest strawberries. Food Biosci. 2025, 63, 105652. [Google Scholar] [CrossRef]
- Akhade, S.A.; Singh, N.; Gutiérrez, O.Y.; Lopez-Ruiz, J.; Wang, H.; Holladay, J.D.; Liu, Y.; Karkamkar, A.; Weber, R.S.; Padmaperuma, A.B.; et al. Electrocatalytic Hydrogenation of Biomass-Derived Organics: A Review. Chem. Rev. 2020, 120, 11370–11419. [Google Scholar] [CrossRef]
- Howarth, A.J.; Liu, Y.; Li, P.; Li, Z.; Wang, T.C.; Hupp, J.T.; Farha, O.K. Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nat. Rev. Mater. 2016, 1, 15018. [Google Scholar] [CrossRef]
- Zou, M.; Dong, M.; Zhao, T. Advances in Metal-Organic Frameworks MIL-101(Cr). Int. J. Mol. Sci. 2022, 23, 9396. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.-W.; Wu, E.; Wang, J.-X.; Wen, H.-M.; Chen, B.; Li, B.; Qian, G. Programmed fluorine binding engineering in anion-pillared metal-organic framework for record trace acetylene capture from ethylene. Sci. Adv. 2023, 9, eadh0135. [Google Scholar] [CrossRef] [PubMed]
- Loiseau, T.; Serre, C.; Huguenard, C.; Fink, G.; Taulelle, F.; Henry, M.; Bataille, T.; Férey, G. A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. Chem. Eur. J. 2004, 10, 1373–1382. [Google Scholar] [CrossRef]
- Wang, S.; Liang, N.; Hu, X.; Li, W.; Guo, Z.; Zhang, X.; Huang, X.; Li, Z.; Zou, X.; Shi, J. Carbon dots and covalent organic frameworks based FRET immunosensor for sensitive detection of Escherichia coli O157:H7. Food Chem. 2024, 447, 138663. [Google Scholar] [CrossRef]
- Huang, A.-J.; Dong, X.-X.; Tan, S.; Chen, K.; Zhang, M.; Li, B.; Deng, H.; He, F.; Ni, H.; Wang, H.; et al. A covalent organic framework-derived pretreatment for pesticides in vegetables and fruits. Front. Sustain. Food Syst. 2024, 8, 1472174. [Google Scholar] [CrossRef]
- Xia, J.J.; Liu, F.; Yan, L.S.; Suo, H.B.; Qian, J.Y.; Zou, B. Simultaneous determination of tert-butylhydroquinone, butylated hydroxyanisole and phenol in plant oil by metalloporphyrin-based covalent organic framework electrochemical sensor. J. Food Compos. Anal. 2023, 122, 105486. [Google Scholar]
- Li, T.; Pan, Y.; Shao, B.; Zhang, X.; Wu, T.; He, Q.; He, M.; Ge, L.; Zhou, L.; Liu, S.; et al. Covalent–Organic Framework (COF)-Core–Shell Composites: Classification, Synthesis, Properties, and Applications. Adv. Funct. Mater. 2023, 33, 2304990. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, L.; Pan, J.; Jiang, S.; Wang, J.; Zhang, G.; Zhang, K. Recent advances in COF-derived carbon materials: Synthesis, properties, and applications. Prog. Mater. Sci. 2025, 148, 101373. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, Y.; Wang, X.; Zhang, H.; Gao, L.; Li, Y.; Liao, Y.; Meng, J.; Cui, Y.; Li, Z.; et al. Interface interaction modulates charge transfer in flower-like In2S3 nanosheets/COF composite for efficient solar-to-H2O2 conversion. Sep. Purif. Technol. 2025, 358, 130374. [Google Scholar] [CrossRef]
- Niu, L.; Zhao, X.; Tang, Z.; Wu, F.; Lei, Q.; Wang, J.; Wang, X.; Liang, W.; Wang, X. Solid-solid synthesis of covalent organic framework as a support for growth of controllable ultrafine Au nanoparticles. Sci. Total Environ. 2022, 835, 155423. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Y.; Zhao, J.; Zou, J.; Liang, X.; Zhu, Z.; Zhu, J.; Wang, H.; Wang, Y.; Pan, F.; et al. Electrochemical Interfacial Polymerization toward Ultrathin COF Membranes for Brine Desalination. Angew. Chem. Int. Ed. 2023, 62, e202219084. [Google Scholar] [CrossRef] [PubMed]
- Sun, N.; Jin, Y.; Wang, H.; Yu, B.; Wang, R.; Wu, H.; Zhou, W.; Jiang, J. Photoresponsive Covalent Organic Frameworks with Diarylethene Switch for Tunable Singlet Oxygen Generation. Chem. Mater. 2022, 34, 1956–1964. [Google Scholar] [CrossRef]
- Essalhi, M.; Mahmoud, E.-H.; Tayeb, A.; Al-Qahtani, R.A.; Farooqi, A.S.; Abdelnaby, M. Structural design of covalent organic frameworks and their recent advancements in carbon capture applications: A review. Carbon Capture Sci. Technol. 2025, 14, 100370. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, L.; Dai, S.; Zhao, C.; Ma, C.; Wei, L.; Zhu, M.; Chong, S.Y.; Yang, H.; Liu, L.; et al. Reconstructed covalent organic frameworks. Nature 2022, 604, 72–79. [Google Scholar] [CrossRef]
- Li, X.; Ji, X.; Zhang, X.; Chen, X.; Li, H.; Zhang, S.; Huo, F.; Zhang, W. Construction of functional covalent organic framework films by modulator and solvent induced polymerization. Nat. Commun. 2025, 16, 1223. [Google Scholar] [CrossRef]
- Anjana, P.N.; Pulikkal, A.K. Synthesis, derivation, and applications of imine-linked covalent organic frameworks: A comprehensive review. Microporous Mesoporous Mater. 2025, 387, 11356. [Google Scholar] [CrossRef]
- Kang, C.; Zhang, Z.; Kusaka, S.; Negita, K.; Usadi, A.K.; Calabro, D.C.; Baugh, L.S.; Wang, Y.; Zou, X.; Huang, Z.; et al. Covalent organic framework atropisomers with multiple gas-triggered structural flexibilities. Nat. Mater. 2023, 22, 636–643. [Google Scholar] [CrossRef]
- Xia, J.; Li, Z.; Ding, Y.; Shah, L.A.; Zhao, H.; Ye, D.; Zhang, J. Construction and Application of Nanozyme Sensor Arrays. Anal. Chem. 2024, 96, 8221–8233. [Google Scholar] [CrossRef]
- Chen, Z.J.; Huang, A.J.; Dong, X.X.; Zhang, Y.F.; Zhu, L.; Luo, L.; Xu, Z.L.; Wang, H.W. A simple and sensitive fluoroimmunoassay based on the nanobody-alkaline phosphatase fusion protein for the rapid detection of fenitrothion. Front. Sustain. Food Syst. 2023, 7, 1320931. [Google Scholar] [CrossRef]
- Hu, X.T.; Shi, J.Y.; Shi, Y.Q.; Zou, X.B.; Arslan, M.; Zhang, W.; Huang, X.W.; Li, Z.H.; Xu, Y.W. Use of a smartphone for visual detection of melamine in milk based on Au@Carbon quantum dots nanocomposites. Food Chem. 2019, 272, 58–65. [Google Scholar] [CrossRef]
- Li, Y.Q.; Luo, S.L.; Sun, L.; Kong, D.Z.; Sheng, J.G.; Wang, K.; Dong, C.W. A Green, Simple, and Rapid Detection for Amaranth in Candy Samples Based on the Fluorescence Quenching of Nitrogen-Doped Graphene Quantum Dots. Food Anal. Methods 2019, 12, 1658–1665. [Google Scholar] [CrossRef]
- Wang, P.Y.; Li, H.H.; Hassan, M.M.; Guo, Z.M.; Zhang, Z.Z.; Chen, Q.S. Fabricating an Acetylcholinesterase Modulated UCNPs-Cu2+ Fluorescence Biosensor for Ultrasensitive Detection of Organophosphorus Pesticides-Diazinon in Food. J. Agric. Food Chem. 2019, 67, 4071–4079. [Google Scholar] [CrossRef]
- Dong, X.X.; Huang, A.; He, L.L.; Cai, C.Y.; You, T.Y. Recent advances in foodborne pathogen detection using photoelectrochemical biosensors: From photoactive material to sensing strategy. Front. Sustain. Food Syst. 2024, 8, 1432555. [Google Scholar] [CrossRef]
- Mu, M.; Wen, S.; Hu, S.; Zhao, B.; Song, W. Putting surface-enhanced Raman spectroscopy to work for nanozyme research: Methods, materials and applications. TrAC Trends Anal. Chem. 2022, 152, 116603. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, X.C.; Yin, L.M.; Picchetti, P.; Yang, T.X.; Zhou, R.Y.; Zhao, C.P.; Xue, S.S.; Zhang, Z.P.; Zou, X.B.; et al. Competitive binding strategy for reliable signal-off surface enhanced Raman scattering sensing in protecting apples from patulin without external interference. J. Food Compos. Anal. 2025, 139, 107052. [Google Scholar] [CrossRef]
- Jiang, L.; Wei, W.Y.; Liu, S.S.; Haruna, S.A.; Zareef, M.; Ahmad, W.; Hassan, M.M.; Li, H.H.; Chen, Q.S. A tailorable and recyclable TiO2 NFSF/Ti@Ag NPs SERS substrate fabricated by a facile method and its applications in prohibited fish drugs detection. J. Food Meas. Charact. 2022, 16, 2890–2898. [Google Scholar] [CrossRef]
- Hassan, M.M.; Li, H.H.; Ahmad, W.; Zareef, M.; Wang, J.J.; Xie, S.C.; Wang, P.Y.; Ouyang, Q.; Wang, S.Y.; Chen, Q.S. Au@Ag nanostructure based SERS substrate for simultaneous determination of pesticides residue in tea via solid phase extraction coupled multivariate calibration. LWT 2019, 105, 290–297. [Google Scholar] [CrossRef]
- Dang, P.; Liu, X.; Ju, H.; Wu, J. Intensive and Persistent Chemiluminescence System Based on Nano-/Bioenzymes with Local Tandem Catalysis and Surface Diffusion. Anal. Chem. 2020, 92, 5517–5523. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.P.; Yang, W.H.; Zheng, X.Y.; Wang, T.X.; Zhang, D.; Zou, X.B. Advances of nanobody-based immunosensors for detecting food contaminants. Trends Food Sci. Technol. 2025, 156, 104871. [Google Scholar] [CrossRef]
- Kang, W.; Lin, H.; Yao-Say Solomon Adade, S.; Wang, Z.; Ouyang, Q.; Chen, Q. Advanced sensing of volatile organic compounds in the fermentation of kombucha tea extract enabled by nano-colorimetric sensor array based on density functional theory. Food Chem. 2023, 405, 134193. [Google Scholar] [CrossRef]
- Lin, H.; Lin, J.J.; Man, Z.X.; Jin, H.J.; Kutsanedzie, F.Y.H.; Chen, Q.S. Development of Colorimetric Detection of 2,4,5-Trimethyloxazole in Volatile Organic Compounds Based on Porphyrin Complexes for Vinegar Storage Time Discrimination. Food Anal. Methods 2020, 13, 2192–2203. [Google Scholar] [CrossRef]
- Jiang, H.; Lin, H.; Lin, J.J.; Adade, S.; Chen, Q.S.; Xue, Z.L.; Chan, C.M. Non-destructive detection of multi-component heavy metals in corn oil using nano-modified colorimetric sensor combined with near-infrared spectroscopy. Food Control 2022, 133, 108640. [Google Scholar] [CrossRef]
- Yu, S.S.; Huang, X.Y.; Wang, L.; Wang, Y.N.; Jiao, X.Y.; Chang, X.H.; Tian, X.Y.; Ren, Y.; Zhang, X.R. Characterization of the volatile flavor profiles of black garlic using nanomaterial-based colorimetric sensor array, HS-SPME-GC/MS coupled with chemometrics strategies. Food Chem. 2024, 458, 140213. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.P.; Zhang, Y.; Wang, C.; Liu, X.J.; El-Seedi, H.R.; Gomez, P.L.; Alzamora, S.M.; Zou, X.B.; Guo, Z.M. Enhanced composite Co-MOF-derived sodium carboxymethyl cellulose visual films for real-time and in situ monitoring fresh-cut apple freshness. Food Hydrocoll. 2024, 157, 10475. [Google Scholar] [CrossRef]
- Han, F.K.; Huang, X.Y.; Teye, E. Novel prediction of heavy metal residues in fish using a low-cost optical electronic tongue system based on colorimetric sensors array. J. Food Process Eng. 2019, 42, e12983. [Google Scholar] [CrossRef]
- Lin, H.; Yan, S.; Song, B.T.; Wang, Z.; Sun, L. Discrimination of aged rice using colorimetric sensor array combined with volatile organic compounds. J. Food Process Eng. 2019, 42, e13037. [Google Scholar] [CrossRef]
- Zhu, W.R.; Li, L.B.; Zhou, Z.; Yang, X.D.; Hao, N.; Guo, Y.S.; Wang, K. A colorimetric biosensor for simultaneous ochratoxin A and aflatoxins B1 detection in agricultural products. Food Chem. 2020, 319, 126544. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, N.F.; Dong, S.B.; Huang, M.L.; Yang, L.Q.; Wu, X.Y.; Liu, Z.J.; Jiang, J.H.; Zou, Y.M. Plasmonic ELISA Based on Nanospherical Brush-Induced Signal Amplification for the Ultrasensitive Naked-Eye Simultaneous Detection of the Typical Tetrabromobisphenol A Derivative and Byproduct. J. Agric. Food Chem. 2018, 66, 2996–3002. [Google Scholar] [CrossRef]
- Wang, X.Y.; Zhai, X.D.; Zou, X.B.; Li, Z.H.; Shi, J.Y.; Yang, Z.K.; Sun, Y.; Arslan, M.; Chen, Z.Y.; Xiao, J.B. Novel hydrophobic colorimetric films based on ethylcellulose/castor oil/anthocyanins for pork freshness monitoring. LWT—Food Sci. Technol. 2022, 164, 113631. [Google Scholar] [CrossRef]
- Li, H.H.; Bei, Q.Y.; Li, B.S.; Haruna, S.A.; Marimuthu, M.; Hassan, M.; Ding, Z.; Chen, Q.S. A novel enzymatic biosensor for CIP in food based on UCNPs and colorimetric strategy of potassium titanium oxalate. J. Food Compos. Anal. 2024, 125, 105827. [Google Scholar] [CrossRef]
- Wahia, H.; Zhou, C.S.; Sarpong, F.; Mustapha, A.T.; Liu, S.L.; Yu, X.J.; Li, C. Simultaneous optimization of Alicyclobacillus acidoterrestris reduction, pectin methylesterase inactivation, and bioactive compounds enhancement affected by thermosonication in orange juice. J. Food Process. Preserv. 2019, 43, e14180. [Google Scholar] [CrossRef]
- Hao, D.N.; Tu, X.H.; Zhang, X.X.; Guo, S.Y.; Sun, L.G.; Li, J.L.; Wang, D.Y.; Xu, W.M.; Li, P.P. Effects of proteases inactivation on textural quality of yellow-feathered chicken meat and the possible mechanism based on myofibrillar protein. Food Control 2024, 166, 110731. [Google Scholar] [CrossRef]
- Cao, H.W.; Wang, X.X.; Liu, J.; Sun, Z.; Yu, Z.Q.; Battino, M.; El-Seedi, H.; Guan, X. Mechanistic insights into the changes of enzyme activity in food processing under microwave irradiation. Compr. Rev. Food Sci. Food Saf. 2023, 22, 2465–2487. [Google Scholar] [CrossRef]
- Lu, Y.Z.; Wang, F.Y.; Luo, H.; He, W.W.; Li, D.J.; Bao, Y.H.; Zhang, Z.Y.; Zhou, C.S. Changes in phytochemical profiles, relevant enzyme activity and antioxidant capacity of different germinated maize varieties. Food Biosci. 2023, 56, 103410. [Google Scholar] [CrossRef]
- Wang, Y.; Shoaib, M.; Wang, J.Y.; Lin, H.; Chen, Q.S.; Ouyang, Q. A novel ZIF-8 mediated nanocomposite colorimetric sensor array for rapid identification of matcha grades, validated by density functional theory. J. Food Compos. Anal. 2025, 137, 106864. [Google Scholar] [CrossRef]
- Li, H.H.; Hu, W.W.; Hassan, M.M.; Zhang, Z.Z.; Chen, Q.S. A facile and sensitive SERS-based biosensor for colormetric detection of acetamiprid in green tea based on unmodified gold nanoparticles. J. Food Meas. Charact. 2019, 13, 259–268. [Google Scholar] [CrossRef]
- Li, Z.H.; Zhou, X.C.; Shi, J.Y.; Zou, X.B.; Huang, X.W.; Tahir, H.E. Preparation of conducting polyaniline/protoporphyrin composites and their application for sensing VOCs. Food Chem. 2019, 276, 291–297. [Google Scholar] [CrossRef]
- Suo, Z.; Zhang, L.; Zhang, Z.; Liang, R.; Shen, H.; Chen, X.; Liu, Y.; Wei, M.; He, B.; Jin, H. A bifunctional MXene@PtPd NPs cascade DNAzyme-mediated fluorescence/colorimetric dual-mode biosensor for Pb2+ determination. Food Chem. 2025, 464, 141845. [Google Scholar] [CrossRef]
- Ge, J.; Yuan, Y.; Yang, H.; Deng, R.; Li, Z.; Yang, Y. Smartphone-assisted colorimetric sensor based on single-atom Cu–C–N nanozyme for mercury (II) ions detection. Mater. Today Chem. 2024, 37, 102037. [Google Scholar] [CrossRef]
- Lin, H.; Chen, Z.Y.; Adade, S.; Yang, W.J.; Chen, Q.S. Detection of Maize Mold Based on a Nanocomposite Colorimetric Sensor Array under Different Substrates. J. Agric. Food Chem. 2024, 72, 11164–11173. [Google Scholar] [CrossRef]
- Wu, F.; Wang, H.; Lv, J.; Shi, X.; Wu, L.; Niu, X. Colorimetric sensor array based on Au2Pt nanozymes for antioxidant nutrition quality evaluation in food. Biosens. Bioelectron. 2023, 236, 115417. [Google Scholar] [CrossRef]
- Li, F.; Jiang, J.; Peng, H.; Li, C.; Li, B.; He, J. Platinum nanozyme catalyzed multichannel colorimetric sensor array for identification and detection of pesticides. Sens. Actuators B Chem. 2022, 369, 132334. [Google Scholar] [CrossRef]
- Li, R.; He, X.; Javed, R.; Cai, J.; Cao, H.; Liu, X.; Chen, Q.; Ye, D.; Zhao, H. Switching on-off-on colorimetric sensor based on Fe-N/S-C single-atom nanozyme for ultrasensitive and multimodal detection of Hg2+. Sci. Total Environ. 2022, 834, 155428. [Google Scholar] [CrossRef]
- Razavi, M.; Barras, A.; Ifires, M.; Swaidan, A.; Khoshkam, M.; Szunerits, S.; Kompany-Zareh, M.; Boukherroub, R. Colorimetric assay for the detection of dopamine using bismuth ferrite oxide (Bi2Fe4O9) nanoparticles as an efficient peroxidase-mimic nanozyme. J. Colloid Interface Sci. 2022, 613, 384–395. [Google Scholar] [CrossRef]
- Gai, P.; Pu, L.; Wang, C.; Zhu, D.; Li, F. CeO2@NC nanozyme with robust dephosphorylation ability of phosphotriester: A simple colorimetric assay for rapid and selective detection of paraoxon. Biosens. Bioelectron. 2023, 220, 114841. [Google Scholar] [CrossRef] [PubMed]
- Shi, B.; Zhang, X.; Li, W.; Liang, N.; Hu, X.; Xiao, J.; Wang, D.; Zou, X.; Shi, J. An intrinsic dual-emitting fluorescence sensing toward tetracycline with self-calibration model based on luminescent lanthanide-functionalized metal-organic frameworks. Food Chem. 2023, 400, 133995. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.Y.; Dong, Y.N.; Lv, R.Q.; Huang, X.Y.; Chen, Q.S. Rapid quantification of acid value in frying oil using iron tetraphenylporphyrin fluorescent sensor coupled with density functional theory and multivariate analysis. Food Qual. Saf. 2022, 6, fyac046. [Google Scholar] [CrossRef]
- Hassan, M.M.; Xu, Y.; Zareef, M.; Li, H.H.; Rong, Y.W.; Chen, Q.S. Recent advances of nanomaterial-based optical sensor for the detection of benzimidazole fungicides in food: A review. Crit. Rev. Food Sci. Nutr. 2023, 63, 2851–2872. [Google Scholar] [CrossRef]
- Sharma, A.S.; Marimuthu, M.; Varghese, A.W.; Wu, J.Z.; Xu, J.; Luo, X.F.; Devaraj, S.; Lan, Y.; Li, H.H.; Chen, Q.S. A review of biomolecules conjugated lanthanide up-conversion nanoparticles-based fluorescence probes in food safety and quality monitoring applications. Crit. Rev. Food Sci. Nutr. 2024, 64, 6129–6159. [Google Scholar] [CrossRef]
- Fang, X.C.; Liu, T.T.; Xue, C.; Xue, G.J.; Wu, M.Y.; Liu, P.Y.; Hammock, B.D.; Lai, W.H.; Peng, J.; Zhang, C.Z. Competitive ratiometric fluorescent lateral flow immunoassay based on dual emission signal for sensitive detection of chlorothalonil. Food Chem. 2024, 433, 137200. [Google Scholar] [CrossRef]
- Song, W.J.; Zhai, X.D.; Shi, J.Y.; Zou, X.B.; Xue, Y.H.; Sun, Y.; Sun, W.; Zhang, J.J.; Huang, X.W.; Li, Z.H.; et al. A ratiometric fluorescence amine sensor based on carbon quantum dot-loaded electrospun polyvinylidene fluoride film for visual monitoring of food freshness. Food Chem. 2024, 434, 137423. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.Y.; Yu, X.Z.; Wang, J.Y.; Wang, Q.; Meng, H.; Wang, Z.H. One-Step Core/Multishell Quantum Dots-Based Fluoroimmunoassay for Screening of Deoxynivalenol in Maize. Food Anal. Methods 2018, 11, 2569–2578. [Google Scholar] [CrossRef]
- Yin, M.M.; Wang, W.J.; Wei, J.; Chen, X.M.; Chen, Q.S.; Chen, X.; Oyama, M. Novel dual-emissive fluorescent immunoassay for synchronous monitoring of okadaic acid and saxitoxin in shellfish. Food Chem. 2022, 368, 130856. [Google Scholar] [CrossRef]
- Sun, Y.; Zhai, X.D.; Zou, X.B.; Shi, J.Y.; Huang, X.W.; Li, Z.H. A Ratiometric Fluorescent Sensor Based on Silicon Quantum Dots and Silver Nanoclusters for Beef Freshness Monitoring. Foods 2023, 12, 1464. [Google Scholar] [CrossRef]
- Wang, C.Q.; Gu, C.D.; Zhao, X.; Yu, S.S.; Zhang, X.R.; Xu, F.Y.; Ding, L.J.; Huang, X.Y.; Qian, J. Self-designed portable dual-mode fluorescence device with custom python-based analysis software for rapid detection via dual-color FRET aptasensor with IoT capabilities. Food Chem. 2024, 457, 140190. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, J.; Zhou, X.; Sun, H.; Su, X. Fluorescence sensing strategy for xanthine assay based on gold nanoclusters and nanozyme. Sens. Actuators B Chem. 2022, 358, 131488. [Google Scholar] [CrossRef]
- Li, J.; Li, L.; Bi, X.; Liu, X.; Luo, L.; You, T. Fluorescence/colorimetry dual-mode sensing strategy for mercury ion detection based on the quenching effect and nanozyme activity of porous cerium oxide nanorod. Sens. Actuators B Chem. 2022, 360, 131483. [Google Scholar] [CrossRef]
- Bi, X.Y.; Li, L.B.; Liu, X.H.; Luo, L.J.; Cheng, Z.L.; Sun, J.Y.; Cai, Z.B.; Liu, J.M.; You, T.Y. Inner filter effect-modulated ratiometric fluorescence aptasensor based on competition strategy for zearalenone detection in cereal crops: Using mitoxantrone as quencher of CdTe QDs@SiO2. Food Chem. 2021, 349, 129170. [Google Scholar] [CrossRef]
- Zhao, X.-E.; Zuo, Y.-N.; Xia, Y.; Sun, J.; Zhu, S.; Xu, G. Multifunctional NH2-Cu-MOF based ratiometric fluorescence assay for discriminating catechol from its isomers. Sens. Actuators B Chem. 2022, 371, 132548. [Google Scholar] [CrossRef]
- Liao, X.; Li, B.; Wang, L.; Chen, Y. Boric acid functionalized Fe3O4@CeO2/Tb-MOF as a luminescent nanozyme for fluorescence detection and degradation of caffeic acid. Biosens. Bioelectron. 2024, 264, 116637. [Google Scholar] [CrossRef]
- Okeke, E.S.; Ezeorba, T.P.C.; Okoye, C.O.; Chen, Y.; Mao, G.; Feng, W.; Wu, X. Analytical detection methods for azo dyes: A focus on comparative limitations and prospects of bio-sensing and electrochemical nano-detection. J. Food Compos. Anal. 2022, 114, 104778. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, C.; Liu, F.H.; Zou, X.B.; Xu, Y.W.; Xu, X.C. A smart-phone-based electrochemical platform with programmable solid-state-microwave flow digestion for determination of heavy metals in liquid food. Food Chem. 2020, 303, 125378. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.Y.; Li, Z.H.; Wei, X.O.; Hao, M.Y.; Song, W.J.; Zou, X.B.; Huang, X.W. A cell-based electrochemical biosensor for the detection of capsaicin. J. Food Meas. Charact. 2024, 18, 9341–9352. [Google Scholar] [CrossRef]
- Liu, Z.J.; Wang, L.; Liu, P.F.; Zhao, K.R.; Ye, S.Y.; Liang, G.X. Rapid, ultrasensitive and non-enzyme electrochemiluminescence detection of hydrogen peroxide in food based on the ssDNA/g-C3N4 nanosheets hybrid. Food Chem. 2021, 357, 129753. [Google Scholar] [CrossRef]
- Zhou, W.S.; Li, C.H.; Sun, C.; Yang, X.D. Simultaneously determination of trace Cd2+ and Pb2+ based on L-cysteine/graphene modified glassy carbon electrode. Food Chem. 2016, 192, 351–357. [Google Scholar] [CrossRef]
- Xu, Y.W.; Zhang, W.; Shi, J.Y.; Zou, X.B.; Li, Z.H.; Zhu, Y.D. Microfabricated interdigitated Au electrode for voltammetric determination of lead and cadmium in Chinese mitten crab (Eriocheir sinensis). Food Chem. 2016, 201, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.J.; Ding, L.J.; Liu, Y.; Fan, C.H.; You, F.H.; Wei, J.; Qian, J.; Wang, K. A miniaturized organic photoelectrochemical transistor aptasensor based on nanorod arrays toward high-sensitive T-2 toxin detection in milk samples. Food Chem. 2023, 423, 136285. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Zhu, Y.; Qian, L.; Yin, Y.H.; Yuan, Z.Y.; Dai, Y.T.; Zhang, T.; Yang, D.Y.; Qiu, F.X. Lamellar Ti3C2MXene composite decorated with platinum-doped MoS2 nanosheets as electrochemical sensing functional platform for highly sensitive analysis of organophosphorus pesticides. Food Chem. 2024, 459, 140379. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; He, B.; Xie, L.; Cao, X.; Ren, W.; Suo, Z.; Xu, Y.; Wei, M.; Jin, H. MOF-derived Mn, N Co-doped Co-C nanomaterials and exo I-driven dual signal amplification for sensitive detection of florfenicol using an electrochemical aptasensor. Chem. Eng. J. 2024, 501, 157782. [Google Scholar] [CrossRef]
- Xu, X.; Xu, D.; Lu, S.; Zhou, X.; Yang, S.; Zhang, Z. Atomically dispersed recognition unit for selective in vivo photoelectrochemical medicine detection. Nat. Commun. 2024, 15, 8827. [Google Scholar] [CrossRef]
- Qin, C.C.; Guo, W.L.; Liu, Y.; Liu, Z.C.; Qiu, J.; Peng, J.B. A Novel Electrochemical Sensor Based on Graphene Oxide Decorated with Silver Nanoparticles-Molecular Imprinted Polymers for Determination of Sunset Yellow in Soft Drinks. Food Anal. Methods 2017, 10, 2293–2301. [Google Scholar] [CrossRef]
- Xu, Y.W.; Zhang, W.; Shi, J.Y.; Zou, X.B.; Li, Y.X.; Tahir, H.E.; Huang, X.W.; Li, Z.H.; Zhai, X.D.; Hu, X.T. Electrodeposition of gold nanoparticles and reduced graphene oxide on an electrode for fast and sensitive determination of methylmercury in fish. Food Chem. 2017, 237, 423–430. [Google Scholar] [CrossRef]
- Wu, J.; Yang, Q.; Li, Q.; Li, H.; Li, F. Two-Dimensional MnO2 Nanozyme-Mediated Homogeneous Electrochemical Detection of Organophosphate Pesticides without the Interference of H2O2 and Color. Anal. Chem. 2021, 93, 4084–4091. [Google Scholar] [CrossRef]
- Wei, X.; Guo, J.; Lian, H.; Sun, X.; Liu, B. Cobalt metal-organic framework modified carbon cloth/paper hybrid electrochemical button-sensor for nonenzymatic glucose diagnostics. Sens. Actuators B Chem. 2021, 329, 129205. [Google Scholar] [CrossRef]
- Wang, G.; Liu, J.; Dong, H.; Geng, L.; Sun, J.; Liu, J.; Dong, J.; Guo, Y.; Sun, X. A dual-mode biosensor featuring single-atom Fe nanozyme for multi-pesticide detection in vegetables. Food Chem. 2024, 437, 137882. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Wang, B.; Liu, J.; Li, G.; Long, Y.; Zhang, G.; Liu, H. Nickel/nitrogen-doped carbon nanocomposites: Synthesis and electrochemical sensor for determination of p-nitrophenol in local environment. Environ. Res. 2022, 214, 114007. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhao, Z.; Lei, Q.; Sun, Y.; Zhang, W.; Zhuiykov, S.; Zhang, W.; Hu, J. Constructing and electrochemical performance of AuNPs decorated MIL-53 (Fe, Ni) MOFs–derived nanostructures for highly sensitive hydrazine detection. Appl. Surf. Sci. 2022, 596, 153573. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, D.; Zhao, L.; Shi, B.; Sun, Y.; Shi, J.; Battino, M.; Wang, G.; Wang, W.; Zou, X. A novel strategy based on dynamic surface-enhanced Raman scattering spectroscopy (D-SERS) for the discrimination and quantification of hydroxyl-sanshools in the pericarps of genus Zanthoxylum. Ind. Crops Prod. 2022, 183, 114940. [Google Scholar] [CrossRef]
- Yang, Z.; Zhu, A.; Adade, S.Y.-S.S.; Ali, S.; Chen, Q.; Wei, J.; Chen, X.; Jiao, T.; Chen, Q. Ag@Au core–shell nanoparticle-based surface-enhanced Raman scattering coupled with chemometrics for rapid determination of chloramphenicol residue in fish. Food Chem. 2024, 438, 138026. [Google Scholar] [CrossRef]
- Guo, Z.M.; Chen, P.; Yosri, N.; Chen, Q.S.; Elseedi, H.R.; Zou, X.B.; Yang, H.S. Detection of Heavy Metals in Food and Agricultural Products by Surface-enhanced Raman Spectroscopy. Food Rev. Int. 2023, 39, 1440–1461. [Google Scholar] [CrossRef]
- Hassan, M.M.; Zareef, M.; Jiao, T.H.; Liu, S.S.; Xu, Y.; Viswadevarayalu, A.; Li, H.H.; Chen, Q.S. Signal optimized rough silver nanoparticle for rapid SERS sensing of pesticide residues in tea. Food Chem. 2021, 338, 127796. [Google Scholar] [CrossRef]
- Wei, W.Y.; Hassan, M.M.; Wu, J.Z.; Mu, X.F.; Li, H.H.; Chen, Q.S. Competitive Ratiometric Aptasensing with Core-Internal Standard- Shell Structure Based on Surface-Enhanced Raman Scattering. J. Agric. Food Chem. 2023, 71, 857–866. [Google Scholar] [CrossRef]
- Li, H.H.; Chen, Q.S.; Ouyang, Q.; Zhao, J.W. Fabricating a Novel Raman Spectroscopy-Based Aptasensor for Rapidly Sensing Salmonella typhimurium. Food Anal. Methods 2017, 10, 3032–3041. [Google Scholar] [CrossRef]
- Zhu, J.J.; Agyekum, A.A.; Kutsanedzie, F.Y.H.; Li, H.H.; Chen, Q.S.; Ouyang, Q.; Jiang, H. Qualitative and quantitative analysis of chlorpyrifos residues in tea by surface-enhanced Raman spectroscopy (SERS) combined with chemometric models. LWT 2018, 97, 760–769. [Google Scholar] [CrossRef]
- Chen, Z.Y.; Sun, Y.; Shi, J.Y.; Zhang, W.; Zhang, X.A.; Huang, X.W.; Zou, X.B.; Li, Z.H.; Wei, R.C. Facile synthesis of Au@Ag core-shell nanorod with bimetallic synergistic effect for SERS detection of thiabendazole in fruit juice. Food Chem. 2022, 370, 131276. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, N.; Han, C.; Chen, Z.Y.; Zhai, X.D.; Li, Z.H.; Zheng, K.Y.; Zhu, J.F.; Wang, X.; Zou, X.B.; et al. Competitive immunosensor for sensitive and optical anti-interference detection of imidacloprid by surface-enhanced Raman scattering. Food Chem. 2021, 358, 129898. [Google Scholar] [CrossRef]
- Yosri, N.; Gao, S.P.; Zhou, R.Y.; Wang, C.; Zou, X.B.; El-Seedi, H.R.; Guo, Z.M. Innovative quantum dots-based SERS for ultrasensitive reporting of contaminants in food: Fundamental concepts and practical implementations. Food Chem. 2025, 467, 142395. [Google Scholar] [CrossRef]
- Zhai, W.L.; You, T.Y.; Ouyang, X.H.; Wang, M. Recent progress in mycotoxins detection based on surface-enhanced Raman spectroscopy. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1887–1909. [Google Scholar] [CrossRef]
- He, P.H.; Hassan, M.M.; Yang, W.J.; Shi, Z.X.; Zhou, X.Y.; Xu, Y.; Ouyang, Q.; Chen, Q.S. Rapid and stable detection of three main mycotoxins in rice using SERS optimized AgNPs@K30 coupled multivariate calibration. Food Chem. 2023, 398, 133883. [Google Scholar] [CrossRef]
- Adade, S.; Lin, H.; Johnson, N.A.N.; Nunekpeku, X.; Aheto, J.H.; Ekumah, J.N.; Kwadzokpui, B.A.; Teye, E.; Ahmad, W.; Chen, Q.S. Advanced food contaminant detection through multi-source data fusion: Strategies, applications, and future perspectives. Trends Food Sci. Technol. 2025, 156, 104851. [Google Scholar] [CrossRef]
- Aheto, J.H.; Huang, X.Y.; Tian, X.Y.; Zhang, X.R.; Zhang, W.H.; Yu, S.S. Activated carbon@silver nanoparticles conjugates as SERS substrate for capturing malathion analyte molecules for SERS detection. J. Food Saf. 2023, 43, 13072. [Google Scholar] [CrossRef]
- Adade, S.; Lin, H.; Johnson, N.A.N.; Sun, Q.Q.; Nunekpeku, X.; Ahmad, W.; Kwadzokpui, B.A.; Ekumah, J.N.; Chen, Q.S. Rapid qualitative and quantitative analysis of benzo(b)fluoranthene (BbF) in shrimp using SERS-based sensor coupled with chemometric models. Food Chem. 2024, 454, 139836. [Google Scholar] [CrossRef]
- Aheto, J.H.; Huang, X.Y.; Wang, C.Q.; Tian, X.Y.; Yi, R.; Wang, Y.N. Fabrication and evaluation of chitosan modified filter paper for chlorpyrifos detection in wheat by surface-enhanced Raman spectroscopy. J. Sci. Food Agric. 2022, 102, 7323–7330. [Google Scholar] [CrossRef]
- Xi, H.; Gu, H.; Han, Y.; You, T.; Wu, P.; Liu, Q.; Zheng, L.; Liu, S.; Fu, Q.; Chen, W.; et al. Peroxidase-like single Fe atoms anchored on Ti3C2Tx MXene as surface enhanced Raman scattering substrate for the simultaneous discrimination of multiple antioxidants. Nano Res. 2023, 16, 10053–10060. [Google Scholar] [CrossRef]
- Chen, Q.; Yao, L.; Yao, B.; Meng, X.; Wu, Q.; Chen, Z.; Chen, W. Low-cost signal enhanced colorimetric and SERS dual-mode paper sensor for rapid and ultrasensitive screening of mercury ions in tea. Food Chem. 2025, 463, 141375. [Google Scholar] [CrossRef]
- Xu, G.; Guo, N.; Zhang, Q.; Wang, T.; Song, P.; Xia, L. A sensitive surface-enhanced resonance Raman scattering sensor with bifunctional negatively charged gold nanoparticles for the determination of Cr(VI). Sci. Total Environ. 2022, 830, 154598. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, N.; Som, N.N.; Jha, P.K.; Pamidimukkala, P. Chitosan supported silver nanostructures as surface-enhanced Raman scattering sensor: Spectroscopic and density functional theory insights. Int. J. Biol. Macromol. 2023, 253, 127444. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Han, K.; Feng, Y.; Li, Z.; Zhang, A.; Wang, T.; Zhang, M.; Zhang, W. Biomimetic Ag/ZnO@PDMS Hybrid Nanorod Array-Mediated Photo-induced Enhanced Raman Spectroscopy Sensor for Quantitative and Visualized Analysis of Microplastics. ACS Appl. Mater. Interfaces 2023, 15, 36988–36998. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Li, H.; Li, Y.; Fu, X.; Du, D. A sensitive chemiluminescence immunoassay based on immunomagnetic beads for quantitative detection of zearalenone. Eur. Food Res. Technol. 2021, 247, 2171–2181. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, W.; Liu, Z.; Fu, X.; Du, D. Establishment of a Chemiluminescence Immunoassay Combined with Immunomagnetic Beads for Rapid Analysis of Ochratoxin A. J. Aoac Int. 2022, 105, 346–351. [Google Scholar] [CrossRef]
- Zhou, J.W.; Zou, X.M.; Song, S.H.; Chen, G.H. Quantum Dots Applied to Methodology on Detection of Pesticide and Veterinary Drug Residues. J. Agric. Food Chem. 2018, 66, 1307–1319. [Google Scholar] [CrossRef]
- Zeng, K.; Zhang, X.Y.; Wei, D.L.; Huang, Z.; Cheng, S.Z.; Chen, J.Q. Chemiluminescence imaging immunoassay for multiple aminoglycoside antibiotics in cow milk. Int. J. Food Sci. Technol. 2020, 55, 119–126. [Google Scholar] [CrossRef]
- Qiu, Y.L.; Li, P.; Liu, B.B.; Liu, Y.; Wang, Y.L.; Tao, T.T.; Xu, J.L.; Hammock, B.D.; Liu, X.J.; Guan, R.F.; et al. Phage-displayed nanobody based double antibody sandwich chemiluminescent immunoassay for the detection of Cry2A toxin in cereals. Food Agric. Immunol. 2019, 30, 924–936. [Google Scholar] [CrossRef]
- Chang, J.; Yu, L.; Hou, T.; Hu, R.; Li, F. Direct and Specific Detection of Glyphosate Using a Phosphatase-like Nanozyme-Mediated Chemiluminescence Strategy. Anal. Chem. 2023, 95, 4479–4485. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Wang, J.; Liu, D.; He, J.; Wang, M.; Huang, H.; Nie, G.; Ding, H.; Yan, X. Rapid and sensitive detection of Epstein-Barr virus antibodies in nasopharyngeal carcinoma by chemiluminescence strips based on iron-porphyrin single atom nanozyme. Nano Res. 2023, 17, 1827–1836. [Google Scholar] [CrossRef]
- Dong, Z.; Xia, S.; Alboull, A.M.A.; Mostafa, I.M.; Abdussalam, A.; Zhang, W.; Han, S.; Xu, G. Bimetallic CoMoO4 Nanozymes Enhanced Luminol Chemiluminescence for the Detection of Dopamine. ACS Appl. Nano Mater. 2024, 7, 2983–2991. [Google Scholar] [CrossRef]
- Martínez-Pérez-Cejuela, H.; Calabretta, M.M.; Michelini, E. Chemiluminescence “Add-and-Measure” Sensing Paper Based on the Prussian Blue/Metal–Organic Framework MIL-101 Nanozyme for Rapid Hydrogen Peroxide Detection. Anal. Chem. 2024, 96, 16561–16569. [Google Scholar] [CrossRef]
- Jia, Y.; Zhao, S.; Qu, Q.; Yang, L. Nano-channel confined biomimetic nanozyme/bioenzyme cascade reaction for long-lasting and intensive chemiluminescence. Biosens. Bioelectron. 2022, 202, 114020. [Google Scholar] [CrossRef]
- Xu, Y.; Kutsanedzie, F.Y.H.; Hassan, M.; Zhu, J.J.; Ahmad, W.; Li, H.H.; Chen, Q.S. Mesoporous silica supported orderly-spaced gold nanoparticles SERS-based sensor for pesticides detection in food. Food Chem. 2020, 315, 126300. [Google Scholar] [CrossRef]
- Guo, Z.; Gao, L.; Yin, L.; Arslan, M.; El-Seedi, H.R.; Zou, X. Novel mesoporous silica surface loaded gold nanocomposites SERS aptasensor for sensitive detection of zearalenone. Food Chem. 2023, 403, 134384. [Google Scholar] [CrossRef]
- Ma, S.; Pan, L.G.; You, T.; Wang, K. g-C3N4/Fe3O4 Nanocomposites as Adsorbents Analyzed by UPLC-MS/MS for Highly Sensitive Simultaneous Determination of 27 Mycotoxins in Maize: Aiming at Increasing Purification Efficiency and Reducing Time. J. Agric. Food Chem. 2021, 69, 4874–4882. [Google Scholar] [CrossRef]
- Liang, N.; Hu, X.; Li, W.; Wang, Y.; Guo, Z.; Huang, X.; Li, Z.; Zhang, X.; Zhang, J.; Xiao, J.; et al. A dual-signal fluorescent sensor based on MoS2 and CdTe quantum dots for tetracycline detection in milk. Food Chem. 2022, 378, 132076. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Xu, J.; Li, Y.; Zhang, L.; Bi, N.; Gou, J.; Zhu, T.; Jia, L. A novel intelligently integrated MOF-based ratio fluorescence sensor for ultra-sensitive monitoring of TC in water and food samples. Food Chem. 2023, 405, 134899. [Google Scholar] [CrossRef]
- Liang, N.; Hu, X.; Zhang, X.; Li, W.; Guo, Z.; Huang, X.; Li, Z.; Zhang, R.; Shen, T.; Zou, X.; et al. Ratiometric Sensing for Ultratrace Tetracycline Using Electrochemically Active Metal–Organic Frameworks as Response Signals. J. Agric. Food Chem. 2023, 71, 7584–7592. [Google Scholar] [CrossRef]
Characteristics | Natural Enzymes | Nanozymes |
---|---|---|
High catalytic activity | ✓ | ✓ |
High Substrate Selectivity | ✓ | × |
Good Biocompatibility | ✓ | ✓ |
Broad Biocatalytic Scope | ✓ | ✓ |
Genetic/Protein Engineering | ✓ | × |
High Cost | × | ✓ |
Limited Stability | × | ✓ |
Difficult Long-Term Storage | × | ✓ |
Recyclability | × | ✓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, R.; Liu, Z.; Chen, H.; Zhang, X.; Sun, Q.; El-Mesery, H.S.; Lu, W.; Dai, X.; Xu, R. Advances in Nanozyme Catalysis for Food Safety Detection: A Comprehensive Review on Progress and Challenges. Foods 2025, 14, 2580. https://doi.org/10.3390/foods14152580
Yang R, Liu Z, Chen H, Zhang X, Sun Q, El-Mesery HS, Lu W, Dai X, Xu R. Advances in Nanozyme Catalysis for Food Safety Detection: A Comprehensive Review on Progress and Challenges. Foods. 2025; 14(15):2580. https://doi.org/10.3390/foods14152580
Chicago/Turabian StyleYang, Renqing, Zeyan Liu, Haili Chen, Xinai Zhang, Qing Sun, Hany S. El-Mesery, Wenjie Lu, Xiaoli Dai, and Rongjin Xu. 2025. "Advances in Nanozyme Catalysis for Food Safety Detection: A Comprehensive Review on Progress and Challenges" Foods 14, no. 15: 2580. https://doi.org/10.3390/foods14152580
APA StyleYang, R., Liu, Z., Chen, H., Zhang, X., Sun, Q., El-Mesery, H. S., Lu, W., Dai, X., & Xu, R. (2025). Advances in Nanozyme Catalysis for Food Safety Detection: A Comprehensive Review on Progress and Challenges. Foods, 14(15), 2580. https://doi.org/10.3390/foods14152580