Clinical Utility of 18F-2-Fluoro-deoxy-d-glucose PET Imaging in Locally Advanced Esophageal/Gastroesophageal Junction Adenocarcinoma
Abstract
1. Introduction
2. Staging for Localized Disease
3. Prognostication
3.1. Pretreatment
3.2. Metabolic Response to Treatment
3.3. Early Response Assessment
4. Neoadjuvant Treatment Modification Based on PET-CT
Trial | Phase | Patient Population | N | Definition of PET Response | Treatment | Primary Endpoint | Other Key Findings |
---|---|---|---|---|---|---|---|
MUNICON [46] | 2 | Locally advanced GEJ adenocarcinoma | 119 | ≥35% reduction in SUVmax | All patients: induction platinum and 5-FU × 2 weeks Responders: continued platinum and 5-FU × 12 weeks, then resection Non-responders: direct to resection | mOS Responders: NR Non-responders: 25.8 months | mEFS Responders: 29.7 mos; non-responders: 14.1 mos Major histological response Responders: 58% Non-responders: 0% |
MUNICON II [47] | 2 | Locally advanced GEJ adenocarcinoma | 56 | ≥35% reduction in SUVmax | All patients: induction platinum and 5-FU × 2 weeks Responders: continued platinum and 5-FU × 12 weeks then resection Non-responders: radiation (32 Gy) and cisplatin, then resection | R0 resection rate Responders: 82% Non-responders: 70% (p = 0.51) | mOS Responders: NR Non-responders: 18.3 months Time to progression Responders: NR Non-responders: 14.4 months |
Ilson et al., 2011 [48] | 2 | Resectable SCC or adenocarcinoma of the esophagus or GEJ | 55 | ≥35% reduction in SUVmax | All patients: induction cisplatin and irinotecan weeks 1 to 5, then chemoradiotherapy weeks 7 to 11 | pCR rate Overall: 16% PET Responders: 32% PET Non-responders: 4% (p = 0.009) | R0 resection Responders: 84% Non-responders: 57% (p = 0.02) mPFS Responders: 24.1 mos; non-responders: 7.7 mos (p = 0.02) mOS Responders: 40.2 mos Non-responders: 25.5 mos (p = 0.29) |
CALGB 80803 [50] | 2 | Locally advanced esophageal or GEJ adenocarcinoma | 241 | ≥35% reduction in SUVmax | Patients randomized 1:1 to CP or FOLFOX. Responders: continued same chemotherapy with radiation Non-responders: switched to the alternative chemotherapy regimen with radiation | pCR Rate in PET Non-responders after switching chemotherapy FOLFOX → CP: 18% CP → FOLFOX: 20% | pCR rate in Responders FOLFOX: 40.3% CP: 14.1% mOS Responders: 48.8 mos: Non-responders: 27.4 mos (p = 0.107) |
AGITG DOCTOR [52] | 2 | Resectable esophageal adenocarcinoma | 124 | ≥35% reduction in SUVmax | All patients: induction cisplatin and 5-FU × 1 cycle Responders: continued received a 2nd cycle, then resection Non-responders: randomized to DCF × 2 cycles then resection, or DCFRT then resection | Major histological response * Responders: 7% Non-responders DCF: 20% Non-responders DCFRT: 63% | PFS at 36 months Responders: 47% Non-responders DCF: 29% Non-responders DCFRT: 46% OS at 60 months Responders: 53% Non-responders DCF: 31% Non-responders DCFRT: 46% |
5. Surveillance
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.; Benipal, B. Incidence of Esophageal Cancer in the United States from 2001–2015: A United States Cancer Statistics Analysis of 50 States. Cureus 2018, 10, e3709. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Abnet, C.C.; Arnold, M.; Wei, W.-Q. Epidemiology of Esophageal Squamous Cell Carcinoma. Gastroenterology 2018, 154, 360–373. [Google Scholar] [CrossRef] [PubMed]
- Rustgi, A.K.; El-Serag, H.B. Esophageal carcinoma. N. Engl. J. Med. 2014, 371, 2499–2509. [Google Scholar] [CrossRef]
- Boellaard, R.; O’doherty, M.J.; Weber, W.A.; Mottaghy, F.M.; Lonsdale, M.N.; Stroobants, S.G.; Oyen, W.J.G.; Kotzerke, J.; Hoekstra, O.S.; Pruim, J.; et al. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: Version 1.0. Eur. J. Nucl. Med. 2010, 37, 181–200. [Google Scholar] [CrossRef][Green Version]
- van Hagen, P.; Hulshof, M.C.C.M.; Van Lanschot, J.J.B.; Steyerberg, E.W.; van Berge Henegouwen, M.I.; Wijnhoven, B.P.L.; Richel, D.J.; Nieuwenhuijzen, G.A.P.; Hospers, G.A.P.; Bonenkamp, J.J.; et al. Preoperative Chemoradiotherapy for Esophageal or Junctional Cancer. N. Engl. J. Med. 2012, 366, 2074–2084. [Google Scholar] [CrossRef][Green Version]
- Kelly, R.J.; Ajani, J.A.; Kuzdzal, J.; Zander, T.; Van Cutsem, E.; Piessen, G.; Mendez, G.; Feliciano, J.; Motoyama, S.; Lièvre, A.; et al. Adjuvant Nivolumab in Resected Esophageal or Gastroesophageal Junction Cancer. N. Engl. J. Med. 2021, 384, 1191–1203. [Google Scholar] [CrossRef]
- Al-Batran, S.-E.; Homann, N.; Pauligk, C.; Goetze, T.O.; Meiler, J.; Kasper, S.; Kopp, H.-G.; Mayer, F.; Haag, G.M.; Luley, K.; et al. Perioperative chemotherapy with fluorouracil plus leucovorin, oxaliplatin, and docetaxel versus fluorouracil or capecitabine plus cisplatin and epirubicin for locally advanced, resectable gastric or gastro-oesophageal junction adenocarcinoma (FLOT4): A randomised, phase 2/3 trial. Lancet 2019, 393, 1948–1957. [Google Scholar] [CrossRef]
- Amin, M.B.; Greene, F.L.; Edge, S.B.; Compton, C.C.; Gershenwald, J.E.; Brookland, R.K.; Winchester, D.P. The eighth edition AJCC cancer staging manual: Continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA Cancer J. Clin. 2017, 67, 93–99. [Google Scholar] [CrossRef]
- Lightdale, C.J. Esophageal cancer. American College of Gastroenterology. Am. J. Gastroenterol. 1999, 94, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Marom, G. Esophageal Cancer Staging. Thorac. Surg. Clin. 2022, 32, 437–445. [Google Scholar] [CrossRef] [PubMed]
- Meyers, B.F.; Downey, R.J.; Decker, P.A.; Keenan, R.J.; Siegel, B.A.; Cerfolio, R.; Landreneau, R.J.; Reed, C.E.; Balfe, D.M.; Dehdashti, F.; et al. The utility of positron emission tomography in staging of potentially operable carcinoma of the thoracic esophagus: Results of the American College of Surgeons Oncology Group Z0060 trial. J. Thorac. Cardiovasc. Surg. 2007, 133, 738–745.e1. [Google Scholar] [CrossRef][Green Version]
- Lowe, V.J.; Booya, F.; Fletcher, J.G.; Nathan, M.; Jensen, E.; Mullan, B.; Rohren, E.; Wiersema, M.J.; Vazquez-Sequeiros, E.; Murray, J.A.; et al. Comparison of Positron Emission Tomography, Computed Tomography, and Endoscopic Ultrasound in the Initial Staging of Patients with Esophageal Cancer. Mol. Imaging Biol. 2005, 7, 422–430. [Google Scholar] [CrossRef]
- Van Vliet, E.P.M.; Heijenbrok-Kal, M.H.; Hunink, M.G.M.; Kuipers, E.J.; Siersema, P.D. Staging investigations for oesophageal cancer: A meta-analysis. Br. J. Cancer 2008, 98, 547–557. [Google Scholar] [CrossRef] [PubMed]
- You, J.J.; Wong, R.K.; Darling, G.; Gulenchyn, K.; Urbain, J.-L.; Evans, W.K. Clinical Utility of 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in the Staging of Patients with Potentially Resectable Esophageal Cancer. J. Thorac. Oncol. 2013, 8, 1563–1569. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Keswani, R.N.; Early, D.S.; Edmundowicz, S.A.; Meyers, B.F.; Sharma, A.; Govindan, R.; Chen, J.; Kohlmeier, C.; Azar, R.R. Routine positron emission tomography does not alter nodal staging in patients undergoing EUS-guided FNA for esophageal cancer. Gastrointest. Endosc. 2009, 69, 1210–1217. [Google Scholar] [CrossRef]
- van Westreenen, H.; Westerterp, M.; Bossuyt, P.; Pruim, J.; Sloof, G.; van Lanschot, J.; Groen, H.; Plukker, J. Systematic Review of the Staging Performance of 18F-Fluorodeoxyglucose Positron Emission Tomography in Esophageal Cancer. J. Clin. Oncol. 2004, 22, 3805–3812. [Google Scholar] [CrossRef]
- de Manzoni, G.; Pedrazzani, C.; Pasini, F.; Durante, E.; Gabbani, M.; Grandinetti, A.; Guglielmi, A.; Griso, C.; Cordiano, C. Pattern of recurrence after surgery in adenocarcinoma of the gastro-oesophageal junction. Eur. J. Surg. Oncol. 2003, 29, 506–510. [Google Scholar] [CrossRef]
- Rice, T.W.; Blackstone, E.H.; Rybicki, L.A.; Adelstein, D.J.; Murthy, S.C.; DeCamp, M.M.; Goldblum, J.R. Refining esophageal cancer staging. J. Thorac. Cardiovasc. Surg. 2003, 125, 1103–1113. [Google Scholar] [CrossRef][Green Version]
- Eloubeidi, M.A.; Desmond, R.; Arguedas, M.R.; Reed, C.E.; Wilcox, C.M. Prognostic factors for the survival of patients with esophageal carcinoma in the U.S. Cancer 2002, 95, 1434–1443. [Google Scholar] [CrossRef] [PubMed]
- Sihag, S.; Nobel, T.; Hsu, M.; De La Torre, S.; Tan, K.S.; Janjigian, Y.Y.; Molena, D. Survival After Trimodality Therapy in Patients with Locally Advanced Esophagogastric Adenocarcinoma: Does Only a Complete Pathologic Response Matter? Ann. Surg. 2022, 276, 1017–1022. [Google Scholar] [CrossRef] [PubMed]
- Lagarde, S.M.; Kate, F.J.W.T.; Reitsma, J.B.; Busch, O.R.C.; Van Lanschot, J.J.B. Prognostic Factors in Adenocarcinoma of the Esophagus or Gastroesophageal Junction. J. Clin. Oncol. 2006, 24, 4347–4355. [Google Scholar] [CrossRef] [PubMed]
- Fukunaga, T.; Okazumi, S.; Koide, Y.; Isono, K.; Imazeki, K. Evaluation of esophageal cancers using fluorine-18-fluorodeoxyglucose PET. J. Nucl. Med. 1998, 39, 1002. [Google Scholar] [PubMed]
- NCCN. Esophageal and Esophagogastric Junction Cancers; Version 5; NCCN: Plymouth Meeting, PA, USA, 2022. [Google Scholar]
- Im, H.J.; Bradshaw, T.; Solaiyappan, M.; Cho, S.Y. Current Methods to Define Metabolic Tumor Volume in Positron Emission Tomography: Which One is Better? Nucl. Med. Mol. Imaging 2018, 52, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Gu, P.; Huang, G.; Xue, H.; Wu, S. Prognostic significance of SUV on PET/CT in patients with esophageal cancer: A systematic review and meta-analysis. Eur. J. Gastroenterol. Hepatol. 2009, 21, 1008–1015. [Google Scholar] [CrossRef] [PubMed]
- Bütof, R.; Hofheinz, F.; Zöphel, K.; Stadelmann, T.; Schmollack, J.; Jentsch, C.; Löck, S.; Kotzerke, J.; Baumann, M.; Hoff, J.V.D. Prognostic Value of Pretherapeutic Tumor-to-Blood Standardized Uptake Ratio in Patients with Esophageal Carcinoma. J. Nucl. Med. 2015, 56, 1150–1156. [Google Scholar] [CrossRef][Green Version]
- Shenfine, J.; Barbour, A.P.; Wong, D.; Thomas, J.; Martin, I.; Gotley, D.C.; Smithers, B.M. Prognostic value of maximum standardized uptake values from preoperative positron emission tomography in resectable adenocarcinoma of the esophagus treated by surgery alone. Dis. Esophagus 2009, 22, 668–675. [Google Scholar] [CrossRef]
- Mantziari, S.; Pomoni, A.; Prior, J.O.; Winiker, M.; Allemann, P.; Demartines, N.; Schäfer, M. 18F- FDG PET/CT-derived parameters predict clinical stage and prognosis of esophageal cancer. BMC Med. Imaging 2020, 20, 7. [Google Scholar] [CrossRef][Green Version]
- Tustumi, F.; Duarte, P.S.; Albenda, D.G.; Takeda, F.R.; Sallum, R.A.A.; Junior, U.R.; Buchpiguel, C.A.; Cecconello, I. Prognostic value of 18F-fluorodeoxyglucose PET/computed tomography metabolic parameters measured in the primary tumor and suspicious lymph nodes before neoadjuvant therapy in patients with esophageal carcinoma. Nucl. Med. Commun. 2021, 42, 437–443. [Google Scholar] [CrossRef]
- Malik, V.; Johnston, C.; O’Toole, D.; Lucey, J.; O’Farrell, N.; Claxton, Z.; Reynolds, J.V. Metabolic tumor volume provides complementary prognostic information to EUS staging in esophageal and junctional cancer. Dis. Esophagus 2017, 30, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Hatt, M.; Visvikis, D.; Albarghach, N.M.; Tixier, F.; Pradier, O.; Rest, C.C.-L. Prognostic value of 18F-FDG PET image-based parameters in oesophageal cancer and impact of tumour delineation methodology. Eur. J. Nucl. Med. 2011, 38, 1191–1202. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Han, S.; Kim, Y.J.; Woo, S.; Suh, C.H.; Lee, J.J. Prognostic Value of Volumetric Parameters of Pretreatment 18F-FDG PET/CT in Esophageal Cancer: A Systematic Review and Meta-analysis. Clin. Nucl. Med. 2018, 43, 887–894. [Google Scholar] [CrossRef] [PubMed]
- Hatt, M.; Visvikis, D.; Pradier, O.; Rest, C.C.-L. Baseline 18F-FDG PET image-derived parameters for therapy response prediction in oesophageal cancer. Eur. J. Nucl. Med. 2011, 38, 1595–1606. [Google Scholar] [CrossRef][Green Version]
- Eyck, B.M.; Onstenk, B.D.; Noordman, B.J.; Nieboer, D.; Spaander, M.C.; Valkema, R.; van Lanschot, J.J.B. Accuracy of Detecting Residual Disease After Neoadjuvant Chemoradiotherapy for Esophageal Cancer: A Systematic Review and Meta-analysis. Ann. Surg. 2020, 271, 245–256. [Google Scholar] [CrossRef]
- Beseth, B.D.; Bedford, R.; Isacoff, W.H.; Holmes, E.C.; Cameron, R.B. Endoscopic Ultrasound Does Not Accurately Assess Pathologic Stage of Esophageal Cancer after Neoadjuvant Chemoradiotherapy. Am. Surg. 2000, 66, 827–831. [Google Scholar] [CrossRef]
- Jones, D.R.; Parker Jr, L.A.; Detterbeck, F.C.; Egan, T.M. Inadequacy of computed tomography in assessing patients with esophageal carcinoma after induction chemoradiotherapy. Cancer 1999, 85, 1026–1032. [Google Scholar] [CrossRef]
- Swisher, S.G.; Maish, M.; Erasmus, J.J.; Correa, A.M.; Ajani, J.A.; Bresalier, R.; Komaki, R.; Macapinlac, H.; Munden, R.F.; Putnam, J.B.; et al. Utility of PET, CT, and EUS to Identify Pathologic Responders in Esophageal Cancer. Ann. Thorac. Surg. 2004, 78, 1152–1160. [Google Scholar] [CrossRef]
- Swisher, S.G.; Erasmus, J.; Maish, M.; Correa, A.M.; Macapinlac, H.; Ajani, J.A.; Cox, J.D.; Komaki, R.R.; Hong, D.; Lee, H.K.; et al. 2-Fluoro-2-deoxy-D-glucose positron emission tomography imaging is predictive of pathologic response and survival after preoperative chemoradiation in patients with esophageal carcinoma. Cancer 2004, 101, 1776–1785. [Google Scholar] [CrossRef]
- Roedl, J.B.; Colen, R.R.; Holalkere, N.S.; Fischman, A.J.; Choi, N.C.; Blake, M.A. Adenocarcinomas of the esophagus: Response to chemoradiotherapy is associated with decrease of metabolic tumor volume as measured on PET–CT: Comparison to histopathologic and clinical response evaluation. Radiother. Oncol. 2008, 89, 278–286. [Google Scholar] [CrossRef]
- Kelsen, D.P.; Ginsberg, R.; Pajak, T.F.; Sheahan, D.G.; Gunderson, L.; Mortimer, J.; Estes, N.; Haller, D.G.; Ajani, J.; Kocha, W.; et al. Chemotherapy Followed by Surgery Compared with Surgery Alone for Localized Esophageal Cancer. N. Engl. J. Med. 1998, 339, 1979–1984. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Weber, W.A.; Ott, K.; Becker, K.; Dittler, H.-J.; Helmberger, H.; Avril, N.E.; Meisetschläger, G.; Busch, R.; Siewert, J.-R.; Schwaiger, M.; et al. Prediction of Response to Preoperative Chemotherapy in Adenocarcinomas of the Esophagogastric Junction by Metabolic Imaging. J. Clin. Oncol. 2001, 19, 3058–3065. [Google Scholar] [CrossRef] [PubMed]
- Ott, K.; Weber, W.A.; Lordick, F.; Becker, K.; Busch, R.; Herrmann, K.; Wieder, H.; Fink, U.; Schwaiger, M.; Siewert, J.-R. Metabolic Imaging Predicts Response, Survival, and Recurrence in Adenocarcinomas of the Esophagogastric Junction. J. Clin. Oncol. 2006, 24, 4692–4698. [Google Scholar] [CrossRef] [PubMed]
- Harada, K.; Wang, X.; Shimodaira, Y.; Sagebiel, T.; Bhutani, M.S.; Lee, J.H.; Weston, B.; Elimova, E.; Lin, Q.; Amlashi, F.G.; et al. Early Metabolic Change after Induction Chemotherapy Predicts Histologic Response and Prognosis in Patients with Esophageal Cancer: Secondary Analysis of a Randomized Trial. Target. Oncol. 2018, 13, 99–106. [Google Scholar] [CrossRef]
- Lordick, F.; Ott, K.; Krause, B.-J.; Weber, W.A.; Becker, K.; Stein, H.J.; Lorenzen, S.; Schuster, T.; Wieder, H.; Herrmann, K.; et al. PET to assess early metabolic response and to guide treatment of adenocarcinoma of the oesophagogastric junction: The MUNICON phase II trial. Lancet Oncol. 2007, 8, 797–805. [Google Scholar] [CrossRef]
- Büschenfelde, C.M.Z.; Herrmann, K.; Schuster, T.; Geinitz, H.; Langer, R.; Becker, K.; Ott, K.; Ebert, M.; Zimmermann, F.; Friess, H.; et al. 18F-FDG PET–Guided Salvage Neoadjuvant Radiochemotherapy of Adenocarcinoma of the Esophagogastric Junction: The MUNICON II Trial. J. Nucl. Med. 2011, 52, 1189–1196. [Google Scholar] [CrossRef][Green Version]
- Ilson, D.H.; Minsky, B.D.; Ku, G.Y.; Rusch, V.; Rizk, N.; Shah, M.; Kelsen, D.P.; Capanu, M.; Tang, L.; Campbell, J.; et al. Phase 2 trial of induction and concurrent chemoradiotherapy with weekly irinotecan and cisplatin followed by surgery for esophageal cancer. Cancer 2012, 118, 2820–2827. [Google Scholar] [CrossRef]
- Ku, G.Y.; Kriplani, A.; Janjigian, Y.Y.; Kelsen, D.P.; Rusch, V.W.; Bains, M.; Chou, J.; Capanu, M.; Wu, A.J.; Goodman, K.A.; et al. Change in chemotherapy during concurrent radiation followed by surgery after a suboptimal positron emission tomography response to induction chemotherapy improves outcomes for locally advanced esophageal adenocarcinoma. Cancer 2016, 122, 2083–2090. [Google Scholar] [CrossRef][Green Version]
- Goodman, K.A.; Ou, F.-S.; Hall, N.C.; Bekaii-Saab, T.; Fruth, B.; Twohy, E.; Meyers, M.O.; Boffa, D.J.; Mitchell, K.; Frankel, W.L.; et al. Randomized Phase II Study of PET Response–Adapted Combined Modality Therapy for Esophageal Cancer: Mature Results of the CALGB 80803 (Alliance) Trial. J. Clin. Oncol. 2021, 39, 2803–2815. [Google Scholar] [CrossRef]
- Carr, R.A.; Hsu, M.M.; Harrington, C.A.; Tan, K.S.; Bains, M.S.; Bott, M.J.; Ilson, D.H.; Isbell, J.M.; Janjigian, Y.Y.; Maron, S.B.M.; et al. Induction FOLFOX and PET-Directed Chemoradiation for Locally Advanced Esophageal Adenocarcinoma. Ann. Surg. 2021, 277, e538–e544. [Google Scholar] [CrossRef]
- Barbour, A.; Walpole, E.; Mai, G.; Barnes, E.; Watson, D.; Ackland, S.; Martin, J.; Burge, M.; Finch, R.; Karapetis, C.; et al. Preoperative cisplatin, fluorouracil, and docetaxel with or without radiotherapy after poor early response to cisplatin and fluorouracil for resectable oesophageal adenocarcinoma (AGITG DOCTOR): Results from a multicentre, randomised controlled phase II trial. Ann. Oncol. 2020, 31, 236–245. [Google Scholar] [CrossRef] [PubMed]
- Mariette, C.; Balon, J.M.; Piessen, G.; Fabre, S.; Van Seuningen, I.; Triboulet, J.P. Pattern of recurrence following complete resection of esophageal carcinoma and factors predictive of recurrent disease. Cancer Interdiscip. Int. J. Am. Cancer Soc. 2003, 97, 1616–1623. [Google Scholar] [CrossRef] [PubMed]
- Abate, E.; DeMeester, S.R.; Zehetner, J.; Oezcelik, A.; Ayazi, S.; Costales, J.; Banki, F.; Lipham, J.C.; Hagen, J.A.; DeMeester, T.R. Recurrence after Esophagectomy for Adenocarcinoma: Defining Optimal Follow-Up Intervals and Testing. J. Am. Coll. Surg. 2010, 210, 428–435. [Google Scholar] [CrossRef]
- Lou, F.; Sima, C.S.; Adusumilli, P.S.; Bains, M.S.; Sarkaria, I.S.; Rusch, V.W.; Rizk, N.P. Esophageal Cancer Recurrence Patterns and Implications for Surveillance. J. Thorac. Oncol. 2013, 8, 1558–1562. [Google Scholar] [CrossRef][Green Version]
- Chidambaram, S.; Sounderajah, V.; Maynard, N.; Markar, S.R. Evaluation of post-operative surveillance strategies for esophageal and gastric cancers: A systematic review and meta-analysis. Dis. Esophagus 2022, 35, doac034. [Google Scholar] [CrossRef] [PubMed]
- Goense, L.; van Rossum, P.S.; Reitsma, J.B.; Lam, M.G.; Meijer, G.J.; van Vulpen, M.; Ruurda, J.P.; van Hillegersberg, R. Diagnostic Performance of 18F-FDG PET and PET/CT for the Detection of Recurrent Esophageal Cancer After Treatment with Curative Intent: A Systematic Review and Meta-Analysis. J. Nucl. Med. 2015, 56, 995–1002. [Google Scholar] [CrossRef] [PubMed][Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cowzer, D.; Keane, F.; Ku, G.Y. Clinical Utility of 18F-2-Fluoro-deoxy-d-glucose PET Imaging in Locally Advanced Esophageal/Gastroesophageal Junction Adenocarcinoma. Diagnostics 2023, 13, 1884. https://doi.org/10.3390/diagnostics13111884
Cowzer D, Keane F, Ku GY. Clinical Utility of 18F-2-Fluoro-deoxy-d-glucose PET Imaging in Locally Advanced Esophageal/Gastroesophageal Junction Adenocarcinoma. Diagnostics. 2023; 13(11):1884. https://doi.org/10.3390/diagnostics13111884
Chicago/Turabian StyleCowzer, Darren, Fergus Keane, and Geoffrey Y. Ku. 2023. "Clinical Utility of 18F-2-Fluoro-deoxy-d-glucose PET Imaging in Locally Advanced Esophageal/Gastroesophageal Junction Adenocarcinoma" Diagnostics 13, no. 11: 1884. https://doi.org/10.3390/diagnostics13111884
APA StyleCowzer, D., Keane, F., & Ku, G. Y. (2023). Clinical Utility of 18F-2-Fluoro-deoxy-d-glucose PET Imaging in Locally Advanced Esophageal/Gastroesophageal Junction Adenocarcinoma. Diagnostics, 13(11), 1884. https://doi.org/10.3390/diagnostics13111884