Natural Killer Cell and Extracellular Vesicle-Based Immunotherapy in Thyroid Cancer: Advances, Challenges, and Future Perspectives
Abstract
1. Introduction
2. NK Cell Biology and Their Role in Thyroid Cancer
3. Advances in NK Cell-Based Immunotherapy for Thyroid Cancer
3.1. NK Cell Expansion and Activation Strategies
3.2. Genetically Engineered NK Cells
3.3. Combination Therapies
3.4. Adoptive NK Cell Therapy and Clinical Trials
Study | NK Cell Type/Approach | Study Type/Model | Key Findings | Relevance to Thyroid Cancer | Ref |
---|---|---|---|---|---|
Activated NK cells | Ex vivo–activated autologous NK cells | Preclinical (in vitro ATC cells, murine xenograft model) | NK cells lysed ATC cells expressing high NKG2D ligands; reduced tumor proliferation | Demonstrates cytotoxic efficiency of activated NK cells against ATC | [60] |
CIML NK Cells | IL-12, IL-15, and IL-18 pre-activated NK cells | Early-phase clinical trials (hematologic malignancies); expansion into solid tumors ongoing | Enhanced persistence, cytokine secretion, and cytotoxicity | Being explored in thyroid malignancies as next-generation NK therapy | [24] |
UCB-derived NK cells | Allogeneic NK cells derived from umbilical cord blood | Clinical Trial, Phase I (NCT04319768) | Demonstrated safety and early anti-tumor activity | Safe, off-the-shelf product being tested in solid tumors, including thyroid carcinoma | [61] |
Anti-CD70 CAR-NK cells | Genetically engineered NK cells targeting CD70 | Preclinical (in vitro ATC cells, mouse xenograft model) | Effective tumor cell lysis under immunosuppressive conditions; low CRS/neurotoxicity risk | Promising preclinical candidate for ATC treatment | [59] |
Lenvatinib + NK cell | Combination of targeted therapy and adoptive NK cells | Clinical Trial, Phase I/II (NCT05036016) | Evaluating synergy and immune modulation in RAI-R DTC and ATC | Ongoing trial combining NK therapy with standard-of-care TKI | [62] |
4. NK Cell-Derived Extracellular Vesicles
5. Challenges and Limitations
6. Future Perspectives and Emerging Strategies
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Shank, J.B.; Are, C.; Wenos, C.D. Thyroid Cancer: Global Burden and Trends. Indian. J. Surg. Oncol. 2022, 13, 40–45. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Forma, A.; Kłodnicka, K.; Pająk, W.; Flieger, J.; Teresińska, B.; Januszewski, J.; Baj, J. Thyroid Cancer: Epidemiology, Classification, Risk Factors, Diagnostic and Prognostic Markers, and Current Treatment Strategies. Int. J. Mol. Sci. 2025, 26, 5173. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.M.; Ahn, B.C. Molecular mechanisms of radioactive iodine refractoriness in differentiated thyroid cancer: Impaired sodium iodide symporter (NIS) expression owing to altered signaling pathway activity and intracellular localization of NIS. Theranostics 2021, 11, 6251–6277. [Google Scholar] [CrossRef] [PubMed]
- Valerio, L.; Pieruzzi, L.; Giani, C.; Agate, L.; Bottici, V.; Lorusso, L.; Cappagli, V.; Puleo, L.; Matrone, A.; Viola, D.; et al. Targeted therapy in thyroid cancer: State of the art. Clin. Oncol. 2017, 29, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Gangadaran, P.; Rajendran, R.L.; Ahn, B.C. Application of in vivo imaging techniques for monitoring natural killer cell migration and tumor infiltration. Cancers 2020, 12, 1318. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Li, X.J.; Kalimuthu, S.; Gangadaran, P.; Lee, H.W.; Oh, J.M.; Baek, S.H.; Jeong, S.Y.; Lee, S.-W.; Lee, J.; et al. Natural killer cell (NK-92MI)-based therapy for pulmonary metastasis of anaplastic thyroid cancer in a nude mouse model. Front. Immunol. 2017, 8, 816. [Google Scholar] [CrossRef] [PubMed]
- Vivier, E.; Raulet, D.H.; Moretta, A.; Caligiuri, M.A.; Zitvogel, L.; Lanier, L.L.; Yokoyama, W.M.; Ugolini, S. Innate or adaptive immunity? The example of natural killer cells. Science 2011, 331, 44–49. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jin, Z.; Han, Y.; Zhang, J.; Liu, Z.; Li, R.; Liu, Z. Prognosis and therapy in thyroid cancer by gene signatures related to natural killer cells. J. Gene Med. 2024, 26, e3657. [Google Scholar] [CrossRef] [PubMed]
- Daher, M.; Rezvani, K. Next generation natural killer cells for cancer immunotherapy: The promise of genetic engineering. Curr. Opin. Immunol. 2018, 51, 146–153. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhou, J.; Zhang, C.; Mao, W.; Zhu, Y.; Zhao, H.; Han, R.; Peng, Y.; Pan, G.; Fang, Y. Development of TSHR-CAR NK-92 cells for Differentiated Thyroid Cancer. Mol. Cell Endocrinol. 2024, 589, 112251. [Google Scholar] [CrossRef] [PubMed]
- Vivier, E.; Tomasello, E.; Baratin, M.; Walzer, T.; Ugolini, S. Functions of natural killer cells. Nat. Immunol. 2008, 9, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.R.; Dou, L.Y.; Sui, L.H.; Xue, Y.; Xu, S. Natural killer cells in cancer immunotherapy. MedComm 2024, 5, e334. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yin, H.; Tang, Y.; Guo, Y.; Wen, S. Immune microenvironment of thyroid cancer. J. Cancer 2020, 11, 4884–4896. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Park, A.; Lee, Y.; Kim, M.S.; Kang, Y.J.; Park, Y.-J.; Jung, H.; Kim, T.-D.; Lee, H.G.; Choi, I.; Yoon, S.R. Prostaglandin E2 secreted by thyroid cancer cells contributes to immune escape through the suppression of natural killer (NK) cell cytotoxicity and NK cell differentiation. Front. Immunol. 2018, 9, 1859. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Patterson, C.; Hazime, K.S.; Zelenay, S.; Davis, D.M. Prostaglandin E2 impacts multiple stages of the natural killer cell antitumor immune response. Eur. J. Immunol. 2024, 54, e2350635. [Google Scholar] [CrossRef] [PubMed]
- Moretti, S.; Menicali, E.; Voce, P.; Morelli, S.; Cantarelli, S.; Sponziello, M.; Colella, R.; Fallarino, F.; Orabona, C.; Alunno, A.; et al. Indoleamine 2,3-Dioxygenase 1 (IDO1) is up-regulated in thyroid carcinoma and drives the development of an immunosuppressant tumor microenvironment. J. Clin. Endocrinol. Metab. 2014, 99, E832–E840. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Sun, R.; Wei, T. Immune microenvironment in papillary thyroid carcinoma: Roles of immune cells and checkpoints in disease progression and therapeutic implications. Front. Immunol. 2024, 15, 1438235. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gunda, V.; Gigliotti, B.; Ndishabandi, D.; Ashry, T.; McCarthy, M.; Zhou, Z.; Amin, S.; Freeman, G.J.; Alessandrini, A.; Parangi, S. Combinations of BRAF inhibitor and anti-PD-1/PD-L1 antibody improve survival and tumour immunity in an immunocompetent model of orthotopic murine anaplastic thyroid cancer. Br. J. Cancer 2018, 119, 1223–1232. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jin, J.O.; Han, X.; Yu, Q. Interleukin-6 induces the generation of IL-10-producing Tr1 cells and suppresses autoimmune tissue inflammation. J. Autoimmun. 2013, 40, 28–44. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nakazawa, T.; Nagasaka, T.; Yoshida, K.; Hasegawa, A.; Guo, F.; Wu, D.; Hiroshima, K.; Katoh, R. Expression of T-cell immunoreceptor with immunoglobulin and tyrosine-based inhibitory motif domains (TIGIT) in anaplastic thyroid carcinoma. BMC Endocr. Disord. 2022, 22, 1–10. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sukari, A.; Kukreja, G.; Nagasaka, M.; Shukairy, M.K.; Yoo, G.; Lin, H.-S.; Hotaling, J.; Kim, H. The role of immune checkpoint inhibitors in anaplastic thyroid cancer (Case Series). Oral. Oncol. 2020, 109, 104912. [Google Scholar] [CrossRef] [PubMed]
- Cho, D.; Campana, D. Expansion and activation of natural killer cells for cancer immunotherapy. Korean J. Lab. Med. 2009, 29, 89–96. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Romee, R.; Rosario, M.; Berrien-Elliott, M.M.; Wagner, J.A.; Jewell, B.A.; Schappe, T.; Leong, J.W.; Abdel-Latif, S.; Schneider, S.E.; Willey, S.; et al. Cytokine-induced memory-like natural killer cells exhibit enhanced responses against myeloid leukemia. Sci. Transl. Med. 2016, 8, 357ra123. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gurney, M.; Kundu, S.; Pandey, S.; O’Dwyer, M. Feeder Cells at the Interface of Natural Killer Cell Activation, Expansion and Gene Editing. Front. Immunol. 2022, 13, 802906. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shah, N.; Li, L.; McCarty, J.; Kaur, I.; Yvon, E.; Shaim, H.; Muftuoglu, M.; Liu, E.; Orlowski, R.Z.; Cooper, L.; et al. Phase I study of cord blood-derived natural killer cells combined with autologous stem cell transplantation in multiple myeloma. Br. J. Haematol. 2017, 177, 457–466. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Thongsin, N.; Wattanapanitch, M. A three-dimensional immune-oncology model for studying in vitro primary human NK cell cytotoxic activity. PLoS ONE 2022, 17, e0264366. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bröker, K.; Sinelnikov, E.; Gustavus, D.; Schumacher, U.; Pörtner, R.; Hoffmeister, H.; Lüth, S.; Dammermann, W. Mass production of highly active NK cells for cancer immunotherapy in a GMP conform perfusion bioreactor. Front. Bioeng. Biotechnol. 2019, 7, 274. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wen, W.; Chen, X.; Shen, X.-Y.; Li, H.-Y.; Zhang, F.; Fang, F.-Q.; Zhang, X.-B. Enhancing cord blood stem cell-derived NK cell growth and differentiation through hyperosmosis. Stem Cell Res. Ther. 2023, 14, 401. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Peng, L.; Sferruzza, G.; Yang, L.; Zhou, L.; Chen, S. CAR-T and CAR-NK as cellular cancer immunotherapy for solid tumors. Cell Mol. Immunol. 2024, 21, 1089–1108. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schiff, B.A.; McMurphy, A.B.; Jasser, S.A.; Younes, M.N.; Doan, D.; Yigitbasi, O.G.; Kim, S.; Zhou, G.; Mandal, M.; Bekele, B.N.; et al. EGFR is overexpressed in anaplastic thyroid cancer, and gefitinib inhibits its growth. Clin. Cancer Res. 2004, 10, 8594–8602. [Google Scholar] [CrossRef] [PubMed]
- Xie, G.; Dong, H.; Liang, Y.; Ham, J.D.; Rizwan, R.; Chen, J. CAR-NK cells: A promising cellular immunotherapy for cancer. eBioMedicine 2020, 59, 102975. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shobab, L.; Al-Souri, D.; Mathews-Kim, L.; McCoy, M.; Kuenstner, W.; Hubbard, G.K.; Kumari, S.; Chou, J.; Lee, W.; Rosen, J.; et al. PD-L1 expression varies in thyroid cancer types and is associated with decreased progression-free survival in anaplastic thyroid cancer. Cancers 2024, 16, 3632. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Silvestre, R.N.; Eitler, J.; de Azevedo, J.T.C.; Tirapelle, M.C.; Fantacini, D.M.C.; de Souza, L.E.B.; Swiech, K.; Covas, D.T.; Calado, R.T.; Montero, P.O.; et al. Engineering NK-CAR.19 cells with IL-15/IL-15Rα complex improves proliferation and anti-tumor effect in vivo. Front. Immunol. 2023, 14, 1226518. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- de Rham, C.; Ferrari-Lacraz, S.; Jendly, S.; Schneiter, G.; Dayer, J.M.; Villard, J. IL-2, IL-15, and IL-21 modulate the repertoire of mature human NK cell receptors. Arthritis Res. Ther. 2007, 9, R125. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fuziwara, C.S.; de Mello, D.C.; Kimura, E.T. Gene editing with CRISPR/Cas and thyroid cancer: Where are we? Cancers 2022, 14, 844. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Maskalenko, N.A.; Zahroun, S.; Tsygankova, O.; Anikeeva, N.; Sykulev, Y.; Campbell, K.S. FcγRIIIA (CD16) L48-H/R polymorphism enhances NK cell-mediated ADCC via serial killing. Cancer Immunol. Res. 2025, 13, 417–429. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Boissel, L.; Klingemann, H.; Campbell, K.; Nichols, K.; Toneguzzo, F.; Marcus, P.; Williams, B.; Keating, A.; Soon-Shiong, P. Abstract 2302: An ‘off the shelf,’ GMP-grade, IL-2-independent NK cell line expressing the high-affinity Fc-receptor to augment antibody therapeutics. Cancer Res. 2016, 76 (Suppl. S14). [Google Scholar] [CrossRef]
- Gil, M.S.R.; Pozas, J.; Molina-Cerrillo, J.; Gómez, J.; Pian, H.; Pozas, M.; Carrato, A.; Grande, E.; Alonso-Gordoa, T. Current and future role of tyrosine kinases inhibition in thyroid cancer: From biology to therapy. Int. J. Mol. Sci. 2020, 21, 4951. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.; Iwai, H.; Utsunomiya, K.; Kono, Y.; Kobayashi, Y.; Van Bui, D.; Sawada, S.; Yun, Y.; Mitani, A.; Kondo, N.; et al. Combination therapy with lenvatinib and radiation significantly inhibits thyroid cancer growth by uptake of tyrosine kinase inhibitor. Exp. Cell Res. 2021, 398, 112390. [Google Scholar] [CrossRef] [PubMed]
- Crespo-Rodriguez, E.; Bergerhoff, K.; Bozhanova, G.; Foo, S.; Patin, E.C.; Whittock, H.; Buus, R.; Haider, S.; Muirhead, G.; Thway, K.; et al. Combining BRAF inhibition with oncolytic herpes simplex virus enhances the immune-mediated antitumor therapy of BRAF-mutant thyroid cancer. J. Immunother. Cancer 2020, 8, e000698. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pinette, A.; McMichael, E.; Courtney, N.B.; Duggan, M.; Benner, B.N.; Choueiry, F.; Yu, L.; Abood, D.; Mace, T.A.; Carson, W.E., 3rd; et al. An IL-15-based superagonist ALT-803 enhances the NK cell response to cetuximab-treated squamous cell carcinoma of the head and neck. Cancer Immunol. Immunother. 2019, 68, 1379–1389. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rau, A.; Lieb, W.S.; Seifert, O.; Honer, J.; Birnstock, D.; Richter, F.; Aschmoneit, N.; Olayioye, M.A.; Kontermann, R.E. Inhibition of Tumor Cell Growth and Cancer Stem Cell Expansion by a Bispecific Antibody Targeting EGFR and HER3. Mol. Cancer Ther. 2020, 19, 1474–1485. [Google Scholar] [CrossRef] [PubMed]
- Gallardo-Zapata, J.; Pérez-Figueroa, E.; Olivar-López, V.; Medina-Sansón, A.; Jiménez-Hernández, E.; Ortega, E.; Maldonado-Bernal, C. TLR Agonists Modify NK Cell Activation and Increase Its Cytotoxicity in Acute Lymphoblastic Leukemia. Int. J. Mol. Sci. 2024, 25, 7500. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hegedűs, L.; Rittler, D.; Garay, T.; Stockhammer, P.; Kovács, I.; Döme, B.; Theurer, S.; Hager, T.; Herold, T.; Kalbourtzis, S.; et al. HDAC inhibition induces PD-L1 expression in a novel anaplastic thyroid cancer cell line. Pathol. Oncol. Res. 2020, 26, 2523–2535. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Seel, K.; Schirrmann, R.L.; Stowitschek, D.; Ioseliani, T.; Roiter, L.; Knierim, A.; André, M.C. Blockade of the TIGIT-CD155/CD112 axis enhances functionality of NK-92 but not cytokine-induced memory-like NK cells toward CD155-expressing acute myeloid leukemia. Cancer Immunol. Immunother. 2024, 73, 180. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Liu, K.; Ghosh, C.; Khaket, T.P.; Shih, H.; Kebebew, E. Anaplastic thyroid cancer spheroids as preclinical models to test therapeutics. J. Exp. Clin. Cancer Res. 2024, 43, 85. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, Q.; Bi, J.; Zheng, X.; Chen, Y.; Wang, H.; Wu, W.; Wang, Z.; Wu, Q.; Peng, H.; Wei, H.; et al. Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent anti-tumor immunity. Nat. Immunol. 2018, 19, 723–732. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Fan, L.; Huang, W.; Chen, P.; Liu, Y.; Wang, S.; Guo, K.; Cheng, Y.; Han, Y. Harnessing NKG2D CAR-T cells with radiotherapy: A novel approach for esophageal squamous cell carcinoma treatment. Front. Immunol. 2025, 16, 1589379. [Google Scholar] [CrossRef] [PubMed]
- Wennerberg, E.; Pfefferle, A.; Ekblad, L.; Yoshimoto, Y.; Kremer, V.; Kaminskyy, V.O.; Juhlin, C.C.; Höög, A.; Bodin, I.; Svjatoha, V.; et al. Human anaplastic thyroid carcinoma cells are sensitive to NK cell-mediated lysis via ULBP2/5/6 and chemoattract NK cells. Clin. Cancer Res. 2014, 20, 5733–5744. [Google Scholar] [CrossRef] [PubMed]
- Le Bert, N.; Gasser, S. Advances in NKG2D ligand recognition and responses by NK cells. Immunol. Cell Biol. 2014, 92, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Tahara, M.; Kiyota, N.; Yamazaki, T.; Chayahara, N.; Nakano, K.; Inagaki, L.; Toda, K.; Enokida, T.; Minami, H.; Imamura, Y.; et al. Lenvatinib for anaplastic thyroid cancer. Front. Oncol. 2017, 7, 25. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schwager, K.; Hemmerle, T.; Aebischer, D.; Neri, D. The immunocytokine L19-IL2 eradicates cancer when used in combination with CTLA-4 blockade or with L19-TNF. J. Invest. Dermatol. 2013, 133, 751–758. [Google Scholar] [CrossRef] [PubMed]
- Santollani, L.; Zhang, Y.J.; Maiorino, L.; Palmeri, J.R.; Stinson, J.A.; Duhamel, L.R.; Qureshi, K.; Suggs, J.R.; Porth, O.T.; Pinney, W., 3rd; et al. Local delivery of cell surface-targeted immunocytokines programs systemic anti-tumor immunity. bioRxiv 2024, 25, 1820–1829. [Google Scholar] [CrossRef]
- Zhang, C.; Kadu, S.; Xiao, Y.; Johnson, O.; Kelly, A.; O’Connor, R.S.; Lai, M.; Kong, H.; Srivasta, S.; Tai, V.; et al. Sequential exposure to IL21 and IL15 during human natural killer cell expansion optimizes yield and function. Cancer Immunol. Res. 2023, 11, 1524–1537. [Google Scholar] [CrossRef] [PubMed]
- Liu, E.; Marin, D.; Banerjee, P.; Macapinlac, H.A.; Thompson, P.; Basar, R.; Lai, M.; Kong, H.; Srivatsa, S.; Tai, V.; et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N. Engl. J. Med. 2020, 382, 545–553. [Google Scholar] [CrossRef] [PubMed]
- Assi, T.; Tikriti, Z.; Shayya, A.; Ibrahim, R. Targeting RET mutation in medullary thyroid cancer. Pharmacogenomics 2024, 25, 113–115. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Cai, L.; Hu, Y.; Wang, H. Cord-blood natural killer cell-based immunotherapy for cancer. Front. Immunol. 2020, 11, 584099. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, Y.; He, X.; Mo, Z.; Zhao, M.; Liang, X.; Hu, K.; Wang, K.; Yue, Y.; Mo, G.; et al. CD70-targeted iPSC-derived CAR-NK cells display potent function against tumors and alloreactive T cells. Cell Rep. Med. 2025, 6, 101889. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Kalimuthu, S.; Oh, J.M.; Gangadaran, P.; Baek, S.H.; Jeong, S.Y.; Lee, S.-W.; Lee, J.; Ahn, B.-C. Enhancement of antitumor potency of extracellular vesicles derived from natural killer cells by IL-15 priming. Biomaterials 2019, 190–191, 38–50. [Google Scholar] [CrossRef] [PubMed]
- Morcillo-Martín-Romo, P.; Valverde-Pozo, J.; Ortiz-Bueno, M.; Arnone, M.; Espinar-Barranco, L.; Espinar-Barranco, C.; García-Rubiño, M.E. Role of NK cells in cancer immunotherapy: Mechanisms and therapeutic advances. Biomedicines 2025, 13, 857. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, Q.; Liu, H.; Wang, H.; Lu, M.; Miao, Y.; Ding, J.; Li, H.; Gao, X.; Sun, S.; Zheng, J. Lenvatinib promotes antitumor immunity by enhancing the tumor infiltration and activation of NK cells. Am. J. Cancer Res. 2019, 9, 1382–1395. [Google Scholar] [PubMed]
- Wu, F.; Xie, M.; Hun, M.; She, Z.; Li, C.; Luo, S.; Chen, X.; Wan, W.; Wen, C.; Tian, J. Natural Killer Cell-Derived Extracellular Vesicles: Novel Players in Cancer Immunotherapy. Front. Immunol. 2021, 12, 658698. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhu, L.; Ahn, B.C. Natural Killer Cell-Derived Exosome Mimetics as Natural Nanocarriers for In Vitro Delivery of Chemotherapeutics to Thyroid Cancer Cells. Exp. Oncol. 2024, 46, 358–367. [Google Scholar] [CrossRef] [PubMed]
- Lugini, L.; Cecchetti, S.; Huber, V.; Luciani, F.; Macchia, G.; Spadaro, F.; Paris, L.; Abalsamo, L.; Colone, M.; Molinari, A.; et al. Immune surveillance properties of human NK cell-derived exosomes. J. Immunol. 2012, 189, 2833–2842. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Parhar, R.S.; Zou, M.; Baitei, E.; Kessie, G.; Farid, N.R.; Alzahrani, A.; Al-Mohanna, F.A. Gene therapy of anaplastic thyroid carcinoma with a single-chain IL-12 fusion protein. Hum. Gene Ther. 2003, 14, 1741–1751. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Zhang, S.; Xie, J.; Zhou, Y.; Wu, Q.; Lu, B.; Zhou, S.; Zhao, X.; Li, Y. Leveraging CD16 fusion receptors to remodel the immune response for enhancing anti-tumor immunotherapy in iPSC-derived NK cells. J. Hematol. Oncol. 2023, 16, 157. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pörtner, R.; Sebald, C.; Parida, S.K.; Hoffmeister, H. Single-use bioreactors for immune cell therapeutic manufacturing. In Single-Use Technology in Biopharmaceutical Manufacture; Wiley: Hoboken, NJ, USA, 2019; pp. 327–334. [Google Scholar] [CrossRef]
- Li, S.; Han, H.; Yang, K.; Li, X.; Ma, L.; Yang, Z.; Zhao, Y.-X. Emerging role of metabolic reprogramming in the immune microenvironment and immunotherapy of thyroid cancer. Int. Immunopharmacol. 2025, 144, 110778. [Google Scholar] [CrossRef] [PubMed]
- Borst, L.; Sluijter, M.; Sturm, G.; Charoentong, P.; Santegoets, S.J.; van Gulijk, M.; van Elsas, M.J.; Groeneveldt, C.; van Montfoort, N.; Finotello, F.; et al. NKG2A is a late immune checkpoint on CD8 T cells and marks repeated stimulation and cell division. Int. J. Cancer 2022, 150, 688–704. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Li, L.; Zuo, C.; Chen, M.Y.; Zhang, X.; Myers, N.B.; Hogg, G.D.; DeNardo, D.G.; Goedegebuure, S.P.; Hawkins, W.G.; et al. Combination TIGIT/PD-1 blockade enhances the efficacy of neoantigen vaccines in a model of pancreatic cancer. Front. Immunol. 2022, 13, 1039226. [Google Scholar] [CrossRef] [PubMed]
- Waldman, A.D.; Fritz, J.M.; Lenardo, M.J. A guide to cancer immunotherapy: From T cell basic science to clinical practice. Nat. Rev. Immunol. 2020, 20, 651–668. [Google Scholar] [CrossRef] [PubMed]
- Siegler, E.L.; Zhu, Y.; Wang, P.; Yang, L. Off-the-shelf CAR-NK cells for cancer immunotherapy. Cell Stem Cell 2018, 23, 160–161. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; You, J.; Wang, C.; Li, B.; Liu, Y.; Shao, M.; Zhao, W.; Zhou, C. Cell-based immunotherapies for solid tumors: Advances and future directions. Front. Oncol. 2025, 15, 1551583. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Combination Strategy | Agents Used | Rationale | Observed Effects | Relevance to Thyroid Cancer | Study Type/Model/Approval Status | Ref |
---|---|---|---|---|---|---|
NK cells + Tyrosine Kinase Inhibitors (TKIs) | NK cells + Sorafenib/Lenvatinib | TKIs reduce tumor-induced immunosuppression and enhance NK cell activity | Enhanced NK cytotoxicity and tumor suppression in vitro and in vivo | Lenvatinib is used in advanced thyroid cancer; synergistic effects expected | Approved therapy; FDA approved in 2015 for RAI-R DTC | [39] |
NK cells + Immune Checkpoint Inhibitors | NK cells + Anti-PD-1/Anti-NKG2A | Blocks inhibitory signals that suppress NK function | Increased IFN-γ release and tumor cell lysis | PD-1 and PD-L1 expression noted in thyroid cancer | Clinical trial (NCT02643550—Phase I/II) | [33] |
NK cells + Radiotherapy | Radiotherapy + NK cells | Radiation increases expression of stress ligands on tumor cells | Enhanced NK cell recognition and killing | Useful in anaplastic thyroid carcinoma (ATC) | Preclinical study (mouse models of ATC) | [40] |
NK cells + Oncolytic Viruses | Oncolytic virus (e.g., HSV) + NK cells | Viral therapy lyses tumor cells and promotes immune infiltration | Enhanced NK recruitment and cytotoxicity | Oncolytic virotherapy is under investigation for thyroid tumors | Preclinical study; HSV-based oncolytics in trials (T-VEC in melanoma, FDA approved 2015) | [41] |
NK cells + Cytokine Therapy | IL-15 superagonist (ALT-803) + NK cells | Promotes NK survival, expansion, and function | Sustained NK activity and tumor clearance | Can augment NK therapy in thyroid cancer | Clinical trials (NCT03019666—Phase I/II) | [42] |
NK cells + Bispecific Antibodies | NK cells + BiKEs (e.g., CD16xEpCAM) | Directs NK cells to tumor-specific antigens | Improved tumor targeting and cytotoxicity | EpCAM overexpressed in thyroid cancers | Preclinical (in vitro) | [43] |
NK cells + TLR Agonists | NK cells + CpG-ODN or Poly(I:C) | Stimulates innate immune signaling and NK activation | Enhanced cytokine secretion and tumor control | Toll-like receptor signaling may synergize in thyroid cancer | Preclinical (in vitro + mouse models) | [44] |
NK cells + Small Molecule Inhibitors | NK cells + HDAC inhibitors or PI3K inhibitors | Alters tumor immunogenicity and reverses immune evasion | Restoration of NK sensitivity and tumor suppression | HDACi have shown effects in thyroid tumor models | Preclinical (in vitro and in vivo); HDACi in early-phase trials in thyroid cancer | [45] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prakash, K.; Rajendran, R.L.; Dhayalan, S.; Gangadaran, P.; Ahn, B.-C.; Aruljothi, K.N. Natural Killer Cell and Extracellular Vesicle-Based Immunotherapy in Thyroid Cancer: Advances, Challenges, and Future Perspectives. Cells 2025, 14, 1087. https://doi.org/10.3390/cells14141087
Prakash K, Rajendran RL, Dhayalan S, Gangadaran P, Ahn B-C, Aruljothi KN. Natural Killer Cell and Extracellular Vesicle-Based Immunotherapy in Thyroid Cancer: Advances, Challenges, and Future Perspectives. Cells. 2025; 14(14):1087. https://doi.org/10.3390/cells14141087
Chicago/Turabian StylePrakash, Kruthika, Ramya Lakshmi Rajendran, Sanjana Dhayalan, Prakash Gangadaran, Byeong-Cheol Ahn, and Kandasamy Nagarajan Aruljothi. 2025. "Natural Killer Cell and Extracellular Vesicle-Based Immunotherapy in Thyroid Cancer: Advances, Challenges, and Future Perspectives" Cells 14, no. 14: 1087. https://doi.org/10.3390/cells14141087
APA StylePrakash, K., Rajendran, R. L., Dhayalan, S., Gangadaran, P., Ahn, B.-C., & Aruljothi, K. N. (2025). Natural Killer Cell and Extracellular Vesicle-Based Immunotherapy in Thyroid Cancer: Advances, Challenges, and Future Perspectives. Cells, 14(14), 1087. https://doi.org/10.3390/cells14141087