Temporal and Severity-Dependent Alterations in Plasma Extracellular Vesicle Profiles Following Spinal Cord Injury
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Experimental Group
2.3. Preoperative Procedure and Anesthetic Monitoring
2.4. Thoracic Contusion Injury Paradigm
2.5. Post-Operative Procedure
2.6. Pre Hoc Criteria and Exclusions
2.7. Basso Mouse Scale (BMS) Locomotor Assessment
2.8. Blood Collection
2.9. Platelet Free Plasma Preparation and Small Extracellular Vesicle Isolation
2.10. Nanoparticle Tracking Analysis (NTA)
2.11. Transmission Electron Microscopy (TEM)
2.12. Multiplex Bead-Based Flow Cytometric Analysis of sEV Surface Proteins by MACSPlex Exosome Kit Mouse
2.13. Statistical Analysis
3. Results
3.1. Validation of Injury Severity Using Impactor Force Profiles and Functional BMS Scoring
3.2. Characterization of Plasma-Derived sEVs Across Spinal Cord Injury Severities and Stages
3.3. CD9 Is the Most Abundant Tetraspanin on Plasma-Derived sEVs Across Injury Severities and Stages
3.4. MACSPlex Profiling of Plasma-Derived sEVs Across Injury Severities in the Subacute Phase
3.5. MACSPlex Profiling of Plasma-Derived sEVs Across Injury Severities in the Chronic Phase
3.6. Comparative Profiling of Plasma-Derived sEVs Between Subacute and Chronic Phases Across Injury Severities
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Spinal Cord Injury. Available online: https://www.who.int/news-room/fact-sheets/detail/spinal-cord-injury (accessed on 30 May 2025).
- Hachem, L.D.; Ahuja, C.S.; Fehlings, M.G. Assessment and management of acute spinal cord injury: From point of injury to rehabilitation. J. Spinal Cord. Med. 2017, 40, 665–675. [Google Scholar] [CrossRef] [PubMed]
- David, S.; Kroner, A. Repertoire of microglial and macrophage responses after spinal cord injury. Nat. Rev. Neurosci. 2011, 12, 388–399. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, D.J.; Popovich, P.G. Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Exp. Neurol. 2008, 209, 378–388. [Google Scholar] [CrossRef] [PubMed]
- Carlson, S.L.; Parrish, M.E.; Springer, J.E.; Doty, K.; Dossett, L. Acute Inflammatory Response in Spinal Cord Following Impact Injury. Exp. Neurol. 1998, 151, 77–88. [Google Scholar] [CrossRef]
- Allison, D.J.; Ditor, D.S. Immune dysfunction and chronic inflammation following spinal cord injury. Spinal Cord. 2015, 53, 14–18. [Google Scholar] [CrossRef]
- Galeiras Vázquez, R.; Rascado Sedes, P.; Mourelo Fariña, M.; Montoto Marqués, A.; Ferreiro Velasco, M.E. Respiratory Management in the Patient with Spinal Cord Injury. BioMed Res. Int. 2013, 2013, 168757. [Google Scholar] [CrossRef]
- Furlan, J.C.; Fehlings, M.G. Cardiovascular complications after acute spinal cord injury: Pathophysiology, diagnosis, and management. J. Neurol. 2008, 25, E13. [Google Scholar] [CrossRef]
- Sun, X.; Jones, Z.B.; Chen, X.; Zhou, L.; So, K.-F.; Ren, Y. Multiple organ dysfunction and systemic inflammation after spinal cord injury: A complex relationship. J. Neuroinflamm. 2016, 13, 260. [Google Scholar] [CrossRef]
- Hong, J.; Chang, A.; Liu, Y.; Wang, J.; Fehlings, M.G. Incomplete Spinal Cord Injury Reverses the Level-Dependence of Spinal Cord Injury Immune Deficiency Syndrome. Int. J. Mol. Sci. 2019, 20, 3762. [Google Scholar] [CrossRef]
- Carpenter, R.S.; Marbourg, J.M.; Brennan, F.H.; Mifflin, K.A.; Hall, J.C.E.; Jiang, R.R.; Mo, X.M.; Karunasiri, M.; Burke, M.H.; Dorrance, A.M.; et al. Spinal cord injury causes chronic bone marrow failure. Nat. Commun. 2020, 11, 3702. [Google Scholar] [CrossRef]
- Jeffries, M.A.; Tom, V.J. Peripheral Immune Dysfunction: A Problem of Central Importance after Spinal Cord Injury. Biology 2021, 10, 928. [Google Scholar] [CrossRef] [PubMed]
- Sterner, R.C.; Sterner, R.M. Immune response following traumatic spinal cord injury: Pathophysiology and therapies. Front. Immunol. 2023, 13, 1084101. [Google Scholar] [CrossRef] [PubMed]
- Dutta, D.; Khan, N.; Wu, J.; Jay, S.M. Extracellular Vesicles as an Emerging Frontier in Spinal Cord Injury Pathobiology and Therapy. Trends Neurosci. 2021, 44, 492–506. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, H.; Wang, J.; Yi, H.; Song, Y. Extracellular Vesicles in the Pathogenesis, Treatment, and Diagnosis of Spinal Cord Injury: A Mini-Review. Curr. Stem Cell Res. Ther. 2022, 17, 317–327. [Google Scholar] [CrossRef]
- Guo, S.; Redenski, I.; Levenberg, S. Spinal Cord Repair: From Cells and Tissue Engineering to Extracellular Vesicles. Cells 2021, 10, 1872. [Google Scholar] [CrossRef]
- Ghosh, M.; Pearse, D.D. Schwann Cell-Derived Exosomal Vesicles: A Promising Therapy for the Injured Spinal Cord. Int. J. Mol. Sci. 2023, 24, 17317. [Google Scholar] [CrossRef]
- Ghosh, M.; Pearse, D.D. The Yin and Yang of Microglia-Derived Extracellular Vesicles in CNS Injury and Diseases. Cells 2024, 13, 1834. [Google Scholar] [CrossRef]
- Sproviero, D.; Gagliardi, S.; Zucca, S.; Arigoni, M.; Giannini, M.; Garofalo, M.; Olivero, M.; Dell’Orco, M.; Pansarasa, O.; Bernuzzi, S.; et al. Different miRNA Profiles in Plasma Derived Small and Large Extracellular Vesicles from Patients with Neurodegenerative Diseases. Int. J. Mol. Sci. 2021, 22, 2737. [Google Scholar] [CrossRef]
- Hörauf, J.-A.; Schindler, C.R.; Schaible, I.; Wang, M.; Weber, B.; El Saman, A.; Pallas, C.; Widera, M.; Marzi, I.; Henrich, D.; et al. Extracellular vesicles epitopes as potential biomarker candidates in patients with traumatic spinal cord injury. Front. Immunol. 2024, 15, 1478786. [Google Scholar] [CrossRef]
- Hachisuka, S.; Kamei, N.; Ujigo, S.; Miyaki, S.; Yasunaga, Y.; Ochi, M. Circulating microRNAs as biomarkers for evaluating the severity of acute spinal cord injury. Spinal Cord. 2014, 52, 596–600. [Google Scholar] [CrossRef]
- Khan, N.Z.; Cao, T.; He, J.; Ritzel, R.M.; Li, Y.; Henry, R.J.; Colson, C.; Stoica, B.A.; Faden, A.I.; Wu, J. Spinal cord injury alters microRNA and CD81+ exosome levels in plasma extracellular nanoparticles with neuroinflammatory potential. Brain. Behav. Immun. 2021, 92, 165–183. [Google Scholar] [CrossRef] [PubMed]
- Guide for the Care and Use of Laboratory Animals, 8th ed.; The National Academic Press: Washington, DC, USA, 2011.
- Maggio, D.M.; Singh, A.; Iorgulescu, J.B.; Bleicher, D.H.; Ghosh, M.; Lopez, M.M.; Tuesta, L.M.; Flora, G.; Dietrich, W.D.; Pearse, D.D. Identifying the Long-Term Role of Inducible Nitric Oxide Synthase after Contusive Spinal Cord Injury Using a Transgenic Mouse Model. Int. J. Mol. Sci. 2017, 18, 245. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Sheng, H.; Yang, J.; Chen, C.; Shang, R.; Liu, Z.; Hu, X.; Zhang, X.; He, W.; Huang, C.; et al. Comparison of inferior vena cava puncture under continuous cardiac perfusion with cardiac puncture in blood acquisition of the laboratory mouse. Lab. Anim. 2025, 59, 178–191. [Google Scholar] [CrossRef] [PubMed]
- Welsh, J.A.; Goberdhan, D.C.I.; O’Driscoll, L.; Buzas, E.I.; Blenkiron, C.; Bussolati, B.; Cai, H.; Di Vizio, D.; Driedonks, T.A.P.; Erdbrügger, U.; et al. Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. J. Extracell. Vesicles 2024, 13, e12404. [Google Scholar] [CrossRef]
- Mietto, B.S.; Mostacada, K.; Martinez, A.M.B. Neurotrauma and Inflammation: CNS and PNS Responses. Mediators Inflamm. 2015, 2015, 251204. [Google Scholar] [CrossRef]
- Gensel, J.C.; Zhang, B. Macrophage activation and its role in repair and pathology after spinal cord injury. Brain Res. 2015, 1619, 1–11. [Google Scholar] [CrossRef]
- Hitomi, K.; Okada, R.; Loo, T.M.; Miyata, K.; Nakamura, A.J.; Takahashi, A. DNA Damage Regulates Senescence-Associated Extracellular Vesicle Release via the Ceramide Pathway to Prevent Excessive Inflammatory Responses. Int. J. Mol. Sci. 2020, 21, 3720. [Google Scholar] [CrossRef]
- Goulielmaki, E.; Ioannidou, A.; Tsekrekou, M.; Stratigi, K.; Poutakidou, I.K.; Gkirtzimanaki, K.; Aivaliotis, M.; Evangelou, K.; Topalis, P.; Altmüller, J.; et al. Tissue-infiltrating macrophages mediate an exosome-based metabolic reprogramming upon DNA damage. Nat. Commun. 2020, 11, 42. [Google Scholar] [CrossRef]
- Guedes, V.A.; Mithani, S.; Williams, C.; Sass, D.; Smith, E.G.; Vorn, R.; Wagner, C.; Lai, C.; Gill, J.; Hinson, H.E. Extracellular Vesicle Levels of Nervous System Injury Biomarkers in Critically Ill Trauma Patients with and without Traumatic Brain Injury. Neurotrauma Rep. 2022, 3, 545–553. [Google Scholar] [CrossRef]
- Singh, N.; Pathak, Z.; Kumar, H. Rab27a-mediated extracellular vesicle release drives astrocytic CSPG secretion and glial scarring in spinal cord injury. Biomater. Adv. 2025, 176, 214357. [Google Scholar] [CrossRef]
- Seim, R.F.; Willis, M.L.; Wallet, S.M.; Maile, R.; Coleman, L.G.J. Extracellular vesicles as regulators of immune function in traumatic injuries and sepsis. Shock 2023, 59, 180. [Google Scholar] [CrossRef] [PubMed]
- Martins, I.; Neves-Silva, D.; Ascensão-Ferreira, M.; Dias, A.F.; Ribeiro, D.; Isidro, A.F.; Quitéria, R.; Paramos-de-Carvalho, D.; Barbosa-Morais, N.L.; Saúde, L. Mouse Spinal Cord Vascular Transcriptome Analysis Identifies CD9 and MYLIP as Injury-Induced Players. Int. J. Mol. Sci. 2023, 24, 6433. [Google Scholar] [CrossRef] [PubMed]
- Kestecher, B.M.; Németh, K.; Ghosal, S.; Sayour, N.V.; Gergely, T.G.; Bodnár, B.R.; Försönits, A.I.; Sódar, B.W.; Oesterreicher, J.; Holnthoner, W.; et al. Reduced circulating CD63+ extracellular vesicle levels associate with atherosclerosis in hypercholesterolaemic mice and humans. Cardiovasc. Diabetol. 2024, 23, 368. [Google Scholar] [CrossRef] [PubMed]
- Marquant, A.; Berthelot, J.; Bich, C.; Elfekih, Z.I.; Simon, L.; Robin, B.; Chopineau, J.; Wang, D.T.; Emerson, S.J.; Wang, A.; et al. Control of Physical and Biochemical Parameters Influencing Exogeneous Cargo Protein Association to Extracellular Vesicles Using Lipid Anchors Enables High Loading and Effective Intracellular Delivery. J. Extracell. Biol. 2025, 4, e70048. [Google Scholar] [CrossRef]
- Dijkstra, S.; Geisert, E.E.; Dijkstra, C.D.; Bär, P.R.; Joosten, E.A.J. CD81 and microglial activation in vitro: Proliferation, phagocytosis and nitric oxide production. J. Neuroimmunol. 2001, 114, 151–159. [Google Scholar] [CrossRef]
- Alsaadi, N.; Srinivasan, A.J.; Seshadri, A.; Shiel, M.; Neal, M.D.; Scott, M.J. The emerging therapeutic potential of extracellular vesicles in trauma. J. Leukoc. Biol. 2022, 111, 93–111. [Google Scholar] [CrossRef]
- Reddel, C.J.; Pennings, G.J.; Lau, J.K.; Chen, V.M.; Kritharides, L. Circulating platelet-derived extracellular vesicles are decreased after remote ischemic preconditioning in patients with coronary disease: A randomized controlled trial. J. Thromb. Haemost. 2021, 19, 2605–2611. [Google Scholar] [CrossRef]
- Ijaz, S.; Mohammed, I.; Gholaminejhad, M.; Mokhtari, T.; Akbari, M.; Hassanzadeh, G. Modulating Pro-inflammatory Cytokines, Tissue Damage Magnitude, and Motor Deficit in Spinal Cord Injury with Subventricular Zone-Derived Extracellular Vesicles. J. Mol. Neurosci. 2020, 70, 458–466. [Google Scholar] [CrossRef]
- Bighinati, A.; Khalajzeyqami, Z.; Baldassarro, V.A.; Lorenzini, L.; Cescatti, M.; Moretti, M.; Giardino, L.; Calzà, L. Time-Course Changes of Extracellular Matrix Encoding Genes Expression Level in the Spinal Cord Following Contusion Injury—A Data-Driven Approach. Int. J. Mol. Sci. 2021, 22, 1744. [Google Scholar] [CrossRef]
- Adamu, A.; Li, S.; Gao, F.; Xue, G. The role of neuroinflammation in neurodegenerative diseases: Current understanding and future therapeutic targets. Front. Aging Neurosci. 2024, 16, 1347987. [Google Scholar] [CrossRef]
- Guo, J.; Yang, T.; Zhang, W.; Yu, K.; Xu, X.; Li, W.; Song, L.; Gu, X.; Cao, R.; Cui, S. Inhibition of CD44 suppresses the formation of fibrotic scar after spinal cord injury via the JAK2/STAT3 signaling pathway. iScience 2024, 27, 108935. [Google Scholar] [CrossRef] [PubMed]
- Ruppert, K.A.; Nguyen, T.T.; Prabhakara, K.S.; Toledano Furman, N.E.; Srivastava, A.K.; Harting, M.T.; Cox, C.S.; Olson, S.D. Human Mesenchymal Stromal Cell-Derived Extracellular Vesicles Modify Microglial Response and Improve Clinical Outcomes in Experimental Spinal Cord Injury. Sci. Rep. 2018, 8, 480. [Google Scholar] [CrossRef] [PubMed]
- Lacroix, S.; Hamilton, L.K.; Vaugeois, A.; Beaudoin, S.; Breault-Dugas, C.; Pineau, I.; Lévesque, S.A.; Grégoire, C.-A.; Fernandes, K.J.L. Central Canal Ependymal Cells Proliferate Extensively in Response to Traumatic Spinal Cord Injury but Not Demyelinating Lesions. PLoS ONE 2014, 9, e85916. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Floriddia, E.M.; Toskas, K.; Fernandes, K.J.L.; Guérout, N.; Barnabé-Heider, F. Regenerative Potential of Ependymal Cells for Spinal Cord Injuries Over Time. eBioMedicine 2016, 13, 55–65. [Google Scholar] [CrossRef]
- Chevreau, R.; Ghazale, H.; Ripoll, C.; Chalfouh, C.; Delarue, Q.; Hemonnot-Girard, A.L.; Mamaeva, D.; Hirbec, H.; Rothhut, B.; Wahane, S.; et al. RNA Profiling of Mouse Ependymal Cells after Spinal Cord Injury Identifies the Oncostatin Pathway as a Potential Key Regulator of Spinal Cord Stem Cell Fate. Cells 2021, 10, 3332. [Google Scholar] [CrossRef]
- Li, Y.; Khan, N.; Ritzel, R.M.; Lei, Z.; Allen, S.; Faden, A.I.; Wu, J. Sexually dimorphic extracellular vesicle responses after chronic spinal cord injury are associated with neuroinflammation and neurodegeneration in the aged brain. J. Neuroinflamm. 2023, 20, 197. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cooper, J.; Airey, S.T.; Patino, E.; Andriot, T.; Ghosh, M.; Pearse, D.D. Temporal and Severity-Dependent Alterations in Plasma Extracellular Vesicle Profiles Following Spinal Cord Injury. Cells 2025, 14, 1065. https://doi.org/10.3390/cells14141065
Cooper J, Airey ST, Patino E, Andriot T, Ghosh M, Pearse DD. Temporal and Severity-Dependent Alterations in Plasma Extracellular Vesicle Profiles Following Spinal Cord Injury. Cells. 2025; 14(14):1065. https://doi.org/10.3390/cells14141065
Chicago/Turabian StyleCooper, Jamie, Scott Tait Airey, Eric Patino, Theo Andriot, Mousumi Ghosh, and Damien D. Pearse. 2025. "Temporal and Severity-Dependent Alterations in Plasma Extracellular Vesicle Profiles Following Spinal Cord Injury" Cells 14, no. 14: 1065. https://doi.org/10.3390/cells14141065
APA StyleCooper, J., Airey, S. T., Patino, E., Andriot, T., Ghosh, M., & Pearse, D. D. (2025). Temporal and Severity-Dependent Alterations in Plasma Extracellular Vesicle Profiles Following Spinal Cord Injury. Cells, 14(14), 1065. https://doi.org/10.3390/cells14141065