The Impact of Different Sounds on Stress Level in the Context of EEG, Cardiac Measures and Subjective Stress Level: A Pilot Study
Abstract
:1. Introduction
2. Stress under the Influence of Music
Review of Previous Research
3. Materials and Methods
3.1. Practical Experiment and Participants
3.2. Measurement Devices
3.3. Numerical Measures: CBA Ratio and the Statistical Analysis
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jiang, J.; Rickson, D.; Jiang, C. The mechanism of music for reducing psychological stress: Music preference as a mediator arts psychotherapy. Arts Psychother. 2016, 48, 62–68. [Google Scholar] [CrossRef]
- De la Torre-Luque, A.; Díaz-Piedra, C.; Buela-Casal, G. Effects of preferred relaxing music after acute stress exposure: A randomized controlled trial. Psychol. Music 2017, 1–19. [Google Scholar] [CrossRef]
- Asif, A.; Majid, M.; Anwar, S.M. Human stress classification using EEG signals in response to music tracks. Comput. Biol. Med. 2019, 182–196. [Google Scholar] [CrossRef] [PubMed]
- Thoma, M.V.; La Marca, R.; Brönnimann, R.; Finkel, L.; Ehlert, U.; Nater, U.M. The effect of music on the human stress response. PLoS ONE 2013, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lampert, R. ECG signatures of psychological stress. J. Electrocardiol. 2015, 48, 1000–1005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boucsein, W. Electrodermal Activity, 2nd ed.; Springer: New York, NY, USA; Berlin, Germany, 2012; pp. 1–523. [Google Scholar]
- Giggins, O.M.; Persson, U.; Caufield, B. Biofeedback in rehabilitation. J. Neuroeng. Rehabil. 2013, 10, 60. [Google Scholar] [CrossRef] [Green Version]
- Linnemann, A.; Strahler, J.; Nater, U.M. The stress-reducing effect of music listening varies depending on the social context. Psychoneuroendocrinology 2016, 72, 97–105. [Google Scholar] [CrossRef]
- Lingham, J.; Theorell, T. Self-selected “favourite” stimulative and sedative music listening–how does familiar and preferred music listening affect the body. Nord. J. Music Ther. 2009, 18, 150–166. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, J.; Liu, C.; Liu, D.; Ding, X.; Zhou, C. Graph theoretical analysis of EEG functional connectivity during music perception. Brain Res. 2012, 1483, 71–81. [Google Scholar] [CrossRef]
- Daly, I.; Malik, A.; Hwang, F.; Roesch, E.; Weaver, J.; Kirke, A.; Williams, D.; Miranda, E.; Nasuto, S.J. Neural correlates of emotional responses to music: An EEG study. Neurosci. Lett. 2014, 52–57. [Google Scholar] [CrossRef]
- Banerjee, A.; Sanyal, S.; Patranabis, A.; Banerjee, K.; Guhathakurta, T.; Sengupta, R.; Ghosh, D.; Ghose, P. Study on brain dynamics by non-linear analysis of music induced EEG signals. Phys. A 2016, 444, 110–120. [Google Scholar] [CrossRef]
- Phneah, S.W.; Nisar, H. EEG-based alpha neurofeedback training for mood enhancement. Australas. Coll. Phys. Sci. Eng. Med. 2017, 325–336. [Google Scholar] [CrossRef] [PubMed]
- Gooßes, M.; Saliger, J.; Folkerts, A.; Nielsen, J.; Zierer, J.; Schmoll, P.; Niepold, A.; Colbach, L.; Leemhuis, J.; Engels, L.; et al. Feasibility of music-assisted treadmill training in parkinson’s disease patients with and without deep brain stimulation: Insights from an ongoing pilot randomized controlled trial. Front. Neurol. 2020, 790, 1–16. [Google Scholar] [CrossRef]
- Carrière, M.; Larroque, S.K.; Martial, C.; Bahri, M.A.; Aubinet, C.; Perrin, F.; Laureys, S.; Heine, L. An Echo of Consciousness: Brain Function during Preferred Music. Brain Connect. 2020, 10/7, 385–395. [Google Scholar] [CrossRef]
- Wong, A.; Bergen, D.; Nordvall, M.; Allnutt, A.; Bagheri, R. Cardiac autonomic and blood pressure responses to an acute session of battling ropes exercise. Physiol. Behav. 2020, 227. [Google Scholar] [CrossRef]
- Muñoz-López, A.; Naranjo-Orellana, J. Individual versus team heart rate variability responsiveness analyses in a national soccer team during training camps. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Soker-Elimaliah, S.; Jennings, C.A.; Hashimi, M.M.; Cassim, T.Z.; Lehrfield, A.; Wagner, J.B. Autistic traits moderate relations between cardiac autonomic activity, interoceptive accuracy, and emotion processing in college students. Int. J. Psychophysiol. 2020, 155, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Demos, I.N. Getting Started with Neurofeedback; W.W. Norton & Company: New York, NY, USA, 2005. [Google Scholar]
- Meyer, P.; Friederich, H.; Zastrow, A. Breathe to ease-Respiratory biofeedback to improve heart rate variability and coping with stress in obese patients: A pilot study. Ment. Health Prevetion 2018, 11, 41–46. [Google Scholar] [CrossRef]
- Dadashi, M.; Birashk, B.; Taremian, F.; Asgarnejad, A.A.; Momtazi, S. Effects of increase in amplitude of occipital alpha & theta brain waves on global functioning level of patients with GAD. Basic Clin. Neurosci. 2015, 6, 14–20. [Google Scholar]
- Paszkiel, S.; Szpulak, P. Methods of acquisition, archiving and biomedical data analysis of brain functioning. In Biomedical Engineering and Neuroscience; Hunek, W., Paszkiel, S., Eds.; Series: Advances in Intelligent Systems and Computing 720; Springer: Berlin/Heidelberg, Germany, 2018; pp. 158–171. [Google Scholar] [CrossRef]
- Zabcikova, M. Measurement of visual and auditory stimuli using EEG headset Emotiv Epoc+. Matec Web Conf. 2019. [Google Scholar] [CrossRef]
- Marcuse, L.; Fields, M.; Yoo, J. Rowan’s Primer of EEG, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 1–216. [Google Scholar]
- Paszkiel, S. Characteristics of question of blind source separation using Moore-Penrose pseudoinversion for reconstruction of EEG signal. In Automation 2017 Innovations in Automation, Robotics and Measurement Techniques; Szewczyk, R., Zieliński, C., Kaliczyńska, M., Eds.; Series: Advances in Intelligent Systems and Computing 550; Springer: Berlin/Heidelberg, Germany, 2017; pp. 393–400. [Google Scholar] [CrossRef]
- Inman, M. A Rosetta Stone for Brain Waves. PLoS Biol. 2011, 9. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Arsenault, R.; Napper, S.; Griebel, P. Models and Methods to Investigate Acute Stress Responses in Cattle. Animals 2015, 5, 1268–1295. [Google Scholar] [CrossRef] [PubMed]
Hypothalamus | → ← | Central Nervous System | |
Pituitary | Adrenal Medulla | Peripheral Sympathetic Nerves | |
Adrenal Cortex | Epinephrine | Norepinephrine | |
Glucocorticoid | Metabolic Glycolysis | ||
Metabolic Glycolysis/gluconeogenesis Anabolism/catabolism Lipolysis Insulin signaling# | Immune Regulation of cytokines Stabilization of cytoskeleton Infection Wound healing | ||
Immune Apoptosis Neutrophil/lymphocyte trafficking Cytokine production Anti-inflammatory responses Pro- inflammatory responses | Behavior Aggressive behaviors Increased heart rate and blood pressure Increased respiration |
Stage | Activity |
---|---|
1. | Filling in the questionnaire, measuring pulse and blood pressure, EEG examination (called A stage for short in the rest of the paper). |
2. | Monitoring values achieved by alpha waves until the end of the test. |
3. | Putting a subject in a stressful situation. |
4. | Filling in the questionnaire, measuring pulse and blood pressure (called B stage for short in the rest of the paper). |
5. | Playing a selected sound to the subject. |
6. | Filling in the questionnaire, measuring pulse and blood pressure (called C stage for short in the rest of the paper). |
7. | The end of the test. |
Sound Type | A (Prior to Stressor) | B (After the Stressor) | C (After the Sound) | |||
---|---|---|---|---|---|---|
Mean | std | Mean | std | Mean | std | |
Mean alpha wave amplitude value [dB] | ||||||
Silence | 1.83 | 0.18 | 0.73 | 0.14 | 1.40 | 0.09 |
Rap | 2.12 | 0.20 | 0.47 | 0.21 | 1.25 | 0.14 |
Relaxing | 1.48 | 0.42 | 0.66 | 0.09 | 1.67 | 0.60 |
ASMR | 1.46 | 0.33 | 0.66 | 0.10 | 1.92 | 0.84 |
Systolic pressure [mm Hg] | ||||||
Silence | 115.00 | 2.06 | 122.78 | 1.86 | 117.89 | 1.27 |
Rap | 113.89 | 2.20 | 121.78 | 1.48 | 120.00 | 0.87 |
Relaxing | 119.89 | 1.54 | 123.22 | 1.72 | 118.22 | 1.30 |
ASMR | 111.78 | 1.79 | 113.67 | 2.18 | 111.00 | 1.50 |
Diastolic pressure [mm Hg] | ||||||
Silence | 77.89 | 2.52 | 80.00 | 1.00 | 80.33 | 1.50 |
Rap | 79.33 | 2.18 | 81.22 | 0.44 | 75.11 | 3.14 |
Relaxing | 79.89 | 1.96 | 82.89 | 1.83 | 76.11 | 2.20 |
ASMR | 69.11 | 5.60 | 76.00 | 8.62 | 67.33 | 6.12 |
Pulse [bpm] | ||||||
Silence | 70.44 | 2.07 | 74.00 | 2.65 | 73.11 | 2.26 |
Rap | 67.89 | 2.89 | 76.22 | 3.96 | 69.67 | 2.92 |
Relaxing | 65.89 | 4.26 | 71.00 | 3.97 | 67.33 | 5.52 |
ASMR | 64.22 | 5.09 | 66.56 | 2.51 | 61.33 | 3.71 |
Subjective stress level [1–10] | ||||||
Silence | 2.78 | 1.20 | 6.89 | 0.93 | 3.11 | 0.93 |
Rap | 2.67 | 1.00 | 7.72 | 0.67 | 4.11 | 0.78 |
Relaxing | 3.83 | 1.17 | 6.00 | 0.83 | 2.22 | 0.67 |
ASMR | 3.61 | 0.86 | 6.06 | 0.77 | 1.78 | 0.67 |
Sound Type | Mean Alpha Wave Amplitude Value [dB] | Systolic Pressure [mm Hg] | Diastolic Pressure [mm Hg] | Pulse [bpm] | Subjective stress level [1–10] | |||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | std | Mean | std | Mean | std | Mean | std | Mean | std | |
Silence | 0.394 | 0.107 | −0.050 | 0.024 | 0.013 | 0.028 | 0.002 | 0.061 | −1.554 | 1.062 |
Rap | 0.382 | 0.122 | −0.013 | 0.016 | −0.077 | 0.039 | −0.113 | 0.026 | −1.491 | 0.347 |
Relaxing | 0.781 | 0.152 | −0.046 | 0.021 | −0.090 | 0.019 | −0.055 | 0.047 | −1.054 | 0.737 |
ASMR | 0.985 | 0.314 | −0.021 | 0.022 | −0.087 | 0.037 | −0.086 | 0.054 | −1.220 | 0.723 |
Statistical Difference | p-Value | ||||
---|---|---|---|---|---|
EEG | Systolic Pressure | Diastolic Pressure | Pulse | Subjective Stress | |
Kruskal–Wallis | 6.0 × 10−5 | 1.9 × 10−3 | 4.5 × 10−4 | 6.4 × 10−4 | 2.3 × 10−1 |
Silence—rap | 1.0 × 100 | 7.0 × 10−3 | 5.5 × 10−3 | 3.5 × 10−4 | 9.9 × 10−1 |
Silence—relaxing | 2.8 × 10−2 | 2.3 × 10−3 | 1.0 × 100 | 3.7 × 10−1 | 6.9 × 10−1 |
Silence—ASMR | 2.5 × 10−3 | 2.3 × 10−3 | 1.4 × 10−1 | 3.6 × 10−2 | 9.8 × 10−1 |
Rap—relaxing | 1.3 × 10−2 | 1.0 × 100 | 1.8 × 10−2 | 1.5 × 10−1 | 2.7 × 10−1 |
Rap—ASMR | 1.1 × 10−3 | 1.0 × 100 | 8.7 × 10−1 | 7.4 × 10−1 | 7.2 × 10−1 |
Relaxing—ASMR | 9.8 × 10−1 | 1.0 × 100 | 3.0 × 10−1 | 9.2 × 10−1 | 9.9 × 10−1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paszkiel, S.; Dobrakowski, P.; Łysiak, A. The Impact of Different Sounds on Stress Level in the Context of EEG, Cardiac Measures and Subjective Stress Level: A Pilot Study. Brain Sci. 2020, 10, 728. https://doi.org/10.3390/brainsci10100728
Paszkiel S, Dobrakowski P, Łysiak A. The Impact of Different Sounds on Stress Level in the Context of EEG, Cardiac Measures and Subjective Stress Level: A Pilot Study. Brain Sciences. 2020; 10(10):728. https://doi.org/10.3390/brainsci10100728
Chicago/Turabian StylePaszkiel, Szczepan, Paweł Dobrakowski, and Adam Łysiak. 2020. "The Impact of Different Sounds on Stress Level in the Context of EEG, Cardiac Measures and Subjective Stress Level: A Pilot Study" Brain Sciences 10, no. 10: 728. https://doi.org/10.3390/brainsci10100728
APA StylePaszkiel, S., Dobrakowski, P., & Łysiak, A. (2020). The Impact of Different Sounds on Stress Level in the Context of EEG, Cardiac Measures and Subjective Stress Level: A Pilot Study. Brain Sciences, 10(10), 728. https://doi.org/10.3390/brainsci10100728