Obstructive Sleep Apnea and Circulating Biomarkers of Oxidative Stress: A Cross-Sectional Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample and Laboratory Analysis
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Benjafield, A.V.; Ayas, N.T.; Eastwood, P.R.; Heinzer, R.; Ip, M.S.M.; Morrell, M.J.; Nunez, C.M.; Patel, S.R.; Penzel, T.; Pépin, J.-L.; et al. Estimation of the global prevalence and burden of obstructive sleep apnoea: A literature-based analysis. Lancet Respir. Med. 2019, 7, 687–698. [Google Scholar] [CrossRef]
- Bradley, T.D.; Floras, J.S. Obstructive sleep apnoea and its cardiovascular consequences. Lancet 2009, 373, 82–93. [Google Scholar] [CrossRef]
- Young, T.; Finn, L.; Peppard, P.E.; Szklo-Coxe, M.; Austin, D.; Nieto, F.J.; Stubbs, R.; Hla, K.M. Sleep Disordered Breathing and Mortality: Eighteen-Year Follow-up of the Wisconsin Sleep Cohort. Sleep 2008, 31, 1071–1078. [Google Scholar]
- Yaggi, H.K.; Kernan, W.N.; Brass, L.M. Obstructive Sleep Apnea as a Risk Factor for Stroke and Death. N. Engl. J. Med. 2005, 353, 2034–2041. [Google Scholar] [CrossRef]
- Abuyassin, B.; Sharma, K.; Ayas, N.T.; Laher, I. Obstructive Sleep Apnea and Kidney Disease: A Potential Bidirectional Relationship? J. Clin. Sleep Med. 2015, 11, 915–924. [Google Scholar] [CrossRef]
- Badran, M.; Abuyassin, B.; Golbidi, S.; Ayas, N.; Laher, I. Alpha Lipoic Acid Improves Endothelial Function and Oxidative Stress in Mice Exposed to Chronic Intermittent Hypoxia. Oxid. Med. Cell. Longev. 2019, 2019, 4093018. [Google Scholar] [CrossRef]
- Niemann, B.; Rohrbach, S.; Miller, M.R.; Newby, D.E.; Fuster, V.; Kovacic, J.C. Oxidative stress and cardiovascular risk: Obesity, diabetes, smoking, and pollution. J. Am. Coll. Cardiol. 2017, 70, 230–251. [Google Scholar] [CrossRef]
- Mancuso, M.; Bonanni, E.; LoGerfo, A.; Orsucci, D.; Maestri, M.; Chico, L.; DiCoscio, E.; Fabbrini, M.; Siciliano, G.; Murri, L. Oxidative stress biomarkers in patients with untreated obstructive sleep apnea syndrome. Sleep Med. 2012, 13, 632–636. [Google Scholar] [CrossRef]
- Eisele, H.-J.; Markart, P.; Schulz, R. Obstructive sleep apnea, oxidative stress, and cardiovascular disease: Evidence from human studies. Oxid. Med. Cell. Longev. 2015, 2015, 608438. [Google Scholar] [CrossRef]
- Davies, S.S.; Roberts, L.J. F2-isoprostanes as an indicator and risk factor for coronary heart disease. Free Radic. Biol. Med. 2011, 50, 559–566. [Google Scholar] [CrossRef]
- Lavie, L. Oxidative stress—A unifying paradigm in obstructive sleep apnea and comorbidities. Prog. Cardiovasc. Dis. 2009, 51, 303–312. [Google Scholar] [CrossRef]
- Abuyassin, B.; Badran, M.; Ayas, N.T.; Laher, I. Intermittent hypoxia causes histological kidney damage and increases growth factor expression in a mouse model of obstructive sleep apnea. PLoS ONE 2018, 13, e0192084. [Google Scholar] [CrossRef]
- Lavie, L. Obstructive sleep apnoea syndrome—An oxidative stress disorder. Sleep Med. Rev. 2003, 7, 35–51. [Google Scholar] [CrossRef]
- Lira, A.B.; de Sousa Rodrigues, C.F. Evaluation of oxidative stress markers in obstructive sleep apnea syndrome and additional antioxidant therapy: A review article. Sleep Breath 2016, 20, 1155–1160. [Google Scholar] [CrossRef]
- van’t Erve, T.J.; Kadiiska, M.B.; London, S.J.; Mason, R.P. Classifying oxidative stress by F2-isoprostane levels across human diseases: A meta-analysis. Redox Biol. 2017, 12, 582–599. [Google Scholar] [CrossRef]
- Berry, R.B.; Brooks, R.; Gamaldo, C.; Harding, S.M.; Lloyd, R.M.; Quan, S.F.; Troester, M.T.; Vaughn, B.V. AASM Scoring Manual Updates for 2017 (Version 2.4). J. Clin. Sleep Med. 2017, 13, 665–666. [Google Scholar] [CrossRef]
- Badran, M.; Ayas, N.; Laher, I. Cardiovascular complications of sleep apnea: Role of oxidative stress. Oxid. Med. Cell. Longev. 2014, 2014, 985258. [Google Scholar] [CrossRef]
- Xu, W.; Chi, L.; Row, B.W.; Xu, R.; Ke, Y.; Xu, B.; Luo, C.; Kheirandish, L.; Gozal, D.; Liu, R. Increased oxidative stress is associated with chronic intermittent hypoxia-mediated brain cortical neuronal cell apoptosis in a mouse model of sleep apnea. Neuroscience 2004, 126, 313–323. [Google Scholar] [CrossRef]
- Carpagnano, G.E.; Kharitonov, S.A.; Resta, O.; Foschino-Barbaro, M.P.; Gramiccioni, E.; Barnes, P.J. Increased 8-isoprostane and interleukin-6 in breath condensate of obstructive sleep apnea patients. Chest 2002, 122, 1162–1167. [Google Scholar] [CrossRef]
- Pialoux, V.; Hanly, P.J.; Foster, G.E.; Brugniaux, J.V.; Beaudin, A.E.; Hartmann, S.E.; Pun, M.; Duggan, C.T.; Poulin, M.J. Effects of exposure to intermittent hypoxia on oxidative stress and acute hypoxic ventilatory response in humans. Am. J. Respir. Crit. Care Med. 2009, 180, 1002–1009. [Google Scholar] [CrossRef]
- Roest, M.; Voorbij, H.A.M.; Van der Schouw, Y.T.; Peeters, P.H.M.; Teerlink, T.; Scheffer, P.G. High levels of urinary F2-isoprostanes predict cardiovascular mortality in postmenopausal women. J. Clin. Lipidol. 2008, 2, 298–303. [Google Scholar] [CrossRef]
- Ridker, P.M. Clinical Application of C-reactive protein for cardiovascular disease detection and prevention. Circulation 2003, 107, 363–369. [Google Scholar] [CrossRef]
- Dohi, Y.; Takase, H.; Sato, K.; Ueda, R. Association among C-reactive protein, oxidative stress, and traditional risk factors in healthy Japanese subjects. Int. J. Cardiol. 2007, 115, 63–66. [Google Scholar] [CrossRef]
- Peres, B.U.; Hirsch Allen, A.; Fox, N.; Laher, I.; Hanly, P.; Skomro, R.; Almeida, F.; Ayas, N.T. Circulating biomarkers to identify cardiometabolic complications in patients with Obstructive Sleep Apnea: A systematic review. Sleep Med. Rev. 2019, 44, 48–57. [Google Scholar] [CrossRef]
- Castelao, J.E.; Gago-Dominguez, M. Risk factors for cardiovascular disease in women: Relationship to lipid peroxidation and oxidative stress. Med. Hypotheses 2008, 71, 39–44. [Google Scholar] [CrossRef]
- Wang, X.L.; Adachi, T.; Sim, A.S.; Wilcken, D.E.L. Plasma extracellular superoxide dismutase levels in an australian population with coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 1998, 18, 1915–1921. [Google Scholar] [CrossRef]
- Arts, E.E.A.; Popa, C.D.; Smith, J.P.; Arntz, O.J.; van de Loo, F.A.; Donders, R.; Semb, A.G.P.; Kitas, G.D.; van Riel, P.L.C.M.; Fransen, J. Serum samples that have been stored long-term (>10 years) can be used as a suitable data source for developing cardiovascular risk prediction models in large observational rheumatoid arthritis cohorts. BioMed Res. Int. 2014, 2014, 930925. [Google Scholar] [CrossRef]
- Cracowski, J.-L. Isoprostanes as a tool to investigate oxidative stress in scleroderma spectrum disorders—Advantages and limitations. Rheumatology 2006, 45, 922–923. [Google Scholar] [CrossRef][Green Version]
- Ho, J.E.; Lyass, A.; Courchesne, P.; Chen, G.; Liu, C.; Yin, X.; Hwang, S.; Massaro, J.M.; Larson, M.G.; Levy, D. Protein biomarkers of cardiovascular disease and mortality in the community. J. Am. Heart Assoc. 2018, 7. [Google Scholar] [CrossRef]
- Frijhoff, J.; Winyard, P.G.; Zarkovic, N.; Davies, S.S.; Stocker, R.; Cheng, D.; Knight, A.R.; Taylor, E.L.; Oettrich, J.; Ruskovska, T.; et al. Clinical relevance of biomarkers of oxidative stress. Antioxid. Redox Signal. 2015, 23, 1144–1170. [Google Scholar] [CrossRef]
Patient Profile | Entire Cohort (n = 402) | No OSA (n = 71) | Mild OSA (n = 123) | Moderate OSA (n = 105) | Severe OSA (n = 103) |
---|---|---|---|---|---|
Age (years) | 50.86 ± 11.84 | 45.28 ± 11.40 | 51.29 ± 11.54 | 51.68 ± 10.96 | 53.43 ± 12.27 |
Males (%) | 68.40 | 53.42 | 61.79 | 71.43 | 83.65 |
BMI (kg/m2) | 31.62 ± 6.49 | 30.36 ± 6.63 | 30.91 ± 6.57 | 32.29 ± 6.51 | 32.68 ± 6.12 |
AHI (events/h) | 22.24 ± 21.61 | 2.33 ± 1.61 | 9.32 ± 2.79 | 21.55 ± 3.99 | 51.91 ± 20.67 |
% Time Below 90% SaO2 | 4.62 ± 12.09 | 0.6 ± 2.9 | 1.53 ± 4.47 | 3.30 ± 8.21 | 12.29 ± 19.73 |
ESS | 7.42 ± 6.15 | 7.19 ± 6.29 | 7.37 ± 5.91 | 7.88 ± 6.20 | 7.21 ± 6.35 |
Heart Disease (%) * | 22.85 | 13.70 | 27.64 | 22.86 | 23.81 |
Smokers (%) | 7.37 | 4.11 | 7.32 | 6.67 | 10.48 |
Diabetes (%) | 8.85 | 6.85 | 8.13 | 7.62 | 12.38 |
Caucasians (%) | 80.51 | 84.06 | 82.50 | 78.85 | 77.23 |
Statins Users (%) | 20.15 | 12.33 | 18.70 | 20.95 | 26.67 |
Oxidative Stress Markers | |||||
8-isoprostane (pg/mL) | 3186.48 ± 3922.69 | 2395.08 ± 1708.61 | 2725.35 ± 3013.37 | 3090.36 ± 3160.93 | 4422.97 ± 5983.41 |
8-OHdG (ng/mL) | 15.92 ± 7.46 | 15.28 ± 8.46 | 16.40 ± 7.20 | 16.65 ± 7.33 | 15.25 ± 7.23 |
SOD (%) | 18.29 ± 9.45 | 19.74 ± 10.05 | 18.22 ± 9.51 | 19.41 ± 9.02 | 16.28 ± 9.2 |
Variable | 8–Isoprostane (pg/mL) | 8-OhdG (ng/mL) | SOD Activity (%) | |||
---|---|---|---|---|---|---|
Pearson’s Correlation | r | p-value | r | p-value | r | p-value |
Age | 0.1114 | 0.0257 | 0.0423 | 0.3953 | 0.0030 | 0.9511 |
BMI | 0.0918 | 0.0661 | 0.0583 | 0.2406 | 0.1133 | 0.0226 |
AHI | 0.1646 | 0.0008 | 0.005 | 0.9157 | 0.0866 | 0.0819 |
% Time Below 90% SaO2 | 0.0761 | 0.1280 | 0.003 | 0.9367 | 0.0395 | 0.4283 |
Student’s T-test | t-value | p-value | t-value | p-value | t-value | p-value |
Sex * | 0.90 | 0.3672 | 2.40 | 0.0173 | 4.42 | <0.0001 |
Statin Usage | 1.40 | 0.1656 | 0.06 | 0.9484 | 0.74 | 0.4631 |
Diabetes | 0.12 | 0.9076 | 1.04 | 0.3021 | 0.56 | 0.5807 |
Ethnicity ** | 0.76 | 0.5814 | 0.77 | 0.5723 | 0.86 | 0.5074 |
Heart Disease *** | 0.49 | 0.6263 | 1.01 | 0.3164 | 1.71 | 0.0897 |
Smoking Status | 0.83 | 0.4096 | 0.13 | 0.8936 | 0.00 | 0.9981 |
Variable | 8–Isoprostane (pg/mL) | 8-OhdG (ng/mL) | SOD Activity (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
Estimate | SE | p-Value | Estimate | SE | p-Value | Estimate | SE | p-Value | |
Age | 60.32 | 17.49 | 0.0006 | 0.02704 | 0.031 | 0.3870 | 0.0470 | 0.0409 | 0.2512 |
Sex (female) | 132.27 | 431.21 | 0.7592 | 1.8299 | 0.794 | 0.0217 | 4.02 | 1.0244 | <0.0001 |
BMI | 37.74 | 31.98 | 0.2388 | - | - | - | 0.1503 | 0.0736 | 0.0420 |
AHI | 32.13 | 9.492 | 0.0008 | - | - | - | −0.034 | 0.022 | 0.1235 |
Statin Usage | −1172.65 | 515.17 | 0.0234 | - | - | - | - | - | - |
Heart Disease * | - | - | - | - | - | - | −2.6147 | 1.14 | 0.0229 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peres, B.U.; Allen, A.H.; Shah, A.; Fox, N.; Laher, I.; Almeida, F.; Jen, R.; Ayas, N. Obstructive Sleep Apnea and Circulating Biomarkers of Oxidative Stress: A Cross-Sectional Study. Antioxidants 2020, 9, 476. https://doi.org/10.3390/antiox9060476
Peres BU, Allen AH, Shah A, Fox N, Laher I, Almeida F, Jen R, Ayas N. Obstructive Sleep Apnea and Circulating Biomarkers of Oxidative Stress: A Cross-Sectional Study. Antioxidants. 2020; 9(6):476. https://doi.org/10.3390/antiox9060476
Chicago/Turabian StylePeres, Bernardo U., AJ Hirsch Allen, Aditi Shah, Nurit Fox, Ismail Laher, Fernanda Almeida, Rachel Jen, and Najib Ayas. 2020. "Obstructive Sleep Apnea and Circulating Biomarkers of Oxidative Stress: A Cross-Sectional Study" Antioxidants 9, no. 6: 476. https://doi.org/10.3390/antiox9060476
APA StylePeres, B. U., Allen, A. H., Shah, A., Fox, N., Laher, I., Almeida, F., Jen, R., & Ayas, N. (2020). Obstructive Sleep Apnea and Circulating Biomarkers of Oxidative Stress: A Cross-Sectional Study. Antioxidants, 9(6), 476. https://doi.org/10.3390/antiox9060476