Egg Production and Biochemical Evaluation of Laying Quails Fed Diets Containing Phytase Overdosage Under Different Thermal Conditions
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Committee and Experimental Site
2.2. Housing
2.3. Animals and Experimental Design
2.4. Experimental Diets
2.5. Data Collection
2.6. Collection of Biological Material
2.7. Statistical Analysis
- Yijkl = response variable;
- μ = overall mean;
- αi = effect of the i-th level of phytase;
- βj = effect of the j-th temperature range;
- (αβ)ij = interaction effect between the i-th level of phytase and the j-th temperature range;
- ϵijkl = random error term associated with each observation, assumed to be normally distributed with mean zero and constant variance.
- Yi = the response variable for the i-th observation;
- β0 = the intercept, representing the expected value of Y when phytase is at zero (baseline level);
- Xi = phytase level for the i-th observation;
- β1 = the slope, indicating the effect of a one-unit increase in phytase on the response variable;
- ϵi = random error term for the i-th observation, assumed normally distributed with mean zero and constant variance.
3. Results
Biochemical Variables
| Variables | Cycle | Effect | Equation | R2 | Level |
|---|---|---|---|---|---|
| ALT (U/L) | 2 | Quadratic | y = −5E-07x2 + 0.0018x + 1.7179 | 0.4067 | 1800 FTU Max |
| Quadratic | y = −5E-07x2 − 0.0018x + 4.0212 | 0.998 | 1800 FTU Min | ||
| AP (U/L) | 2 | Linear | y = 0.0185x + 268.75 | 0.2972 | - |
| URE (mg/dL) | 2 | Linear | y = −0.0005x + 4.8745 | 0.5685 | - |
| Quadratic | y = 9E-07x2 − 0.0023x + 4.9687 | 0.6141 | 1278 FTU Min | ||
| Quadratic | y = 1E-06x2 − 0.0026x + 5.641 | 0.7541 | 1300 FTU Min | ||
| UA (mg/dL) | 2 | Linear | y = −0.0003x + 3.8874 | 0.4993 | - |
| GGT (U/L) | 4 | Quadratic | y = −4E-07x2 + 0.0013x + 1.6864 | 0.5781 | 1625 FTU Max |
| Quadratic | y = 3E-07x2 − 0.0008x + 2.1689 | 0.7938 | 1333 FTU Min | ||
| ALT (U/L) | 4 | Quadratic | y = 3E-07x2 − 0.0011x + 2.631 | 0.3045 | 1833 FTU Min |
| AP (U/L) | 4 | Quadratic | y = −0.0003x2 + 0.9633x + 866.88 | 0.5266 | 1606 FTU Max |
| P (mg/dL) | 4 | Quadratic | y = −4E-07x2 + 0.0013x + 3.4947 | 0.6333 | 1625 FTU Max |
| Linear | y = 0.0005x + 3.8985 | 0.7606 | - | ||
| Ca (mg/dL) | 4 | Quadratic | y = 3E-06x2 − 0.0071x + 14.294 | 0.9176 | 1183 FTU Min |
| Quadratic | y = −1E-06x2 + 0.0033x + 10.017 | 0.7312 | 1650 FTU Max | ||
| URE (mg/dL) | 4 | Quadratic | y = 5E-07x2 − 0.0008x + 5.8188 | 0.4193 | 800 FTU Min |
| Linear | y = 0.0012x + 4.2291 | 0.6669 | - | ||
| Quadratic | y = 6E-07x2 − 0.001x + 5.6798 | 0.5589 | 833 FTU Min | ||
| UA (mg/dL) | 4 | Linear | y = 0.0002x + 3.2809 | 0.4357 | - |
| LW (%) | 2 | Quadratic | y = 1E-07x2 − 0.0004x + 2.7043 | 0.8768 | 2000 FTU Min |
4. Discussion
4.1. Liver Weight and Egg Production Parameters
4.2. Serum Biochemistry
4.2.1. Second Production Cycle
4.2.2. Fourth Production Cycle
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Güngören, A.; Güngören, G.; Şimşek, U.G.; Yilmaz, O.; Bahşi, M.; Aslan, S. Quality properties and fatty acids composition of breast meat from Japanese quails with different varieties grown under warm climate. Veterinaria 2023, 72, 163–173. [Google Scholar] [CrossRef]
- Santos, T.C.; Gates, R.S.; Tinôco, I.F.F.; Zolnier, S.; Baêta, F.C. Behavior of Japanese quail in different air velocities and air temperatures. Pesqui. Agropecu. Bras. 2017, 52, 344–354. [Google Scholar] [CrossRef]
- Santos, T.C.; Gates, R.S.; Tinôco, I.F.F.; Zolnier, S.; Rocha, K.S.O.; Freitas, L.C.S.R. Productive performance and surface temperatures of Japanese quail exposed to different environment conditions at start of lay. Poult. Sci. 2019, 98, 2830–2839. [Google Scholar] [CrossRef]
- Rostagno, M.H. Effects of heat stress on the gut health of poultry. J. Anim. Sci. 2020, 98, skaa090. [Google Scholar] [CrossRef] [PubMed]
- Bernardes, R.D.; Oliveira, C.H.; Calderano, A.A.; Ferreira, R.S.; Dias, K.M.M.; Almeida, B.F.; Aleixo, P.E.; Albino, L.F.T. Effect of phytase and protease combination on performance. metabolizable energy. and amino acid digestibility of broilers fed nutrient-restricted diets. Rev. Bras. Zootec. 2022, 51, e20210211. [Google Scholar] [CrossRef]
- Bello, A.; Dersjant-Li, Y.; Korver, D.R. The efficacy of 2 phytases on inositol phosphate degradation in different segments of the gastrointestinal tract. calcium and phosphorus digestibility. and bone quality of broilers. Poult. Sci. 2019, 98, 5789–5800. [Google Scholar] [CrossRef]
- Hirvonen, J.; Liljavirta, J.; Saarinen, M.T.; Lehtinen, M.J.; Ahonen, I.; Nurminen, P.I. Effect of Phytase on in Vitro Hydrolysis of Phytate and the Formation of myo-Inositol Phosphate Esters in Various Feed Materials. J. Agric. Food Chem. 2019, 67, 11396–11402. [Google Scholar] [CrossRef]
- Wawrzyniak, A.; Balawender, K. Structural and Metabolic Changes in Bone. Animals 2022, 12, 1946. [Google Scholar] [CrossRef]
- Dijkslag, M.A.; Kwakkel, R.P.; Martin-Chaves, E.; Alfonso-Carrillo, C.; Walvoort, C.; Navarro-Villa, A. The effects of dietary calcium and phosphorus level. and feed form during rearing on growth performance. bone traits and egg production in brown egg-type pullets from 0 to 32 weeks of age. Poult. Sci. 2021, 100, 101130. [Google Scholar] [CrossRef]
- Rostagno, H.S.; Albino, L.F.T.; Hannas, M.I.; Donzele, J.L.; Sakomura, N.K.; Perazzo, F.G.; Saraiva, A.; Teixeira, M.L.; Rodrigues, P.B.; Oliveira, R.F.; et al. Tabelas Brasileiras Para Aves e Suínos: Composição de Alimentos e Exigências Nutricionais, 4th ed.; UFV: Viçosa, Brazil, 2017; 488p, Available online: https://edisciplinas.usp.br/pluginfile.php/4532766/mod_resource/content/1/Rostagno%20et%20al%202017.pdf (accessed on 1 July 2025). (In Portuguese)
- R Core Team. R: A Language and Environment for Statistical Computing, Version. 4.2.0.; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 8 July 2025).
- Ribeiro, A.G.; Silva, R.S.; Costa, F.S.; Silva, E.G.; Santos Ribeiro, J.E.; Saraiva, E.P.; Costa, F.G.P.; Guerra, R.R. Phytase super-dosing modulates bone parameters and the concentration of the calcium epithelial carrier Calbindin-D28k in quails (Coturnix japonica) under thermal stress. Anim. Prod. Sci. 2024, 64, AN24057. [Google Scholar] [CrossRef]
- Ribeiro, A.G.; Silva, R.S.; Silva, D.A.; Nascimento, J.C.S.; Souza, L.F.A.; Silva, E.G.; Ribeiro, J.E.S.; Campos, D.B.; Alves, C.V.B.V.; Saraiva, E.P.; et al. Heat stress in Japanese quails (Coturnix japonica): Benefits of phytase supplementation. Animals 2024, 14, 3599. [Google Scholar] [CrossRef]
- Ribeiro, A.G.; Silva, R.S.; Alves, C.V.B.V.; Campos, D.B.; Silva, D.A.; Nascimento, J.C.S.; Silva, E.G.; Saraiva, E.P.; Costa, F.G.P.; Pereira, W.E.; et al. Gene expression of calcium transporters Calbindin-D28K and TRPV6 in Japanese quails (Coturnix japonica) subjected to phytase super-dosing and under different temperatures. Poult. Sci. 2025, 104, 104937. [Google Scholar] [CrossRef] [PubMed]
- Wasti, S.; Sah, N.; Mishra, B. Impact of heat stress on poultry health and performances. and potential mitigation strategies. Animals 2020, 10, 1266. [Google Scholar] [CrossRef]
- Zhang, H.; Majdeddin, M.; Gaublomme, D.; Taminiau, B.; Boone, M.; Elewaut, D.; Daube, G.; Josipovic, I.; Zhang, K.; Michiels, J. 25hydroxycholecalciferol reverses heat induced alterations in bone quality in finisher broilers associated with effects on intestinal integrity and inflammation. J. Anim. Sci. Biotechnol. 2021, 12, 104. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.M.; Furlan, A.C.; Ton, A.P.S.; Martins, E.N.; Scherer, C.; Murakami, A.E. Calcium and phosphorus requirements of finishing meat quail. Rev. Bras. Zootec. 2009, 38, 1509–1524. [Google Scholar] [CrossRef]
- Truong, L.; Miller, M.R.; Sainz RDKing, A.J. Changes in Japanese quail (Coturnix coturnix japonica) blood gases and electrolytes in response to multigenerational heat stress. PlosClimate 2023, 2, e0000144. [Google Scholar] [CrossRef]
- Rodrigues, V.P.; Furtado, D.A.; Ribeiro, N.L.; Rodrigues, L.R.; Abreu, C.G.; Sousa, J.G. Magnesium in the water of japanese quails kept under comfort zone and under thermal stress. Semin. Cienc. Agrar. 2022, 43, 599–610. [Google Scholar] [CrossRef]
- Scholtz, N.; Halle, I.; Flachowsky, G.; Sauerwein, H. Serum chemistry reference values in adult Japanese quail (Coturnix coturnix japonica) including sex-related differences. Poult. Sci. 2009, 88, 1186–1190. [Google Scholar] [CrossRef]
- Rezende, M.S. Blood Biochemical Profile of a Heavy Line of Broiler Chickens. Ph.D. Thesis, Faculty of Veterinary Medicine. Federal University of Uberlândia, Uberlândia, Brazil, 2017; 63p. Available online: https://repositorio.ufu.br/bitstream/123456789/21136/1/PerfilBioqu%C3%ADmicoSangu%C3%ADneo.pdf (accessed on 5 July 2025).
- Carpenter, J.W.; Marion, C.J. Exotic Animal Formulary, 5th ed.; Saundes: St. Louis, MO, USA, 2018. [Google Scholar]
- Hochleithner, M. Biochemistries. In Avian Medicine: Principles and Application; Ritchie, B.W., Harrison, G.J., Harrison, L.R., Eds.; Wingers Publishing: Lake Worth, FL, USA, 1994; pp. 176–198. [Google Scholar]
- Barbosa, T.S.; Mori, C.K.; Polônio, L.B.; Ponsano, E.H.G.; Ciarlini, P.C. Serum biochemical profile of laying hens in the region of Araçatuba. SP. Semin. Cienc. Agrar. 2011, 32, 1583–1587. [Google Scholar] [CrossRef]
- Grunkemeyer, V.L. Advanced Diagnostic Approaches and Current Management of Avian Hepatic Disorders. Vet. Clin. N. Am. Exot. Anim. Pract. 2010, 13, 413–427. [Google Scholar] [CrossRef]
- Thrall, M.A.; Baker, D.C.; Campbell, T.W.; Denicola, D.B.; Fettman, M.J.; Lassen, E.D.; Rebar, A.; Weiser, G. Veterinary Hematology and Clinical Chemistry; Williams & Wilkins: Baltimore, MD, USA, 2004; 618p. [Google Scholar]
- Franzini, B.D.; Cruz, L.C.F.; Sampaio, S.A.; Borges, K.F.; Barros, H.S.S.; Santana, F.X.C.; Gouveia, A.B.V.S.; Paulo, L.M.; Minafra, C.S. Blood hematological and hormonal indicators of stress in poultry. Research. Soc. Dev. 2022, 11, e16111326303. [Google Scholar] [CrossRef]
- Barrett, N.W.; Rowland, K.; Schmidt, C.J.; Lamont, S.J.; Rothschild, M.F.; Ashwell, C.M.; Persia, M.E. Effects of acute and chronic heat stress on the performance. egg quality. body temperature. and blood gas parameters of laying hens. Poult. Sci. 2019, 98, 6684–6692. [Google Scholar] [CrossRef] [PubMed]
- Wolfenson, D.; Sklan, D.; Graber, Y.; Kedar, O.; Bengal, I.; Hurwitz, S. Absorption of protein. fatty acids and minerals in young turkeys under heat and cold stress. Br. Poult. Sci. 1987, 28, 739–742. [Google Scholar] [CrossRef]
- Ait-Boulahsen, A.; Garlich, J.D.; Edens, F.W. Calcium deficiency and food deprivation improve the response of chickens to acute heat stress. J. Nutr. 1993, 123, 98–105. [Google Scholar] [CrossRef]
- Usayran, N.; Farran, M.T.; Awadallah, H.H.; Al-Hawi, I.R.; Asmar, R.J.; Ashkarian, V.M. Effects of Added Dietary Fat and Phosphorus on the Performance and Egg Quality of Laying Hens Subjected to a Constant High Environmental Temperature. Poult. Sci. 2001, 80, 1695–1701. [Google Scholar] [CrossRef]
- Persia, M.E.; Utterback, P.L.; Biggs, P.E.; Koelkebeck, K.W.; Parsons, C.M. Interrelationship between environmental temperature and dietary nonphytate phosphorus in laying hens. Poult. Sci. 2003, 82, 1763–1768. [Google Scholar] [CrossRef] [PubMed]
- Yahav, S.; Straschnow, A.; Plavnik, I.; Hurwitz, S. Blood system response of chickens to changes in environmental temperature. Poult. Sci. 1997, 76, 627–633. [Google Scholar] [CrossRef]
- Bernardino, M.G.S. Avaliação dos Parâmetros Hematológicos e Bioquímicos de Codornas Japonesas (Coturnix Coturnix Japonica) em Diferentes Faixas Etárias. Dissertação (Mestre em Ciência Animal). Programa de Pós-Graduação em Ciência Animal do Centro de Ciências Agrárias da Universidade Federal da Paraíba. areia-PB. Brasil. 2016; 69p. Available online: https://repositorio.ufpb.br/jspui/bitstream/123456789/15363/1/DV018.pdf (accessed on 11 July 2025). (In Portuguese)
- Faria, P.P.; Cruz, L.C.F.; Sampaio, S.A.; Borges, K.F.; Minafra, C.S. Biochemical analysis for broiler chicken-review. Nutr. Rev. Eletronica 2021, 18, 9004–9014. Available online: https://nutritime.com.br/wp-content/uploads/2021/11/Artigo-547.pdf (accessed on 14 July 2025).
- Lee, S.A.; Nagalakshmi, D.; Raju, M.V.L.N.; Rao, S.V.R.; Bedford, M.R.; Walk, C.L. Phytase as an alleviator of high-temperature stress in broilers fed adequate and low dietary calcium. Poult. Sci. 2019, 98, 2122–2132. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Wang, S.; Li, K.C.; Ruan, D.; Chen, W.; Xia, W.G.; Wang, S.L.; Abouelezz, K.F.M.; Zheng, C.T. Estimation of dietary zinc requirement for laying duck breeders: Effects on productive and reproductive performance. egg quality. tibial characteristics. plasma biochemical and antioxidant indices. and zinc deposition. Poult. Sci. 2020, 99, 454–462. [Google Scholar] [CrossRef]
- Lelis, G.R.; Albino, L.F.T.; Silva, C.R.; Rostagno, H.S.; Gomes, P.C.; Borsatto, C.G. Phytase dietetic supplementation on nutrients metabolism of broilers. Rev. Bras. Zootec. 2010, 39, 1768–1773. [Google Scholar] [CrossRef]
- Baldissera, M.D.; Baldisserotto, B. Creatine Kinase Activity as an Indicator of Energetic Impairment and Tissue Damage in Fish: A Review. Fishes 2023, 8, 59. [Google Scholar] [CrossRef]
- Kong, F.; Zhao, G.; He, Z.; Sun, J.; Wang, X.; Liu, D.; Zhu, D.; Liu, R.; Wen, J. Serum Creatine Kinase as a Biomarker to Predict Wooden Breast in vivo for Chicken Breeding. Front. Physiol. 2021, 12, 711711. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, A.A.; Müller, E.S.; Moraes, G.H.K.; Umigi, R.T.; Barreto, S.L.T.; Ferreira, R.M. Perfil da aspartato aminotransferase e alanina aminotransferase e biometria do fígado de codornas japonesas. Rev. Bras. Zootec. 2010, 39, 308–312. [Google Scholar] [CrossRef][Green Version]
| Treatments | T1 | T2 | T3 | T4 | T5 | |
|---|---|---|---|---|---|---|
| Ingredients | Unit | 0 FTU | 500 FTU | 1000 FTU | 1500 FTU | 3000 FTU |
| Corn-7.88% | g/kg | 597 | 597 | 597 | 597 | 597 |
| Soybean meal 45.22% | g/kg | 305 | 305 | 305 | 305 | 305 |
| Soybean oil | g/kg | 6.67 | 6.67 | 6.67 | 6.67 | 6.67 |
| DL-methionine | g/kg | 3.98 | 3.98 | 3.98 | 3.98 | 3.98 |
| L-Lysine HCl | g/kg | 2.65 | 2.65 | 2.65 | 2.65 | 2.65 |
| L-threonine | g/kg | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 |
| Limestone | g/kg | 74.37 | 74.37 | 74.37 | 74.37 | 74.37 |
| Dicalcium phosphate 18.5% | g/kg | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 |
| Common salt | g/kg | 3.45 | 3.45 | 3.45 | 3.45 | 3.45 |
| Mineral premix a | g/kg | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
| Vitamin premix b | g/kg | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
| Choline | g/kg | 0.70 | 0.70 | 0.70 | 0.70 | 0.70 |
| Antioxidante | g/kg | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 |
| Inert c | g/kg | 0.60 | 0.50 | 0.40 | 0.30 | 0.00 |
| Phytase d | g/kg | 0.00 | 0.10 | 0.20 | 0.30 | 0.60 |
| Total | 1000 | 1000 | 1000 | 1000 | 1000 | |
| Nutrients | Unit | |||||
| Phytase | FTU/kg | 0 | 500 | 1000 | 1500 | 3000 |
| Metabolizable energy | kcal/kg | 2800 | 2800 | 2800 | 2800 | 2800 |
| Crude protein | g/kg | 190.00 | 190.00 | 190.00 | 190.00 | 190.00 |
| Calcium | g/kg | 29.93 | 29.93 | 29.93 | 29.93 | 29.93 |
| Phosphorus total | g/kg | 3.94 | 3.94 | 3.94 | 3.94 | 3.94 |
| Available phosphorus | g/kg | 1.77 | 1.77 | 1.77 | 1.77 | 1.77 |
| Potassium | g/kg | 7.32 | 7.32 | 7.32 | 7.32 | 7.32 |
| Sodium | g/kg | 1.55 | 1.55 | 1.55 | 1.55 | 1.55 |
| Chlorine | g/kg | 3.19 | 3.19 | 3.19 | 3.19 | 3.19 |
| Mogin number | mEq/kg | 164.59 | 164.59 | 164.59 | 164.59 | 164.59 |
| Digestible amino acid (%) | ||||||
| Digestible methionine | g/kg | 6.47 | 6.47 | 6.47 | 6.47 | 6.47 |
| Digestible methi. + cystine | g/kg | 9.08 | 9.08 | 9.08 | 9.08 | 9.08 |
| Digestible lysine | g/kg | 11.07 | 11.07 | 11.07 | 11.07 | 11.07 |
| Digestible threonine | g/kg | 6.75 | 6.75 | 6.75 | 6.75 | 6.75 |
| Digestible tryptophan | g/kg | 2.07 | 2.07 | 2.07 | 2.07 | 2.07 |
| Digestible valine | g/kg | 7.98 | 7.98 | 7.98 | 7.98 | 7.98 |
| Parameters | Temperature | Phytase (FTU/Kg) | Mean | CV% | p-Value | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 500 | 1000 | 1500 | 3000 | ||||||||
| Temperatury | Phytase | Temp. × Phy. | Regression | |||||||||
| ST (mm) | 24 | 0.427 A | 0.406 A | 0.410 A | 0.404 B | 0.406 A | 0.411 | |||||
| 30 | 0.402 B | 0.395 A | 0.411 A | 0.401 B | 0.407 A | 0.403 | 3.602 | 0.1180 | 0.0329 | <0.0001 | NS | |
| 36 | 0.387 B | 0.398 A | 0.394 A | 0.443 A | 0.412 A | 0.407 | ||||||
| Mean | 0.405 | 0.399 | 0.405 | 0.415 | 0.408 | |||||||
| TEP (%) | 24 | 66.013 | 66.749 | 68.071 | 70.074 | 65.365 | 67.254 B | |||||
| 30 | 80.549 | 76.297 | 82.280 | 80.740 | 77.122 | 79.398 A | 11.670 | <0.0001 | 0.7607 | 0.9266 | NS | |
| 36 | 66.379 | 64.943 | 64.313 | 61.510 | 62.570 | 63.943 B | ||||||
| Mean | 70.980 | 69.330 | 71.555 | 70.775 | 68.352 | |||||||
| LW (%) Second cycle | 24 | 2.567 | 2.514 | 2.297 | 2.714 | 2.523 | 2.523 | |||||
| 30 | 2.710 | 2.618 | 2.459 | 2.447 | 2.751 | 2.597 | 14.297 | 0.5053 | 0.0291 | 0.0654 | 0.0037 ** | |
| 36 | 2.769 | 2.714 | 2.441 | 2.111 | 2.515 | 2.510 | ||||||
| Mean | 2.682 | 2.615 | 2.399 | 2.424 | 2.596 | |||||||
| LW (%) Fourth cycle | 24 | 2.767 AB | 2.008 B | 2.411 A | 2.429 A | 2.653 AB | 2.454 | |||||
| 30 | 3.013 A | 2.814 A | 2.377 A | 2.327 A | 3.017 A | 2.710 | 7.500 | <0.0001 | 0.3383 | 0.0095 | NS | |
| 36 | 2.149 B | 2.431 AB | 2.192 A | 2.166 A | 2.112 B | 2.210 | ||||||
| Mean | 2.643 | 2.418 | 2.192 | 2.308 | 2.594 | |||||||
| Parameters | Temperature | Phytase (FTU/Kg) | Mean | CV% | p-Value | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 500 | 1000 | 1500 | 3000 | ||||||||
| Temperatury | Phytase | Temp. × Phy. | Regression | |||||||||
| GGT (U/L) | 24 | 0.37 | 1.38 | 3.34 | 5.22 | 0.58 | 2.18 | |||||
| 30 | 0.67 | 4.12 | 1.10 | 0.37 | 0.66 | 1.38 | 25.89 | 0.84 | 0.28 | 0.60 | NS | |
| 36 | 0.67 | 7.30 | 1.10 | 0.52 | 0.41 | 1.99 | ||||||
| Mean | 0.57 | 4.27 | 1.85 | 2.03 | 0.55 | 0.57 | ||||||
| ALT (U/L) | 24 | 2.20 B | 3.85 A | 3.48 A | 2.70 A | 2.40 A | 2.92 | NS | ||||
| 30 | 1.10 B | 3.68 A | 2.82 A | 2.74 A | 2.43 A | 2.55 | 26.79 | 0.06 | 0.03 | 0.01 | 0.0161 ** | |
| 36 | 4.03 A | 3.23 A | 2.80 A | 2.51 A | 3.39 A | 3.19 | 0.0060 ** | |||||
| Mean | 2.44 | 3.58 | 3.03 | 2.65 | 2.74 | |||||||
| AST (U/L) | 24 | 264.9 | 218.0 | 272.2 | 238.4 | 247.9 | 248.3 B | |||||
| 30 | 243.7 | 277.0 | 307.2 | 302.9 | 289.8 | 284.1 A | 20.89 | 0.04 | 0.86 | 0.11 | NS | |
| 36 | 278.5 | 303.9 | 223.5 | 306.9 | 278.2 | 278.2 AB | ||||||
| Mean | 262.4 | 266.3 | 267.6 | 282.8 | 271.0 | |||||||
| AP (U/L) | 24 | 260.6 | 303.8 | 262.7 | 260.0 | 303.9 | 278.2 B | |||||
| 30 | 199.1 | 300.5 | 212.1 | 223.8 | 321.7 | 251.5 B | 27.98 | 0.01 | 0.01 | 0.91 | 0.041 * | |
| 36 | 284.6 | 392.6 | 314.5 | 354.9 | 369.8 | 343.3 A | ||||||
| Mean | 248.1 | 332.3 | 263.1 | 279.6 | 331.8 | |||||||
| P (mg/dL) | 24 | 5.20 | 5.05 | 5.22 | 5.71 | 5.29 | 5.29 A | |||||
| 30 | 4.61 | 4.54 | 4.38 | 4.16 | 4.84 | 4.50 B | 19.38 | 0.01 | 0.82 | 0.83 | NS | |
| 36 | 4.92 | 4.47 | 3.91 | 4.22 | 4.20 | 4.34 B | ||||||
| Mean | 4.91 | 4.68 | 4.50 | 4.70 | 4.77 | |||||||
| Ca (mg/dL) | 24 | 19.18 | 18.12 | 18.50 | 21.45 | 19.88 | 19.42 A | |||||
| 30 | 18.73 | 16.05 | 17.62 | 19.01 | 16.34 | 17.55 B | 12.00 | 0.02 | 0.19 | 0.17 | NS | |
| 36 | 17.28 | 16.68 | 16.92 | 15.65 | 17.40 | 16.78 B | ||||||
| Mean | 18.40 | 16.95 | 17.68 | 18.70 | 17.87 | |||||||
| URE (mg/dL) | 24 | 4.36 A | 5.44 A | 4.38 A | 3.70 A | 3.35 B | 4.25 | 0.006 * | ||||
| 30 | 4.46 A | 5.28 A | 2.65 B | 3.49 A | 5.83 AB | 4.34 | 17.39 | 0.02 | <0.0001 | 0.01 | <0.001 ** | |
| 36 | 5.00 A | 5.83 A | 3.80 A | 3.55 A | 7.25 A | 5.09 | <0.001 ** | |||||
| Mean | 4.60 | 5.52 | 3.61 | 3.58 | 5.48 | |||||||
| CK (U/L) | 24 | 770.7 | 564.4 | 748.6 | 539.4 | 660.5 | 656.7 | |||||
| 30 | 741.6 | 740.2 | 748.3 | 485.1 | 674.2 | 677.9 | 26.61 | 0.94 | 0.05 | 0.37 | NS | |
| 36 | 521.2 | 683.2 | 755.7 | 567.6 | 799.6 | 665.5 | ||||||
| Mean | 677.8 | 662.6 | 750.9 | 530.7 | 711.4 | |||||||
| UA (mg/dL) | 24 | 3.49 A | 2.78 A | 3.99 A | 3.87 A | 3.24 A | 3.47 | NS | ||||
| 30 | 3.28 A | 2.75 A | 2.41 B | 3.14 A | 3.25 A | 2.97 | 20.14 | 0.02 | 0.15 | 0.01 | NS | |
| 36 | 4.04 A | 3.60 A | 3.93 A | 3.01 A | 3.23 A | 3.56 | 0.051 * | |||||
| Mean | 3.60 | 3.04 | 3.44 | 3.34 | 3.24 | |||||||
| Parameters | Temperature | Phytase (FTU/Kg) | Mean | CV% | p-Value | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 500 | 1000 | 1500 | 3000 | ||||||||
| Temperatury | Phytase | Temp. × Phy. | Regression | |||||||||
| GGT (U/L) | 24 | 1.67 A | 2.50 A | 2.00 A | 3.10 A | 1.90 A | 2.23 | 0.013 ** | ||||
| 30 | 2.08 A | 2.20 A | 1.75 A | 2.18 A | 1.30 A | 1.90 | 23.87 | 0.18 | 0.04 | 0.02 | NS | |
| 36 | 2.10 A | 2.08 A | 1.43 A | 1.27 B | 2.50 A | 1.97 | 0.009 ** | |||||
| Mean | 1.95 | 2.26 | 1.72 | 2.35 | 1.90 | |||||||
| ALT (U/L) | 24 | 1.88 A | 1.48 A | 1.50 A | 1.55 A | 2.05 A | 1.69 | NS | ||||
| 30 | 2.20 A | 3.10 A | 1.54 A | 1.60 A | 2.55 A | 2.20 | 22.87 | 0.04 | 0.32 | 0.03 | 0.025 ** | |
| 36 | 1.93 A | 1.82 A | 1.76 A | 2.30 A | 1.13 B | 1.79 | NS | |||||
| Mean | 2.00 | 2.13 | 1.60 | 1.82 | 1.91 | |||||||
| AST (U/L) | 24 | 273.7 | 258.8 | 304.0 | 267.2 | 322.0 | 285.1 | |||||
| 30 | 267.6 | 276.6 | 304.3 | 294.4 | 294.7 | 287.5 | 19.52 | 0.92 | 0.40 | 0.95 | NS | |
| 36 | 269.8 | 300.5 | 304.5 | 286.9 | 296.1 | 291.6 | ||||||
| Mean | 270.3 | 278.6 | 304.3 | 282.8 | 304.3 | |||||||
| AP (U/L) | 24 | 1844.3 A | 822.2 A | 2032.6 A | 1942.4 A | 755.6 A | 1479.4 | NS | ||||
| 30 | 656.0 A | 1373.5 A | 646.7 B | 611.9 B | 1622.0 A | 982.0 | 27.24 | 0.03 | 0.31 | <0.001 | NS | |
| 36 | 757.9 A | 1676.0 A | 940.4 B | 1788.2 A | 632.4 A | 1159.0 | 0.008 ** | |||||
| Mean | 1086.1 | 1290.6 | 1206.6 | 1447.5 | 1003.3 | |||||||
| P (mg/dL) | 24 | 3.65 A | 3.96 A | 3.99 B | 5.06 A | 3.90 B | 4.110 | 0.004 ** | ||||
| 30 | 4.81 A | 3.43 A | 4.87 A | 4.13 A | 4.53 AB | 4.354 | 13.55 | 0.26 | 0.03 | <0.001 | NS | |
| 36 | 4.15 A | 3.78 A | 4.17 B | 5.02 A | 5.30 A | 4.366 | <0.001 * | |||||
| Mean | 4.205 | 3.724 | 4.145 | 4.737 | 4.574 | |||||||
| Ca (mg/dL) | 24 | 10.83 AB | 9.59 A | 12.41 A | 11.49 AB | 10.50 B | 10.96 | NS | ||||
| 30 | 13.41 A | 12.97 A | 10.04 A | 8.87 B | 17.98 A | 12.65 | 19.23 | 0.03 | 0.08 | <0.001 | <0.001 ** | |
| 36 | 10.27 B | 11.32 A | 11.40 A | 13.61 A | 11.03 B | 11.52 | 0.035 ** | |||||
| Mean | 11.50 | 11.29 | 11.28 | 11.32 | 13.17 | |||||||
| URE (mg/dL) | 24 | 5.67 A | 6.63 A | 3.55 A | 7.00 A | 8.01 A | 6.17 | 0.002 ** | ||||
| 30 | 5.26 A | 3.44 B | 5.03 A | 6.64 A | 7.69 A | 5.61 | 13.90 | 0.04 | <0.001 | <0.001 | <0.001 * | |
| 36 | 5.58A | 6.21A | 3.57 A | 6.63 A | 8.14 A | 6.02 | 0.005 ** | |||||
| Mean | 5.50 | 5.42 | 4.05 | 6.76 | 7.94 | |||||||
| CK (U/L) | 24 | 443.1 A | 619.3 A | 482.4 A | 509.5 B | 421.1 B | 495.1 | NS | ||||
| 30 | 701.4 A | 510.0 A | 400.7 A | 802.8 A | 714.6 A | 625.9 | 24.34 | 0.02 | 0.22 | 0.01 | NS | |
| 36 | 524.1 A | 644.4 A | 585.9 A | 533.1 B | 577.0 AB | 572.9 | NS | |||||
| Mean | 556.2 | 591.2 | 489.7 | 615.1 | 570.9 | |||||||
| UA (mg/dL) | 24 | 2.93 | 3.85 | 3.52 | 2.96 | 3.70 | 3.39 | |||||
| 30 | 3.01 | 3.66 | 3.29 | 3.48 | 3.85 | 3.46 | 17.12 | 0.44 | 0.01 | 0.23 | 0.015 * | |
| 36 | 3.77 | 3.38 | 3.46 | 3.20 | 4.19 | 3.60 | ||||||
| Mean | 3.24 | 3.63 | 3.42 | 3.21 | 3.91 | |||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maia, A.F.; Ribeiro, A.G.; Silva, R.d.S.; Silva, E.G.d.; Lima, L.A.d.A.; Saraiva, E.P.; Queiroga, F.L.P.G.; Ferreira, A.C.S.; Rousseau, X.; Costa, F.G.P.; et al. Egg Production and Biochemical Evaluation of Laying Quails Fed Diets Containing Phytase Overdosage Under Different Thermal Conditions. Animals 2025, 15, 2762. https://doi.org/10.3390/ani15182762
Maia AF, Ribeiro AG, Silva RdS, Silva EGd, Lima LAdA, Saraiva EP, Queiroga FLPG, Ferreira ACS, Rousseau X, Costa FGP, et al. Egg Production and Biochemical Evaluation of Laying Quails Fed Diets Containing Phytase Overdosage Under Different Thermal Conditions. Animals. 2025; 15(18):2762. https://doi.org/10.3390/ani15182762
Chicago/Turabian StyleMaia, Amana Fernandes, Apolônio Gomes Ribeiro, Raiane dos Santos Silva, Edijanio Galdino da Silva, Luiz Arthur dos Anjos Lima, Edilson Paes Saraiva, Felisbina Luisa Pereira Guedes Queiroga, Ana Cristina Silvestre Ferreira, Xavière Rousseau, Fernando Guilherme Perazzo Costa, and et al. 2025. "Egg Production and Biochemical Evaluation of Laying Quails Fed Diets Containing Phytase Overdosage Under Different Thermal Conditions" Animals 15, no. 18: 2762. https://doi.org/10.3390/ani15182762
APA StyleMaia, A. F., Ribeiro, A. G., Silva, R. d. S., Silva, E. G. d., Lima, L. A. d. A., Saraiva, E. P., Queiroga, F. L. P. G., Ferreira, A. C. S., Rousseau, X., Costa, F. G. P., & Guerra, R. R. (2025). Egg Production and Biochemical Evaluation of Laying Quails Fed Diets Containing Phytase Overdosage Under Different Thermal Conditions. Animals, 15(18), 2762. https://doi.org/10.3390/ani15182762

