An Increase in Dietary Net Energy Concentration Affects Nutrient Digestibility and Noxious Gas Emissions and Reveals a Better Growth Rate in Growing–Finishing Pigs
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Husbandry, Diet, Experimental Design
2.2. Sampling Collections
2.2.1. Growth Performance
2.2.2. Nutrient Digestibility
2.2.3. Noxious Gas Emissions
2.3. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Nutrient Digestibility
3.3. NoxiousGas Emissions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Noblet, J. Comparative interests and limits of metabolizable energy and net energy for evaluating poultry and pig feeds. In Proceedings of the 20th European Symposium on Poultry Nutrition (ESPN), Prague, Czech Republic, 24–27 August 2015. [Google Scholar]
- Lambert, W.; Rovers, M.; Ensink, J.; Tesseraud, S.; Corrent, E.; Lange, L.; Star, L. Interaction Between Threonine and Glycine at Low Dietary Crude Protein and the Effect on Production Performance, Meat Quality and Plasma Metabolites in Broiler Chickens. In Proceedings of the 20th European Symposium on Poultry Nutrition (ESPN), Prague, Czech Republic, 24–27 August 2015; 615p, Full papers. Available online: https://hal.science/hal-01607182v1 (accessed on 3 June 2025).
- Alu, S.E. Replacement of Bone Ash with Eggshell Meal on Growth Performance and Carcass Characteristics of Broiler Chickens. Int. J. Food Agric. Res. 2010, 7, 229–238. [Google Scholar]
- Akintan, O.; Gebremedhin, K.G.; Uyeh, D.D. Animal feed formulation—Connecting technologies to build a resilient and sustainable system. Animals 2024, 14, 1497. [Google Scholar] [CrossRef]
- NRC—National Research Council. Committee on Nutrient Requirements of Swine. Nutrient Requirements of Swine, 11th ed.; National Academy Press: Washington, DC, USA, 2012. [Google Scholar]
- Noblet, J. Recent developments in net energy research for swine. Adv. Pork Prod. 2007, 18, 149–156. [Google Scholar]
- Noblet, J.; Jaguelin-Peyraud, Y. Prediction of digestibility of organic matter and energy in the growing pig from an in vitro method. Anim. Feed Sci. Technol. 2007, 134, 211–222. [Google Scholar] [CrossRef]
- Velayudhan, D.E.; Kim, I.H.; Nyachoti, C.M. Characterization of dietary energy in swine feed and feed ingredients: 197 A review of recent research results. Asian Australas. J. Anim. Sci. 2015, 28, 1–13. [Google Scholar] [CrossRef]
- Velayudhan, D.E.; Heo, J.M.; Nyachoti, C.M. Net Energy Content of Dry Extruded-Expelled Soybean Meal Fed to Growing Pigs Using Indirect Calorimetry. In Energy and Protein Metabolism and Nutrition in Sustainable Animal Production–EAAP134; Oltjen, J.W., Kebreab, E., Lapierre, H., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2013; p. 187. [Google Scholar]
- Lee, J.H.; Lee, S.D.; Yun, W.; Oh, H.J.; An, J.S.; Kim, I.H.; Cho, J.H. Effects of different standardized ileal digestible lysine: Net energy proportion in growing and finishing pigs. J. Anim. Sci. Technol. 2020, 62, 198. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Choe, J.; Cho, J.; Jang, K.B.; Kyoung, H.; Park, K.; Kim, Y.; Ahn, J.; Kim, H.B.; Song, M. Determination of optimal energy system and level for growing pig. J. Anim. Sci. Technol. 2024, 66, 514. [Google Scholar] [CrossRef]
- Liu, J.B.; Cao, S.C.; Liu, J.; Pu, J.; Chen, L.; Zhang, H.F. Effects of dietary energy and lipase levels on nutrient digestibility, digestive physiology and noxious gas emission in weaning pigs. Asian Australas. J. Anim. Sci. 2018, 31, 1963–1973. [Google Scholar] [CrossRef]
- Ayuso, M.; Fernandez, A.; Nunez, Y.; Benitez, R.; Isabel, B.; Fernandez, A.I.; Ovilo, C. Developmental stage, muscle and genetic type modify muscle transcriptome in pigs: Effects on gene expression and regulatory factors involved in growth and metabolism. PLoS ONE 2016, 11, e0167858. [Google Scholar] [CrossRef]
- Beaulieu, A.D.; Williams, N.H.; Patience, J.F. Response to dietary digestible energy concentration in growing pigs fed cereal grain-based diets. J. Anim. Sci. 2009, 87, 965–976. [Google Scholar] [CrossRef] [PubMed]
- Nitikanchana, S.; Dritz Steven, S.; Tokach, M.D.; Rouchey, J.M.; Goodband, R.D.; White, B.J.; Nelssen, J.L. Regression analysis to predict growth performance from dietary net energy in growing-finishing pigs. Kans. Agric. Exp. Station Res. Rep. 2013, 93, 2826–2839. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 18th ed.; AOAC: Washington, DC, USA, 2006. [Google Scholar]
- Hossain, M.M.; Hwang, H.S.; Pang, M.; Choi, M.K.; Kim, I.H. Effect of dietary Achyranthes japonica extract on growth performance of growing pigs and absorption rate of quercetin in blood. J. Anim. Sci. Technol. 2024, 66, 103–114. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Williams, C.H.; David, D.J.; Iismaa, O. The determination of chromic oxide in faeces samples by atomic absorption spectrophotometry. J. Agric. Sci. 1962, 59, 381–385. [Google Scholar] [CrossRef]
- Wang, H.; Yu, S.-J.; Kim, I.-H. Evaluation on the Growth Performance, Nutrient Digestibility, Faecal Microbiota, Noxious Gas Emission, and Faecal Score on Weaning Pigs Supplement with and without Probiotics Complex Supplementation in Different Level of Zinc Oxide. Animals 2023, 13, 381. [Google Scholar] [CrossRef] [PubMed]
- Zijlstra, R.T.; Beltranena, E. Swine convert co-products from food and biofuel industries into animal protein for food. Anim. Front. 2013, 3, 48–53. [Google Scholar] [CrossRef]
- Pettigrew, J.E.; Moser, R.L. Fat in swine nutrition. In Swine Nutrition; Miller, E.R., Ullrey, D.E., Lewis, A.J., Eds.; Butterworth-Heinemann: Stoneham, MA, USA, 1991; Volume 99, pp. 133–146. [Google Scholar]
- Kil, D.Y.; Sauber, T.E.; Jones, D.B.; Stein, H.H. Effect of the form of dietary fat and the concentration of dietary neutral detergent fiber on ileal and total tract endogenous losses and apparent and true digestibility of fat by growing pigs. J. Anim. Sci. 2010, 88, 2959–2967. [Google Scholar] [CrossRef] [PubMed]
- Nitikanchana, S.; Dritz Steven, S.; Tokach, M.D.; DeRouchey, J.M.; Goodband Robert, D.; White, B.J. Effects of feeding different dietary net energy levels to growing-finishing pigs when dietary lysine is adequate. Kans. Agric. Exp. Station Res. Rep. 2014, 0, 245–268. [Google Scholar] [CrossRef]
- Lee, G.I.; Kim, K.; Kim, J.H.; Kil, D.Y. Growth performance of early finishing gilts as affected by different net energy in diets. Asian Australas. J. Anim. Sci. 2015, 28, 1614. [Google Scholar] [CrossRef]
- Henry, Y. Dietary factors involved in feed intake regulation in growing pigs: A review. Livest. Prod. Sci. 1985, 12, 339–354. [Google Scholar] [CrossRef]
- Quiniou, N.; Noblet, J. Effect of the dietary net energy concentration on feed intake and performance of growing finishing pigs housed individually. J. Anim. Sci. 2012, 90, 4362–4372. [Google Scholar] [CrossRef]
- Fracaroli, C.; Perondi, D.; Santos, L.S.; Silva, W.C.; Veira, A.M.; Hauschild, L. Net energy levels of reduced crude protein, amino acid-supplemented diets for heavy pigs. Livest. Sci. 2017, 205, 43–49. [Google Scholar] [CrossRef]
- Yi, X.W.; Zhang, S.R.; Yang, Q. Influence of dietary net energy content on performance of growing pigs fed low crude protein diets supplemented with crystalline amino acids. J. Swine Health Prod. 2010, 18, 294–300. [Google Scholar] [CrossRef]
- Zhao, Y.; Tian, G.; Chen, D.; Zheng, P.; Yu, J.; He, J.; Mao, X.; Yu, B. Effects of varying levels of dietary protein and net energy on growth performance, nitrogen balance and faecal characteristics of growing-finishing pigs. Rev. Bras. Zootec. 2019, 48, e20180021. [Google Scholar] [CrossRef]
- Paternostre, L.; Boever, J.; Millet, S. Interaction between fat and fiber level on nutrient digestibility of pig feed. Anim. Feed Sci. Technol. 2021, 282, 115126. [Google Scholar] [CrossRef]
- Noblet, J.; Perez, J.M. Prediction of digestibility of nutrients and energy values of pig diets from chemical analysis. J. Anim. Sci. 1993, 71, 3389–3398. [Google Scholar] [CrossRef]
- Liu, Z.; Powers, W.; Murphy, J.; Maghirang, R. Ammonia and hydrogen sulfide emissions from swine production facilities in North America: A meta-analysis. J. Anim. Sci. 2014, 92, 1656–1665. [Google Scholar] [CrossRef]
- Nguyen, D.H.; Lee, S.I.; Cheong, J.Y.; Kim, I.H. Influence of low-protein diets and protease and bromelain supplementation on growth performance, nutrient digestibility, blood urine nitrogen, creatinine, and faecal noxious gas in growing–finishing pigs. Can. J. Anim. Sci. 2018, 98, 488–497. [Google Scholar] [CrossRef]
- Upadhaya, S.D.; Yun, H.M.; Kim, I.H. Influence of low or high density corn and soybean meal-based diets and protease supplementation on growth performance, apparent digestibility, blood characteristics and noxious gas emission of finishing pigs. Anim. Feed. Sci. Technol. 2016, 216, 281–287. [Google Scholar] [CrossRef]
- Yan, L.; Meng, Q.W.; Kim, I.H. The effect of an herb extract mixture on growth performance, nutrient digestibility, blood characteristics and fecal noxious gas content in growing pigs. Livest. Sci. 2011, 141, 143–147. [Google Scholar] [CrossRef]
- Ferket, P.R.; Van Heugten, E.; Van Kempen, T.A.; Angel, R. Nutritional strategies to reduce environmental emissions from nonruminants. J. Anim. Sci. 2002, 80, 168–182. [Google Scholar] [CrossRef]
Item | Experimental Diet | ||||
---|---|---|---|---|---|
CON | NE −5.0% | NE −2.5% | NE +2.5% | NE +5.0% | |
Ingredients (%) | |||||
Corn | 76.44 | 64.71 | 70.56 | 75.71 | 73.88 |
Soybean meal | 19.16 | 16.83 | 18.00 | 19.60 | 19.93 |
Palm kernel meal | 1.00 | 15.00 | 8.00 | - | - |
Tallow | 0.05 | 0.16 | 0.12 | 1.35 | 2.85 |
MDCP | 1.48 | 1.30 | 1.40 | 1.48 | 1.48 |
Limestone | 0.76 | 0.82 | 0.78 | 0.76 | 0.77 |
Salt | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 |
Methionine (99%) | 0.05 | 0.06 | 0.05 | 0.05 | 0.05 |
Lysine (78%) | 0.49 | 0.49 | 0.46 | 0.42 | 0.41 |
Mineral mix 2 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 |
Vitamin mix 3 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 |
Choline (25%) | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 |
Total | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Calculated value | |||||
Crude protein, % | 16.00 | 16.00 | 16.00 | 16.00 | 16.00 |
NE (kcal/kg) 4 | 2352 | 2414 | 2475 | 2537 | 2599 |
ME (kcal/kg) 5 | 3216 | 3248 | 3300 | 3341 | 3407 |
Calcium, % | 0.70 | 0.70 | 0.70 | 0.70 | 0.70 |
Phosphorus, % | 0.60 | 0.60 | 0.60 | 0.60 | 0.60 |
Lysine, % | 1.10 | 1.10 | 1.10 | 1.10 | 1.10 |
Methionine, % | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 |
Fat, % | 2.66 | 2.84 | 2.99 | 4.25 | 5.67 |
Item | Experimental Diet | ||||
---|---|---|---|---|---|
CON | NE −5.0% | NE −2.5% | NE +2.5% | NE +5.0% | |
Ingredients (%) | |||||
Corn | 76.77 | 65.02 | 70.89 | 79.33 | 77.45 |
Soybean meal | 16.15 | 13.83 | 14.98 | 16.95 | 17.28 |
Palm kernel meal | 4.00 | 18.00 | 11.00 | - | - |
Tallow | 0.13 | 0.24 | 0.20 | 0.75 | 2.28 |
MDCP | 1.20 | 1.05 | 1.10 | 1.24 | 1.28 |
Limestone | 0.66 | 0.70 | 0.70 | 0.66 | 0.64 |
Salt | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 |
Methionine (99%) | 0.06 | 0.07 | 0.07 | 0.06 | 0.06 |
Lysine (78%) | 0.40 | 0.46 | 0.43 | 0.38 | 0.38 |
Mineral mix 2 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 |
Vitamin mix 3 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 |
Choline (25%) | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 |
Total | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Calculated value | |||||
Crude protein, % | 15.00 | 15.00 | 15.00 | 15.00 | 15.00 |
NE (kcal/kg) 4 | 2352 | 2414 | 2475 | 2537 | 2599 |
ME (kcal/kg) 5 | 3300 | 3251 | 3282 | 3328 | 3395 |
Calcium, % | 0.60 | 0.60 | 0.60 | 0.60 | 0.60 |
Phosphorus, % | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 |
Lysine, % | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Methionine, % | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 |
Fat, % | 2.70 | 2.88 | 3.04 | 3.75 | 5.19 |
Item | Experimental Diet | ||||
---|---|---|---|---|---|
CON | NE −5.0% | NE −2.5% | NE +2.5% | NE +5.0% | |
Ingredients (%) | |||||
Corn | 72.71 | 68.10 | 78.82 | 84.52 | 83.83 |
Soybean meal | 10.26 | 8.04 | 9.10 | 11.43 | 11.86 |
Palm kernel meal | 8.00 | 21.00 | 15.00 | 1.00 | - |
Tallow | 0.18 | 0.05 | 0.24 | 0.15 | 1.42 |
MDCP | 1.00 | 0.85 | 0.95 | 1.10 | 1.10 |
Limestone | 0.66 | 0.70 | 0.66 | 0.64 | 0.64 |
Salt | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 |
Methionine (99%) | 0.09 | 0.10 | 0.10 | 0.09 | 0.09 |
Lysine (78%) | 0.47 | 0.53 | 0.50 | 0.44 | 0.43 |
Mineral mix 2 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 |
Vitamin mix 3 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 |
Choline (25%) | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 |
Total | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Calculated value | |||||
Crude protein, % | 13.00 | 13.00 | 13.00 | 13.00 | 13.00 |
NE (kcal/kg) 4 | 2352 | 2414 | 2475 | 2537 | 2599 |
ME (kcal/kg) 5 | 3208 | 3251 | 3276 | 3307 | 3369 |
Calcium, % | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 |
Phosphorus, % | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
Lysine, % | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |
Methionine, % | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 |
Fat, % | 2.53 | 2.90 | 3.06 | 3.25 | 4.49 |
Items | CON | TRT1 | TRT2 | TRT3 | TRT4 | Gender | SEM 2 | p-Value | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Barrow | Gilt | NE | Gender | Interaction | |||||||
Body weight, kg | |||||||||||
Buffering | 24.67 | 24.67 | 24.67 | 24.67 | 24.66 | 24.67 | 24.67 | 0.06 | 0.001 | 0.128 | 0.246 |
Initial | 32.65 | 32.64 | 32.64 | 32.65 | 32.65 | 32.65 | 32.64 | 0.07 | 0.101 | 0.245 | 0.386 |
Week 6 | 51.34 ab | 50.14 b | 50.62 ab | 51.64 a | 51.78 a | 51.64 | 51.63 | 3.44 | 0.018 | 0.061 | 0.075 |
Finish | 111.78 | 111.46 | 112.67 | 113.12 | 114.64 | 111.72 | 111.69 | 8.433 | 0.189 | 0.873 | 0.959 |
Buffering–Initial | |||||||||||
ADG, g | 511 | 509 | 508 | 515 | 506 | 508 | 506 | 12 | 0.635 | 0.719 | 0.778 |
ADFI, g | 1063 | 1059 | 1055 | 1060 | 1053 | 1060 | 1059 | 20 | 0.803 | 0.939 | 0.642 |
FCR | 2.080 | 2.085 | 2.077 | 2.062 | 2.082 | 2.083 | 2.084 | 0.017 | 0.331 | 0.492 | 0.577 |
Initial–Week 6 | |||||||||||
ADG, g | 697 ab | 655 b | 673 ab | 706 ab | 715 a | 706 | 702 | 17 | 0.017 | 0.078 | 0.265 |
ADFI, g | 1657 | 1595 | 1620 | 1643 | 1654 | 1644 | 1643 | 25 | 0.094 | 0.205 | 0.108 |
FCR | 2.380 ab | 2.438 a | 2.411 a | 2.329 b | 2.314 b | 2.398 | 2.402 | 0.026 | 0.002 | 0.064 | 0.076 |
Week 6–Finish | |||||||||||
ADG, g | 863 | 876 | 886 | 878 | 898 | 897 | 894 | 22 | 0.236 | 0.540 | 0.585 |
ADFI, g | 2561 | 2582 | 2603 | 2599 | 2633 | 2614 | 2614 | 39 | 0.188 | 0.285 | 0.323 |
FCR | 2.970 | 2.951 | 2.940 | 2.961 | 2.935 | 2.948 | 2.952 | 0.032 | 0.352 | 0.073 | 0.094 |
Overall | |||||||||||
ADG, g | 778 | 775 | 786 | 790 | 803 | 788 | 786 | 17 | 0.218 | 0.345 | 0.586 |
ADFI, g | 1970 | 1974 | 1990 | 1991 | 2013 | 1989 | 1982 | 26 | 0.225 | 0.268 | 0.408 |
FCR | 2.535 | 2.550 | 2.535 | 2.523 | 2.508 | 2.528 | 2.532 | 0.022 | 0.169 | 0.243 | 0.118 |
Items | CON | TRT1 | TRT2 | TRT3 | TRT4 | Gender | SEM 2 | p-Value | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Barrow | Gilt | NE | Gender | Interaction | |||||||
Week 6 | |||||||||||
Dry matter | 76.89 | 76.42 | 76.55 | 76.95 | 77.23 | 76.88 | 76.85 | 0.47 | 0.244 | 0.571 | 0.236 |
Nitrogen | 73.96 | 73.94 | 74.02 | 74.30 | 74.24 | 73.94 | 73.94 | 0.28 | 0.381 | 0.212 | 0.765 |
Energy | 75.49 | 75.02 | 75.33 | 75.63 | 75.80 | 75.06 | 75.02 | 0.53 | 0.314 | 0.534 | 0.568 |
Items | CON | TRT1 | TRT2 | TRT3 | TRT4 | Gender | SEM 2 | p-Value | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Barrow | Gilt | NE | Gender | Interaction | |||||||
Week 6 | |||||||||||
NH3 | 6.13 | 6.13 | 6.63 | 5.88 | 5.75 | 6.18 | 6.15 | 0.30 | 0.058 | 0.602 | 0.184 |
H2S | 5.03 | 5.73 | 5.13 | 4.65 | 4.98 | 5.73 | 5.74 | 0.44 | 0.109 | 0.078 | 0.206 |
Methyl mercaptans | 5.38 | 6.38 | 5.50 | 5.50 | 6.00 | 5.50 | 5.47 | 0.78 | 0.382 | 0.548 | 0.108 |
Acetic acid | 10.13 | 11.38 | 10.63 | 10.75 | 10.75 | 10.12 | 10.10 | 1.41 | 0.542 | 0.782 | 0.904 |
CO2 | 13,275 | 13,375 | 12,925 | 12,825 | 12,900 | 12,889 | 12,886 | 383 | 0.330 | 0.620 | 0.882 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolawole, U.K.; Kim, I.H. An Increase in Dietary Net Energy Concentration Affects Nutrient Digestibility and Noxious Gas Emissions and Reveals a Better Growth Rate in Growing–Finishing Pigs. Animals 2025, 15, 2761. https://doi.org/10.3390/ani15182761
Kolawole UK, Kim IH. An Increase in Dietary Net Energy Concentration Affects Nutrient Digestibility and Noxious Gas Emissions and Reveals a Better Growth Rate in Growing–Finishing Pigs. Animals. 2025; 15(18):2761. https://doi.org/10.3390/ani15182761
Chicago/Turabian StyleKolawole, Usman Kayode, and In Ho Kim. 2025. "An Increase in Dietary Net Energy Concentration Affects Nutrient Digestibility and Noxious Gas Emissions and Reveals a Better Growth Rate in Growing–Finishing Pigs" Animals 15, no. 18: 2761. https://doi.org/10.3390/ani15182761
APA StyleKolawole, U. K., & Kim, I. H. (2025). An Increase in Dietary Net Energy Concentration Affects Nutrient Digestibility and Noxious Gas Emissions and Reveals a Better Growth Rate in Growing–Finishing Pigs. Animals, 15(18), 2761. https://doi.org/10.3390/ani15182761