Effects of Modified Attapulgite on Daily Weight Gain, Serum Indexes and Serum Metabolites in Fattening Beef Cattle
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Statistical Analyses
4. Results
4.1. Effects of Modified Attapulgite on the Daily Weight Gain of Simmental Fattening Cattle
4.2. Effects of Modified Attapulgite on Serum Indices in Simmental Fattening Cattle
4.3. Effects of Modified Attapulgite on Serum Metabolomics in Simmental Fattening Cattle
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mendes, S.J.F.; Sousa, F.I.A.B.; Pereira, D.M.S.; Ferro, T.A.F.; Pereira, I.C.P.; Silva, B.L.R.; Pinheiro, A.J.M.C.R.; Mouchrek, A.Q.S.; Monteiro-Neto, V.; Costa, S.K.P.; et al. Cinnamaldehyde modulates LPS-induced systemic inflammatory response syndrome through TRPA1-dependent and independent mechanisms. Int. Immunopharmacol. 2016, 34, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Triantafilou, M.; Triantafilou, K. Lipopolysaccharide recognition: CD14, TLRs and the LPS-activation cluster. Trends Immunol. 2002, 23, 301–304. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Sun, Y.; Dong, X.; Chen, J.; Wang, Z.; Chen, J.; Dong, G. The Synergism of PGN, LTA and LPS in Inducing Transcriptome Changes, Inflammatory Responses and a Decrease in Lactation as Well as the Associated Epigenetic Mechanisms in Bovine Mammary Epithelial Cells. Toxins 2020, 12, 387. [Google Scholar] [CrossRef]
- Wei, X.F. Role and mechanism of AKT1 gene methylation in the decreased lactation ability of dairy cows induced by LPS. Northeast Agric. Univ. 2023. [Google Scholar] [CrossRef]
- Jiao, B.; Zhang, W.; Zhang, C.; Zhang, K.; Cao, X.; Yu, S.; Zhang, X. Protein tyrosine phosphatase 1B contributes to neuropathic pain by aggravating NF-κB and glial cells activation-mediated neuroinflammation via promoting endoplasmic reticulum stress. CNS Neurosci. Ther. 2024, 30, e14609. [Google Scholar] [CrossRef]
- Zhou, R.; Wang, X.P.; Hu, X.M.; Li, Y.H.; Wang, Z.X.; Luo, R.Z.M. Role of circFAM53B in the inflammatory response of bovine mammary epithelial cells. J. China Agric. Univ. 2025, 30, 37–48. [Google Scholar]
- Vinícius, N.G.; Reinaldo, F.C.; Rodrigo, S.M. Impacts of stress-induced inflammation on feed intake of beef cattle. Front. Anim. Sci. 2022, 3, 962748. [Google Scholar] [CrossRef]
- Guozhong, D.; Shimin, L.; Yongxia, W.; Chunlong, L.; Jun, Z.; Sen, Z. Diet-induced bacterial immunogens in the gastrointestinal tract of dairy cows: Impacts on immunity and metabolism. Acta Vet. Scand. 2011, 53, 48. [Google Scholar] [CrossRef]
- Yang, J.; Sun, Y.; Wang, Q.; Yu, S.; Li, Y.; Yao, B.; Yang, X. Astragalus polysaccharides-induced gut microbiota play a predominant role in enhancing of intestinal barrier function of broiler chickens. J. Anim. Sci. Biotechnol. 2024, 15, 106. [Google Scholar] [CrossRef]
- Davis, M.E.; Maxwell, C.V.; Erf, G.F.; Brown, D.C.; Wistuba, T.J. Dietary supplementation with phosphorylated mannans improves growth response and modulates immune function of weanling pigs. J. Anim. Sci. 2004, 82, 1882–1891. [Google Scholar] [CrossRef]
- Chen, Y.P.; Cheng, Y.F.; Li, X.H.; Zhang, H.; Yang, W.L.; Wen, C.; Zhou, Y.M. Dietary palygorskite supplementation improves immunity, oxidative status, intestinal integrity, and barrier function of broilers at early age. Anim. Feed Sci. Technol. 2016, 219, 200–209. [Google Scholar] [CrossRef]
- Chance, J.A.; DeRouchey, J.M.; Amachawadi, R.G.; Ishengoma, V.; Nagaraja, T.G.; Goodband, R.D.; Woodworth, J.C.; Tokach, M.D.; Kang, Q.; Loughmiller, J.A.; et al. Influence of yeast-based pre- and probiotics in lactation and nursery diets on nursery pig performance and antimicrobial resistance of fecal Escherichia coli. J. Anim. Sci. 2022, 100, skac166. [Google Scholar] [CrossRef]
- Zeng, H.; Xi, Y.; Li, Y.; Wang, Z.; Zhang, L.; Han, Z. Analysis of Astragalus Polysaccharide Intervention in Heat-Stressed Dairy Cows’ Serum Metabolomics. Animals 2020, 10, 574. [Google Scholar] [CrossRef]
- Pengjia, H.; Yu, L.; Ke, Z.; Rui, Z.; Yunpeng, B.; Zeming, L.; Li, J.; Jinping, S.; Qiang, C.; Yannan, M.; et al. Dietary oregano essential oil supplementation alters meat quality, oxidative stability, and fatty acid profiles of beef cattle. Meat Sci. 2023, 205, 109317. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Lei, Y.; Shi, J.; Liu, W.; Zhang, X.; He, P.; Ma, Y.; Zhang, X.; Cao, Y.; Cheng, Q.; et al. Effects of dietary oregano essential oil supplementation on carcass traits, muscle fiber structure, oxidative stability, meat quality, and regulatory mechanisms in Holstein steers. J. Sci. Food Agric. 2025, 105, 3097–3110. [Google Scholar] [CrossRef]
- Cho, B.W.; Cha, C.N.; Lee, S.M.; Kim, M.J.; Park, J.Y.; Yoo, C.Y.; Son, S.E.; Kim, S.; Lee, H.J. Therapeutic effect of oregano essential oil on subclinical bovine mastitis caused by Staphylococcus aureus and Escherichia coli. Korean J. Vet. Res. 2015, 55, 253–257. [Google Scholar] [CrossRef]
- Guangjie, C.; Jing, L.; Huan, L.; Xiaojie, C.; Na, Y.; Xiubo, L.; Fei, X. Integration of Network Pharmacology and Molecular Docking to Analyse the Mechanism of Action of Oregano Essential Oil in the Treatment of Bovine Mastitis. Vet. Sci. 2023, 10, 350. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, J.; Wang, W.; Wang, A. Effects of Heat-treatment on Properties of Attapulgite Clay & Superabsorbent Composites. Non-Met. Mines 2006, 15–17. [Google Scholar]
- Zhu, B.B. Alleviation of Toxic Effects of Zearalenone by Modified Attapulgite and Vitamin E in Broiler Chickens. Master’s Thesis, Nanjing Agricultural University, Nanjing, China, 2016. [Google Scholar]
- Yuan, Y.; Wen, W.; Feng, Z.M.; Huang, X.G. Mechanism of attapulgite and its application in animal production. Chin. J. Anim. Nutr. 2020, 32, 2533–2542. [Google Scholar]
- Du, J. Preparation of Attapulgite and Plant Essential Oil Complex and Their Application in Pigeonindustry. Master’s Thesis, Northeast Agricultural University, Harbin, China, 2021. [Google Scholar] [CrossRef]
- Bampidis, V.A.; Christodoulou, V.; Theophilou, N.; Kotsampasi, V. Effect of dietary palygorskite on performance and blood parameters of lactating Holstein cows. Appl. Clay Sci. 2014, 91–92, 25–29. [Google Scholar] [CrossRef]
- Wang, L.J.; Wang, Z.H.; Sun, X.Y.; Liu, X.D.; Jin, J.Y. Treating dyeing wastewater with modified absorbent of attapulgite. J. Nanjing Univ. Sci. Technol. 1998, 48–51. [Google Scholar]
- Zhou, J.Y.; Cui, B.F. Attapulgite clay in the oversea. East China Geol. 2004, 248–259. [Google Scholar]
- Wang, X.L.; Li, S.J.; Lin, H.; Pei, M.C.; Zhu, J.; Han, Z.Y. Effects of chitooligosaccharide/ZnO/attapulgite compound agent on rumen microflora and metabonomics of Hu sheep. J. Nanjing Agric. Univ. 2022, 45, 174–182. [Google Scholar]
- Yang, X.B.; Tian, Y. Effects of different mold removers on the performance and blood biochemical indexes of dairy cows. China Dairy Cattle 2017, 11–13. [Google Scholar] [CrossRef]
- Lian, H.; Ge, J.W.; Tian, Y. Effects of modified attapulgite on production performance and blood parameters in early lactating dairy cows. Anim. Husb. Vet. Med. 2023, 55, 37–40. [Google Scholar]
- NY/T 815-2004; Beef Cattle Feeding Standards. China National Standards: Beijing, China, 2004.
- Cong, L.; Sam, A.; Hui, Z.; Baocai, X. Influence of curing on the metabolite profile of water-boiled salted duck. Food Chem. 2022, 397, 133752. [Google Scholar] [CrossRef] [PubMed]
- Xiangge, K.; Zian, G.; Yuan, Y.; Linchao, X.; Ruixuan, L.; Haifeng, S.; Sheng, Z. Acetic acid alters rhizosphere microbes and metabolic composition to improve willows drought resistance. Sci. Total Environ. 2022, 844, 157132. [Google Scholar] [CrossRef]
- Yue, W.; Xuemei, N.; Yiguang, Z.; Linshu, J.; Hui, W.; Fan, Z.; Dengke, H.; Jun, L.; Liang, Y.; Junhu, Y.; et al. Discrepancies among healthy, subclinical mastitic, and clinical mastitic cows in fecal microbiome and metabolome and serum metabolome. J. Dairy Sci. 2022, 105, 7668–7688. [Google Scholar] [CrossRef] [PubMed]
- Ruimin, W.; Lu, W.; Haibo, W.; Lin, Z.; Xiaoping, H.; Congfa, L.; Sixin, L. Noni (Morinda citrifolia L.) fruit phenolic extract supplementation ameliorates NAFLD by modulating insulin resistance, oxidative stress, inflammation, liver metabolism and gut microbiota. Food Res. Int. 2022, 160, 111732. [Google Scholar] [CrossRef]
- Kai, Y.; Dongxu, W.; Hongjing, Z.; Yu, W.; Yue, Z.; Yachen, L.; Baoying, L.; Mingwei, X. Polystyrene microplastics up-regulates liver glutamine and glutamate synthesis and promotes autophagy-dependent ferroptosis and apoptosis in the cerebellum through the liver-brain axis. Environ. Pollut. 2022, 307, 119449. [Google Scholar] [CrossRef]
- Wang, D.; Du, Y.; Zheng, D.; You, Z.; Liu, Y. Effects of palygorskite supplementation on growth performance, diarrhea incidence, serum biochemical indexes and intestinal microflora of Holstein calves. Chin. J. Anim. Nutr. 2021, 33, 6843–6852. [Google Scholar]
- Sun, X.C.; Li, S.J.; Zhu, J.; Xie, Y.; Han, Z.Y. Effects of attapulgite antibacterial materials on the production performance, slaughter performance and meat quality of Hu sheep. Anim. Husb. Vet. Med. 2021, 53, 38–41. [Google Scholar]
- Geng, Q.D.; Jiang, Y.D.; Wu, Y.F. Albumin/globulin ratio in diagnosis of periprosthetic joint infection:a system evaluation and meta-analysis. Chin. J. Tissue Eng. Res. 2024, 28, 5892–5898. [Google Scholar]
- Aldecoa, C.; Llau, J.V.; Nuvials, X. Role of albumin in the preservation of endothelial glycocalyx integrity and the microcirculation: A review. Ann. Intensive Care 2020, 10, 85. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.F.; Li, H.Q.; Wang, Z.D.; Zhang, L.; Zhu, J.; Xie, Y.; Han, Z.Y. Effect of astragalus polysaccharide on performance, serum biochemical index of dairy cows under stress. China Dairy Cattle 2019, 42–49. [Google Scholar] [CrossRef]
- Larsen, M.; Røntved, C.M.; Theil, P.K.; Khatun, M.; Lauridsen, C.; Kristensen, N.B. Effect of experimentally increased protein supply to postpartum dairy cows on plasma protein synthesis, rumen tissue proliferation, and immune homeostasis. J. Anim. Sci. 2017, 95, 2097–2110. [Google Scholar] [CrossRef]
- Guo, R.; Zhang, H.; Jiang, C.; Niu, C.; Chen, B.; Yuan, Z.; Wei, Y.; Hua, Y. The impact of codonopsis pilosulae and astragalus membranaceus extract on growth performance, immunity function, antioxidant capacity and intestinal development of weaned piglets. Front. Vet. Sci. 2024, 11, 1470158. [Google Scholar] [CrossRef]
- James, K.L.; Valmoria, O.A.D.S.; Csaba, S. The Role of Methionine Supplementation on Oxidative Stress and Antioxidant Status of Poultry-A Review. Agriculture 2022, 12, 1701. [Google Scholar] [CrossRef]
- Lin, L.J. Effects of Attapulgite on Rumen Fermentation and Lactation Performance of Mid-Lactation Cows. Master’s Thesis, Nanjing Agricultural University, Nanjing, China, 2014. [Google Scholar]
- Pavelić, K.; Hadzija, M.; Bedrica, L.; Pavelić, J.; Dikić, I.; Katić, M.; Kralj, M.; Bosnar, M.H.; Kapitanović, S.; Poljak-Blazi, M.; et al. Natural zeolite clinoptilolite: New adjuvant in anticancer therapy. J. Mol. Med. 2001, 78, 708–720. [Google Scholar] [CrossRef]
- Fan, Q.Q.; Hu, Y.; Zhao, B.; Gong, J. Tumor necrosis factor inhibitors and guillain-barre syndrome:data mining and evaluation of risk signals based on FAERS. Her. Med. 2022, 41, 567–571. [Google Scholar]
- Liu, M.F.; Li, Q.N.; Ma, Z.Y.; Wu, Z.M.; Ban, F.G.; Yan, R.Q.; Wang, H.J. Immunopotentiation effect of recombinant chicken interleukin-6/2 fusion protein on newcastle disease virus (LaSota) live vaccine. China Anim. Husb. Vet. Med. 2019, 46, 590–599. [Google Scholar] [CrossRef]
- Lee, Y.H.; Pratley, R.E. The evolving role of inflammation in obesity and the metabolic syndrome. Curr. Diabetes Rep. 2005, 5, 70–75. [Google Scholar] [CrossRef]
- Zhu, G.S. Protective Effect of Resveratrol on Zearalenone-Induced Liver Oxidative Damage and Inflammation in Mice. Master’s Thesis, Yangzhou University, Yangzhou, China, 2022. [Google Scholar] [CrossRef]
- Gan, Z.; Zhang, T.; Wu, H.; Jiang, K.; Qiu, C.; Deng, G. MicroRNA let-7c improves LPS-induced outcomes of endometritis by suppressing NF-κB signaling. Inflammation 2019, 42, 650–657. [Google Scholar] [CrossRef]
- Wei, A.J.; Hai, X.D.; Fan, C.Y.; Qian, D.K.; Yuan, C.Y.; Hao, C.Z.; Lu, H.R.; Lu, L.X.; Hui, C. Advances in the construction of LPS in poultry stress modeling. Today Anim. Husb. Vet. Med. 2024, 40, 74–76. [Google Scholar]
- Liu, X.Y. Effect of Arginine on Oxidative Injury, Apoptosis and Barrier Function of Ovine Intestinal Epithelial Cells. Master’s Thesis, Yangzhou University, Yangzhou, China, 2023. [Google Scholar] [CrossRef]
- Tang, S.Q.; Lu, Y. Endocannabinoids—Biosynthesis, signal transduction and biodegradation. Chin. Pharmacol. Bull. 2013, 29, 1037–1041. [Google Scholar]
- Matthews, A.T.; Ross, M.K. Oxyradical Stress, Endocannabinoids, and Atherosclerosis. Toxics 2015, 3, 481–498. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Leng, Z.X.; Yan, R.; Chen, X.; Wu, D.W.; Zhou, Y.M. Effects of attapulgite on growth performance, metal content in blood, muscle and meat quality of growing-finishing pigs. J. Chin. Cereals Oils Assoc. 2015, 30, 96–101. [Google Scholar] [CrossRef]
- Zhang, C.Z. Protective Mechanism of Copper/Zinc-Modified Palygorskite Onchicks Against S. Typhimurium Infection. Ph.D. Thesis, Nanjing Agricultural University, Nanjing, China, 2022. [Google Scholar] [CrossRef]
- Teresa, I.; Daniele, D.F.; Attilio, D.S.S.; Alessandra, D.A.; Sara, S.; Stefania, S.; Giuseppe, E.; Giuseppe, B.; Luigi, I.; Carmine, N.; et al. Selective CB2 up-regulation in women affected by endometrial inflammation. J. Cell. Mol. Med. 2008, 12, 661–670. [Google Scholar] [CrossRef]
- Martins, J.D.; Liberal, J.; Silva, A.; Ferreira, I.; Neves, B.M.; Cruz, M.T. Autophagy and inflammasome interplay. DNA Cell Biol. 2015, 34, 274–281. [Google Scholar] [CrossRef]
- Xiaoyan, J.; Peng, J.; Pei, Y.; Penghua, W. Autophagy ameliorates Pseudomonas aeruginosa-infected diabetic wounds by regulating the Toll-like receptor 4/myeloid differentiation factor 88 pathway. Wound Repair Regen. Off. Publ. Wound Health Soc. Eur. Tissue Repair Soc. 2023, 31, 305–320. [Google Scholar] [CrossRef]
- Li, C.; Li, L.; Chen, K.; Wang, Y.; Yang, F.; Wang, G. UFL1 Alleviates Lipopolysaccharide-Induced Cell Damage and Inflammation via Regulation of the TLR4/NF-κB Pathway in Bovine Mammary Epithelial Cells. Oxidative Med. Cell. Longev. 2019, 2019, 6505373. [Google Scholar] [CrossRef]
- Sutian, W.; Kunli, Z.; Xuting, S.; Qiuyan, H.; Sen, L.; Shoulong, D.; Meiyu, Q.; Yecheng, Y.; Qi, L.; Duowei, Z.; et al. TLR4 Overexpression Aggravates Bacterial Lipopolysaccharide-Induced Apoptosis via Excessive Autophagy and NF-κB/MAPK Signaling in Transgenic Mammal Models. Cells 2023, 12, 1769. [Google Scholar] [CrossRef]
- Ma, W.; Wang, L.; Pan, Y.; Wang, M.; Wang, J.; Feng, M.; Wang, J.; Zhang, H.; Zhang, R.; Jiao, Z.; et al. Beclin1 regulates yak endometrial inflammation and TLR4/NF-κB signaling pathway through autophagy/non-autophagy function. Int. Immunopharmacol. 2025, 147, 113940. [Google Scholar] [CrossRef] [PubMed]
- Jonas, Z.; Gabi, K.; Karsten, S.; Christian, G.; Veryan, C.; Pei-Chien, T.; Jordana, B.; Annette, P.; Konstantin, S.; Holger, S.; et al. Metabolomics profiling reveals novel markers for leukocyte telomere length. Aging 2016, 8, 77–94. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Zhu, W.; Chen, C.; Yan, B.; Zhu, L.; Chen, X.; Peng, C. The mechanisms of lysophosphatidylcholine in the development of diseases. Life Sci. 2020, 247, 117443. [Google Scholar] [CrossRef]
- Gu, J.M.; Xue, H.; Xue, A.; Jiang, J.; Geng, F.; Zhao, J.H.; Yang, B.; Zhang, N. Serum metabolomics study of Psoraleae Fructus in improving learning and memory ability of APP/PS1 mice. China J. Chin. Mater. Medica 2023, 48, 4039–4045. [Google Scholar] [CrossRef]
- Schaloske, R.H.; Dennis, E.A. The phospholipase A 2 superfamily and its group numbering system. BB Mol. Cell Biol. Lipids 2006, 1761, 1246–1259. [Google Scholar] [CrossRef]
- Yang, L.; Wang, P.; Mi, H.; Lv, W.; Liu, B.; Du, J.; Zhang, L. Comparison of Th1 and Th2 cytokines production in ovine lymph nodes during early pregnancy. Theriogenology 2018, 123, 177–184. [Google Scholar] [CrossRef]
- Wu, S.Y.; Lin, L.; Chen, J.Y.; Huang, W.Q. Research progress on the role in pathogenesis of T lymphocyte subsets and their cytokines in atrial fibrillation. Geriatr. Res. 2021, 2, 61–64. [Google Scholar]
- Armitage, R.J.; Macduff, B.M.; Spriggs, M.K.; Fanslow, W.C. Human B cell proliferation and Ig secretion induced by recombinant CD40 ligand are modulated by soluble cytokines. J. Immunol. 1993, 150, 3671–3680. [Google Scholar] [CrossRef]
- Farooq, F.; Beck, K.; Paolino, K.M.; Phillips, R.; Waters, N.C.; Regules, J.A.; Bergmann-Leitner, E.S. Circulating follicular T helper cells and cytokine profile in humans following vaccination with the rVSV-ZEBOV Ebola vaccine. Sci. Rep. 2016, 6, 27944. [Google Scholar] [CrossRef]
- Yu, X.; Wu, Y.; Zhang, J.; Jirimutu; Zulipikaer, A.; Chen, J. Pre-evaluation of humoral immune response of Bactrian camels by the quantification of Th2 cytokines using real-time PCR. J. Biomed. Res. 2020, 34, 387–394. [Google Scholar] [CrossRef]
- Mosmann, T.R.; Sad, S. The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol. Today 1996, 17, 138–146. [Google Scholar] [CrossRef]
- Zheng, N.Z.; Zheng, X.X.; Pan, X.L.; Li, P.; Qin, T.; Li, J.; Ma, Y.F.; Huang, Y.F. The effects of synergistical stimulation of hericium erinaceus polysaccharide with ConA on secretion and mRNA expression of Th1 and Th2 type cytokines of murine splenic lymphocyte. Chin. J. Vet. Sci. 2016, 36, 795–800. [Google Scholar] [CrossRef]
- Ma, Y.F.; Zheng, X.X.; Zheng, N.Z.; Li, J.; Qin, T.; Hang, Y.F. Regulatory effects of anoectochilus roxburghii polysaccharide (ARP) on conA-induced cytokines secretion and mRNA expression by murine splenocytes. J. Chin. Inst. Food Sci. Technol. 2018, 18, 72–78. [Google Scholar] [CrossRef]
Diet Composition | Content, % of Diets |
---|---|
Corn | 44.66 |
Salt | 0.89 |
Baking soda | 0.89 |
Magnesium oxide | 0.07 |
Calcium carbonate | 1.23 |
Corn germ meal | 9.44 |
Soybean meal | 9.42 |
Palm kernel powder | 2.44 |
Chicken bone meal | 1.48 |
Rice straw | 20.72 |
Distillers Dried Grains with Solubles | 8.76 |
Total | 100.00 |
Nutrient component of TMR | Content, % of DM |
Crude ash | 11.33 |
Ether extract | 2.99 |
Crude protein | 14.42 |
Calcium | 1.08 |
Phosphorus | 0.30 |
Neutral detergent fiber | 34.37 |
Acid detergent fiber | 17.96 |
A | B | ||
---|---|---|---|
Time, Min | Mobile Phase, % | Time, Min | Mobile Phase, % |
0~3 | 0~20 | 0~1.5 | 0~5 |
3~4.5 | 20~35 | 1.5~2 | 5~10 |
4.5~5 | 35~100 | 2~4.5 | 10~30 |
5~6.3 | 100 | 4.5~5 | 30~100 |
6.3~6.4 | 100~0 | 5~6.3 | 100 |
6.4~8 | 0 | 6.3~6.4 | 100~0 |
6.4~8 | 0 |
Item | Control Group | Modified Attapulgite | p_Value |
---|---|---|---|
Initial weight, kg | 377 ± 6.95 | 365 ± 5.10 | 0.204 |
Final weight, kg | 507 ± 8.63 | 499 ± 8.81 | 0.525 |
Average daily weight gain, kg/d | 1.75 ± 0.08 | 1.79 ± 0.11 | 0.752 |
Item | Control Group | Modified Attapulgite | p_Value |
---|---|---|---|
TP, µg·mL−1 | 66.54 ± 2.12 | 71.08 ± 1.59 | 0.097 |
ALB, µg·mL−1 | 44.33 ± 1.85 | 40.87 ± 2.84 | 0.316 |
GLB, µg·mL−1 | 23.76 ± 2.63 | 31.00 ± 3.79 | 0.13 |
GSH-Px, U·mL−1 | 166 ± 21.61 | 257 ± 22.47 | 0.012 |
MDA, nmol·mL−1 | 2.61 ± 0.51 | 2.95 ± 0.41 | 0.62 |
SOD, U·mL−1 | 16.78 ± 0.67 | 18.98 ± 0.74 | 0.035 |
IL-6, pg·mL−1 | 41.36 ± 0.93 | 34.33 ± 0.74 | <0.001 |
TNF-α, pg·mL−1 | 36.57 ± 1.29 | 31.27 ± 0.92 | 0.003 |
LPS, EU·L−1 | 66.72 ± 2.06 | 51.34 ± 1.148 | <0.001 |
Metabolic Pathways | p_Value | up\down | Related Differential Metabolites (up\down) | VIP_Value |
---|---|---|---|---|
Th1 and Th2 cell differentiation | 0.017 | up | DG (20:4 (8z, 11z, 14z, 17z)/18:0/0:0) (up) | 1.251 |
Retrograde endocannabinoid signaling | 0.007 | up | Pc (18:0/22:5 (7z, 10z, 13z, 16z, 19z)) (up) | 1.042 |
DG (20:4 (8z, 11z, 14z, 17z)/18:0/0:0) (up) | 1.251 | |||
Pc (18:3 (9z, 12z, 15z)/16:0) (up) | 1.451 | |||
Pe (36:2) (up) | 1.284 | |||
Autophagy-other | 0.017 | up | Pe (36:2) (up) | 1.284 |
NF-kappaB signaling pathway | 0.017 | up | Dg (20:4 (8z, 11z, 14z, 17z)/18:0/0:0) (up) | 1.253 |
Glycerophospholipid metabolism | 0.0002 | down | Pc (18:0/22:5 (7z, 10z, 13z, 16z, 19z)) (up) | 1.984 |
LPC (18:3 (6z, 9z, 12z)/0:0) (down) | 1.517 | |||
PG (i-12:0/a-17:0) (down) | 1.398 | |||
PC (18:3 (9z, 12z, 15z)/16:0) (up) | 1.451 | |||
LPC (20:5 (5z, 8z, 11z, 14z, 17z)/0:0) (down) | 1.889 | |||
LPC (17:0/0:0) (down) | 1.157 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Zeng, H.; Weng, H.; Chang, H.; Zhai, Y.; Huang, Z.; Chu, C.; Wang, H.; Han, Z. Effects of Modified Attapulgite on Daily Weight Gain, Serum Indexes and Serum Metabolites in Fattening Beef Cattle. Animals 2025, 15, 2167. https://doi.org/10.3390/ani15152167
Wang J, Zeng H, Weng H, Chang H, Zhai Y, Huang Z, Chu C, Wang H, Han Z. Effects of Modified Attapulgite on Daily Weight Gain, Serum Indexes and Serum Metabolites in Fattening Beef Cattle. Animals. 2025; 15(15):2167. https://doi.org/10.3390/ani15152167
Chicago/Turabian StyleWang, Jiajie, Hanfang Zeng, Hantong Weng, Haomiao Chang, Yunfei Zhai, Zhihui Huang, Chenchen Chu, Haihui Wang, and Zhaoyu Han. 2025. "Effects of Modified Attapulgite on Daily Weight Gain, Serum Indexes and Serum Metabolites in Fattening Beef Cattle" Animals 15, no. 15: 2167. https://doi.org/10.3390/ani15152167
APA StyleWang, J., Zeng, H., Weng, H., Chang, H., Zhai, Y., Huang, Z., Chu, C., Wang, H., & Han, Z. (2025). Effects of Modified Attapulgite on Daily Weight Gain, Serum Indexes and Serum Metabolites in Fattening Beef Cattle. Animals, 15(15), 2167. https://doi.org/10.3390/ani15152167