The Effects of Human–Horse Interactions on Oxytocin and Cortisol Levels in Humans and Horses
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Animals
2.3. Experimental Procedures
2.4. Saliva Samplings
2.5. Blood Sampling
2.6. Salivary Oxytocin Enzyme-Linked Immunosorbent Assay (ELISA)
2.7. Salivary Cortisol ELISA
2.8. Plasma Oxytocin ELISA
2.9. Plasma Cortisol ELISA
2.10. Statistical Analysis
3. Results
3.1. Salivary Oxytocin Levels in Humans
3.2. Salivary Cortisol Levels in Humans
3.3. Plasma Oxytocin Levels in Horses
3.4. Plasma Cortisol Levels in Horses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gee, N.R.; Rodriguez, K.E.; Fine, A.H.; Trammell, J.P. Dogs Supporting Human Health and Well-Being: A Biopsychosocial Approach. Front. Vet. Sci. 2021, 8, 630465. [Google Scholar] [CrossRef]
- Pendry, P.; Carr, A.M.; Roeter, S.M.; Vandagriff, J.L. Experimental trial demonstrates effects of animal-assisted stress prevention program on college students’ positive and negative emotion. Hum.-Anim. Interact. Bull. 2018. [Google Scholar] [CrossRef]
- Molnar, M.; Ivancsik, R.; DiBlasio, B.; Nagy, I. Examining the Effects of Rabbit-Assisted Interventions in the Classroom Environment. Animals 2019, 10, 26. [Google Scholar] [CrossRef] [PubMed]
- O’Haire, M.E.; McKenzie, S.J.; McCune, S.; Slaughter, V. Effects of Animal-Assisted Activities with Guinea Pigs in the Primary School Classroom. Anthrozoos 2013, 26, 445–458. [Google Scholar] [CrossRef]
- Pedersen, I.; Nordaunet, T.; Martinsen, E.W.; Berget, B.; Braastad, B.O. Farm Animal-Assisted Intervention: Relationship between Work and Contact with Farm Animals and Change in Depression, Anxiety, and Self-Efficacy Among Persons with Clinical Depression. Issues Ment. Health Nurs. 2011, 32, 493–500. [Google Scholar] [CrossRef]
- Malinowski, K.; Yee, C.; Tevlin, J.M.; Birks, E.K.; Durando, M.M.; Pournajafi-Nazarloo, H.; Cavaiola, A.A.; McKeever, K.H. The effects of equine assisted therapy on plasma cortisol and oxytocin concentrations and heart rate variability in horses and measures of symptoms of post-traumatic stress disorder in veterans. J. Equine Vet. Sci. 2018, 64, 17–26. [Google Scholar] [CrossRef]
- Crews, D. The Bond between a Horse and a Human. Nat. Preced. 2009. [Google Scholar] [CrossRef]
- Baldwin, A.L.; Rector, B.K.; Alden, A.C. Physiological and Behavioral Benefits for People and Horses during Guided Interactions at an Assisted Living Residence. Behav. Sci. 2021, 11, 129. [Google Scholar] [CrossRef]
- Uvnas-Moberg, K.; Petersson, M. Oxytocin, a mediator of anti-stress, well-being, social interaction, growth and healing. Z. Psychosom. Med. Psychother. 2005, 51, 57–80. [Google Scholar] [CrossRef]
- Wang, P.; Yang, H.-P.; Tian, S.; Wang, L.; Wang, S.C.; Zhang, F.; Wang, Y.-F. Oxytocin-secreting system: A major part of the neuroendocrine center regulating immunologic activity. J. Neuroimmunol. 2015, 289, 152–161. [Google Scholar] [CrossRef]
- Marsh, N.; Marsh, A.A.; Lee, M.R.; Hurlemann, R. Oxytocin and the Neurobiology of Prosocial Behavior. Neuroscientist 2021, 27, 604–619. [Google Scholar] [CrossRef] [PubMed]
- Rault, J.L.; van den Munkhof, M.; Buisman-Pijlman, F.T.A. Oxytocin as an Indicator of Psychological and Social Well-Being in Domesticated Animals: A Critical Review. Front. Psychol. 2017, 8, 1521. [Google Scholar] [CrossRef] [PubMed]
- Crespi, B.J. Oxytocin, testosterone, and human social cognition. Biol. Rev. 2016, 91, 390–408. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.C.; Kennedy, C.; Devoe, D.; Hickey, M.; Nelson, T.; Kogan, L. An Examination of Changes in Oxytocin Levels in Men and Women Before and After Interaction with a Bonded Dog. Anthrozoos 2009, 22, 31–42. [Google Scholar] [CrossRef]
- Nagasawa, M.; Kikusui, T.; Onaka, T.; Ohta, M. Dog’s gaze at its owner increases owner’s urinary oxytocin during social interaction. Horm. Behav. 2009, 55, 434–441. [Google Scholar] [CrossRef]
- Odendaal, J.S.J.; Meintjes, R.A. Neurophysiological correlates of affiliative behaviour between humans and dogs. Vet. J. 2003, 165, 296–301. [Google Scholar] [CrossRef]
- Mostl, E.; Palme, R. Hormones as indicators of stress. Domest. Anim. Endocrinol. 2002, 23, 67–74. [Google Scholar] [CrossRef]
- Benfield, R.D.; Newton, E.R.; Tanner, C.J.; Heitkemper, M.M. Cortisol as a Biomarker of Stress in Term Human Labor: Physiological and Methodological Issues. Biol. Res. Nurs. 2014, 16, 64–71. [Google Scholar] [CrossRef]
- Cravana, C.; Fazio, E.; Ferlazzo, A.; Medica, P. Therapeutic Riding Horses: Using a hypothalamic-pituitary-adrenal axis measure to assess the physiological stress response to different riders. J. Vet. Behav. 2021, 46, 18–23. [Google Scholar] [CrossRef]
- Ferlazzo, A.; Fazio, E.; Cravana, C.; Medica, P. Equine-assisted services: An overview of current scientific contributions on efficacy and outcomes on humans and horses. J. Vet. Behav. 2023, 59, 15–24. [Google Scholar] [CrossRef]
- Meints, K.; Brelsford, V.L.; Dimolareva, M.; Maréchal, L.; Pennington, K.; Rowan, E.; Gee, N.R. Can dogs reduce stress levels in school children? effects of dog-assisted interventions on salivary cortisol in children with and without special educational needs using randomized controlled trials. PLoS ONE 2022, 17, e0269333. [Google Scholar] [CrossRef] [PubMed]
- Wijker, C.; Kupper, N.; Leontjevas, R.; Spek, A.; Enders-Slegers, M.-J. The effects of Animal Assisted Therapy on autonomic and endocrine activity in adults with autism spectrum disorder: A randomized controlled trial. General. Hosp. Psychiatry 2021, 72, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Nagasawa, T.; Kimura, Y.; Masuda, K.; Uchiyama, H. Effects of Interactions with Cats in Domestic Environment on the Psychological and Physiological State of Their Owners: Associations among Cortisol, Oxytocin, Heart Rate Variability, and Emotions. Animals 2023, 13, 2116. [Google Scholar] [CrossRef] [PubMed]
- Pendry, P.; Vandagriff, J.L. Animal Visitation Program (AVP) Reduces Cortisol Levels of University Students: A Randomized Controlled Trial. Aera Open 2019, 5, 2332858419852592. [Google Scholar] [CrossRef]
- Costa, M.M.; Benoit, N.; Dormoi, J.; Amalvict, R.; Gomez, N.; Tissot-Dupont, H.; Million, M.; Pradines, B.; Granjeaud, S.; Almeras, L. Salivette, a relevant saliva sampling device for SARS-CoV-2 detection. J. Oral Microbiol. 2021, 13, 1920226. [Google Scholar] [CrossRef]
- Zagoory-Sharon, O.; Levine, A.; Feldman, R. Human sweat contains oxytocin. Psychoneuroendocrinology 2023, 158, 106407. [Google Scholar] [CrossRef]
- Allen, A.P.; Hutch, W.; Borre, Y.E.; Kennedy, P.J.; Temko, A.; Boylan, G.; Murphy, E.; Cryan, J.F.; Dinan, T.G.; Clarke, G. Bifidobacterium longum 1714 as a translational psychobiotic: Modulation of stress, electrophysiology and neurocognition in healthy volunteers. Transl. Psychiatry 2016, 6, e939. [Google Scholar] [CrossRef]
- Akiyama, J.; Sakagami, T.; Uchiyama, H.; Ohta, M. The health benefits of visiting a zoo, park, and aquarium for older Japanese. Anthrozoös 2021, 34, 463–473. [Google Scholar] [CrossRef]
- Stetina, B.U.; Krouzecky, C.; Emmett, L.; Klaps, A.; Ruck, N.; Kovacovsky, Z.; Bunina, A.; Aden, J. Differences between female and male inmates in Animal Assisted Therapy (AAT) in Austria: Do we need treatment programs specific to the needs of females in AAT? Animals 2020, 10, 244. [Google Scholar] [CrossRef]
- Beetz, A.; Uvnas-Moberg, K.; Julius, H.; Kotrschal, K. Psychosocial and psychophysiological effects of human-animal interactions: The possible role of oxytocin. Front. Psychol. 2012, 3, 234. [Google Scholar] [CrossRef]
- Hama, H.; Yogo, M.; Matsuyama, Y. Effects of stroking horses on both humans’ and horses’ heart rate responses 1. Jpn. Psychol. Res. 1996, 38, 66–73. [Google Scholar] [CrossRef]
- Curry, B.A.; Donaldson, B.; Vercoe, M.; Filippo, M.; Zak, P.J. Oxytocin responses after dog and cat interactions depend on pet ownership and may affect interpersonal trust. Hum.-Anim. Interact. Bull. 2015. [Google Scholar] [CrossRef]
- Odendaal, J.S. Animal-assisted therapy—Magic or medicine? J. Psychosom. Res. 2000, 49, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Payne, E.; DeAraugo, J.; Bennett, P.; McGreevy, P. Exploring the existence and potential underpinnings of dog–human and horse–human attachment bonds. Behav. Process. 2016, 125, 114–121. [Google Scholar] [CrossRef]
- Pan, Z.; Granger, D.A.; Guérin, N.A.; Shoffner, A.; Gabriels, R.L. Replication pilot trial of therapeutic horseback riding and cortisol collection with children on the autism spectrum. Front. Vet. Sci. 2019, 5, 312. [Google Scholar] [CrossRef]
- Burton, L.E.; Qeadan, F.; Burge, M.R. Efficacy of equine-assisted psychotherapy in veterans with posttraumatic stress disorder. J. Integr. Med. 2019, 17, 14–19. [Google Scholar] [CrossRef]
- Barker, S.B.; Wolen, A.R. The benefits of human–companion animal interaction: A review. J. Vet. Med. Educ. 2008, 35, 487–495. [Google Scholar] [CrossRef]
- Hoagwood, K.; Vincent, A.; Acri, M.; Morrissey, M.; Seibel, L.; Guo, F.; Flores, C.; Seag, D.; Pierce, R.P.; Horwitz, S. Reducing Anxiety and Stress among Youth in a CBT-Based Equine-Assisted Adaptive Riding Program. Animals 2022, 12, 2491. [Google Scholar] [CrossRef]
- Schultz, P.N.; Remick-Barlow, G.A.; Robbins, L. Equine-assisted psychotherapy: A mental health promotion/intervention modality for children who have experienced intra-family violence. Health Soc. Care Comm. 2007, 15, 265–271. [Google Scholar] [CrossRef]
- Kang, O.-D.; Yun, Y.-M. Influence of horse and rider on stress during horse-riding lesson program. Asian-Australas. J. Anim. Sci. 2016, 29, 895. [Google Scholar] [CrossRef]
- MacLean, E.L.; Gesquiere, L.R.; Gee, N.R.; Levy, K.; Martin, W.L.; Carter, C.S. Effects of affiliative human–animal interaction on dog salivary and plasma oxytocin and vasopressin. Front. Psychol. 2017, 8, 1606. [Google Scholar] [CrossRef] [PubMed]
- Gnanadesikan, G.E.; King, K.M.; Carranza, E.; Flyer, A.C.; Ossello, G.; Smith, P.G.; Steklis, N.G.; Steklis, H.D.; Carter, C.S.; Connelly, J.J.; et al. Effects of human-animal interaction on salivary and urinary oxytocin in children and dogs. Psychoneuroendocrinology 2024, 169, 107147. [Google Scholar] [CrossRef] [PubMed]
- Handlin, L.; Hydbring-Sandberg, E.; Nilsson, A.; Ejdebäck, M.; Jansson, A.; Uvnäs-Moberg, K. Short-term interaction between dogs and their owners: Effects on oxytocin, cortisol, insulin and heart rate—An exploratory study. Anthrozoös 2011, 24, 301–315. [Google Scholar] [CrossRef]
- Payne, E.; Boot, M.; Starling, M.; Henshall, C.; McLean, A.; Bennett, P.; McGreevy, P. Evidence of horsemanship and dogmanship and their application in veterinary contexts. Vet. J. 2015, 204, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Paccamonti, D.L.; Pycock, J.F.; Taverne, M.A.M.; Bevers, M.; Van Der Weijden, G.C.; Gutjahr, S.; Schams, D.; Blouin, D. PGFM response to exogenous oxytocin and determination of the half-life of oxytocin in nonpregnant mares. Equine Vet. J. 1999, 31, 285–288. [Google Scholar] [CrossRef]
- Fazio, E.; Medica, P.; Cravana, C.; Ferlazzo, A. Hypothalamic-pituitary-adrenal axis responses of horses to therapeutic riding program: Effects of different riders. Physiol. Behav. 2013, 118, 138–143. [Google Scholar] [CrossRef]
- Nuchprayoon, N.; Arya, N.; Ritruechai, P. Stress cortisol and muscle stiffness in horses used for equine-assisted therapy. J. Appl. Anim. Sci. 2017, 10, 35–46. [Google Scholar]
- Ng, Z.Y.; Pierce, B.J.; Otto, C.M.; Buechner-Maxwell, V.A.; Siracusa, C.; Werre, S.R. The effect of dog–human interaction on cortisol and behavior in registered animal-assisted activity dogs. Appl. Anim. Behav. Sci. 2014, 159, 69–81. [Google Scholar] [CrossRef]
- Merkies, K.; McKechnie, M.J.; Zakrajsek, E. Behavioural and physiological responses of therapy horses to mentally traumatized humans. Appl. Anim. Behav. Sci. 2018, 205, 61–67. [Google Scholar] [CrossRef]
- Moyers, S.A.; Hagger, M.S. Physical activity and cortisol regulation: A meta-analysis. Biol. Psychol. 2023, 179, 108548. [Google Scholar] [CrossRef]
- Ferlazzo, A.; Cravana, C.; Fazio, E.; Medica, P. The different hormonal system during exercise stress coping in horses. Vet. World 2020, 13, 847. [Google Scholar] [CrossRef] [PubMed]
- Becker-Birck, M.; Schmidt, A.; Lasarzik, J.; Aurich, J.; Mostl, E.; Aurich, C. Cortisol release and heart rate variability in sport horses participating in equestrian competitions. J. Vet. Behav. 2013, 8, 87–94. [Google Scholar] [CrossRef]
- Krumrych, W.; Gołda, R.; Gołyński, M.; Markiewicz, H.; Buzała, M. Effect of physical exercise on cortisol concentration and neutrophil oxygen metabolism in peripheral blood of horses. Ann. Anim. Sci. 2018, 18, 53. [Google Scholar] [CrossRef]
- Nagata, S.; Takeda, F.; Kurosawa, M.; Mima, K.; Hiraga, A.; Kai, M.; Taya, K. Plasma adrenocorticotropin, cortisol and catecholamines response to various exercises. Equine Vet. J. 1999, 31, 570–574. [Google Scholar] [CrossRef]
- Drude, S.; Geißler, A.; Olfe, J.; Starke, A.; Domanska, G.; Schuett, C.; Kiank-Nussbaum, C. Side effects of control treatment can conceal experimental data when studying stress responses to injection and psychological stress in mice. Lab. Anim. 2011, 40, 119–128. [Google Scholar] [CrossRef]
- Chandler, K.; Dixon, R. Urinary cortisol: Creatinine ratios in healthy horses and horses with hyperadrenocorticism and non.adrenal disease. Vet. Rec. 2002, 150, 773–776. [Google Scholar] [CrossRef]
- Peeters, M.; Sulon, J.; Beckers, J.F.; Ledoux, D.; Vandenheede, M. Comparison between blood serum and salivary cortisol concentrations in horses using an adrenocorticotropic hormone challenge. Equine Vet. J. 2011, 43, 487–493. [Google Scholar] [CrossRef]
- Aurich, J.; Wulf, M.; Ille, N.; Erber, R.; von Lewinski, M.; Palme, R.; Aurich, C. Effects of season, age, sex, and housing on salivary cortisol concentrations in horses. Domest. Anim. Endocrinol. 2015, 52, 11–16. [Google Scholar] [CrossRef]
- Costa, R.F.P.; Xu, S.; Brandao, A.; Hayashi, M. Reconnection with Nature through Empathy: Rewiring People and Animals by Assessing Zoo Visitors’ Connection to Species and the Need for their Conservation. Front. Psychology 2025, 16, 1517430. [Google Scholar] [CrossRef]
Resting | Standing | Rubbing | |||||||
---|---|---|---|---|---|---|---|---|---|
T0 | T1 | T2 | T0 | T1 | T2 | T0 | T1 | T2 | |
Women | 55.3 ± 38.6 | 42.5 ± 27.6 | 74.9 ± 40.9 | 73.6 ± 63.7 | 58.1 ± 41.9 | 119.8 ± 65.2 | 64.4 ± 29.5 | 37.4 ± 10.2 | 66.5 ± 21.1 |
Men | 51.7 ± 15.9 | 54.7 ± 15.0 | 60.0 ± 21.5 | 49.9 ± 7.0 | 48.7 ± 10.0 | 58.3 ± 2.8 | 49.3 ± 2.2 | 41.9 ± 8.3 | 42.1 ± 1.8 |
Total | 53.5 ± 26.5 | 47.4 ± 21.9 | 67.4 ± 30.3 | 64.1 ± 47.0 | 53.4 ± 27.7 | 89.1 ± 53.2 | 56.9 ± 20.5 | 39.7 ± 8.7 | 54.3 ± 18.9 |
Resting | Standing | Rubbing | |||||||
---|---|---|---|---|---|---|---|---|---|
T0 | T1 | T2 | T0 | T1 | T2 | T0 | T1 | T2 | |
Women | 4.2 ± 1.3 | 4.3 ± 1.5 | 3.1 ± 1.5 | 3.6 ± 0.7 | 4.1 ± 2.8 | 3.6 ± 2.5 | 4.6 ± 2.4 | 3.3 ± 0.7 | 2.9 ± 1.2 |
Men | 2.0 ± 1.2 | 1.9 ± 0.2 | 2.0 ± 0.8 | 2.1 ± 0.3 | 2.2 ± 1.6 | 2.2 ± 0.6 | 2.4 ± 1.0 | 3.0 ± 1.2 | 2.4 ± 1.3 |
Total | 2.9 ± 1.6 | 2.8 ± 1.6 | 2.5 ± 1.1 | 2.7 ± 0.9 | 3.2 ± 2.3 | 2.9 ± 1.8 | 3.5 ± 2.1 | 3.1 ± 0.9 | 2.6 ± 1.2 |
Resting | Standing | Rubbing | |||||||
---|---|---|---|---|---|---|---|---|---|
T0 | T1 | T2 | T0 | T1 | T2 | T0 | T1 | T2 | |
Oxytocin levels (pg/mL) | 18.8 ± 8.6 | 18.5 ± 7.1 | 20.4 ± 4.3 | 14.5 ± 5.0 a | 18.3 ± 4.7 ab | 22.2 ± 3.8 b | 13.6 ± 4.5 a | 19.4 ± 3.4 ab | 21.7 ± 7.5 b |
Resting | Standing | Rubbing | |||||||
---|---|---|---|---|---|---|---|---|---|
T0 | T1 | T2 | T0 | T1 | T2 | T0 | T1 | T2 | |
Cortisol levels (ng/mL) | 7.2 ± 3.3 | 8.7 ± 3.2 | 7.9 ± 1.8 | 5.7 ± 2.5 | 5.5 ± 1.3 | 5.6 ± 1.4 | 6.4 ± 3.2 | 6.8 ± 2.2 | 7.4 ± 3.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, Y.; Yoon, M. The Effects of Human–Horse Interactions on Oxytocin and Cortisol Levels in Humans and Horses. Animals 2025, 15, 905. https://doi.org/10.3390/ani15070905
Jung Y, Yoon M. The Effects of Human–Horse Interactions on Oxytocin and Cortisol Levels in Humans and Horses. Animals. 2025; 15(7):905. https://doi.org/10.3390/ani15070905
Chicago/Turabian StyleJung, Youngwook, and Minjung Yoon. 2025. "The Effects of Human–Horse Interactions on Oxytocin and Cortisol Levels in Humans and Horses" Animals 15, no. 7: 905. https://doi.org/10.3390/ani15070905
APA StyleJung, Y., & Yoon, M. (2025). The Effects of Human–Horse Interactions on Oxytocin and Cortisol Levels in Humans and Horses. Animals, 15(7), 905. https://doi.org/10.3390/ani15070905