Decoding Neuromuscular Disorders: Insights from Genetics and Epigenetics

A special issue of Genes (ISSN 2073-4425). This special issue belongs to the section "Human Genomics and Genetic Diseases".

Deadline for manuscript submissions: closed (10 February 2025) | Viewed by 364

Special Issue Editors


E-Mail Website
Guest Editor
Departamento de Calidad y Seguridad en la Atención Médica, Ciclo de vida, Universidad Autónoma de Guadalajara, Zapopan 45134, Mexico
Interests: biomarkers; genetics; epigenetics; human diseases; neuromuscular disorders

E-Mail Website
Guest Editor
Instituto Nacional de Medicina Genómica, Mexico, Mexico
Interests: atherosclerosis

Special Issue Information

Dear Colleagues,

Neuromuscular disorders (NMDs) encompass a diverse group of conditions affecting patients of different ages and groups. While genetic factors have been extensively studied, emerging evidence highlights the significant role of epigenetics in NMD pathogenesis and treatment. This Special Issue seeks original research articles, reviews, and case reports that advance our understanding of the genetic and epigenetic underpinnings of NMDs. We encourage submissions exploring the complex interplay between genetic variants, epigenetic modifications, and environmental factors in disease development, progression, and treatment. By fostering collaboration among researchers, clinicians, and geneticists, this Special Issue aims to accelerate the development of novel diagnostic tools, therapeutic strategies, and personalized treatment approaches for patients with NMDs.

Dr. Luz Berenice López-Hernández
Dr. Bladimir Roque-Ramírez
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Genes is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • methylation
  • microRNAs 
  • histone modifications 
  • epigenetics vector development
  • genotype/phenotype
  • gene expression
  • genetic modifiers
  • neuromuscular disorders

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Review

19 pages, 1976 KiB  
Review
Decoding Neuromuscular Disorders: The Complex Role of Genetic and Epigenetic Regulators
by Bladimir Roque-Ramírez, Karla Estefanía Ríos-López and Luz Berenice López-Hernández
Genes 2025, 16(6), 622; https://doi.org/10.3390/genes16060622 - 23 May 2025
Abstract
Neuromuscular disorders (NMDs), such as amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), and muscular dystrophies (e.g., Duchenne muscular dystrophy, DMD), are primarily driven by genetic mutations but are critically modulated by epigenetic mechanisms such as DNA methylation, histone modifications, and noncoding RNA [...] Read more.
Neuromuscular disorders (NMDs), such as amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), and muscular dystrophies (e.g., Duchenne muscular dystrophy, DMD), are primarily driven by genetic mutations but are critically modulated by epigenetic mechanisms such as DNA methylation, histone modifications, and noncoding RNA activity. These epigenetic processes contribute to phenotypic variability and disease progression, and emerging evidence suggests that environmental factors, particularly nutrition and exercise, may further influence the molecular pathways that modulate these diseases. Dietary bioactive compounds (e.g., polyphenols and omega-3 fatty acids) exhibit epigenetic modulatory properties, which could mitigate oxidative stress, inflammation, and muscle degeneration in NMDs. For example, the inhibition of DNMTs and HDACs by curcumin in ALS models and the promyogenic effects of green tea catechins in DMD suggest plausible, though still requiring investigation, therapeutic avenues. However, the clinical application of nutriepigenetic interventions is preliminary and requires further validation. This review examines the interaction of genetic and epigenetic factors in ALS, SMA, and muscular dystrophies, highlighting their combined role in the heterogeneity of these diseases. Integrative therapeutic strategies combining gene therapies, epigenetic modulators, and lifestyle interventions may offer a multidimensional approach to the management of NMD. A deeper understanding of these interactions will be essential for advancing precision medicine and improving patient outcomes. Full article
Show Figures

Graphical abstract

Back to TopTop