Biological Effects of Ionizing Radiation

A special issue of Biophysica (ISSN 2673-4125).

Deadline for manuscript submissions: closed (30 June 2023) | Viewed by 7451

Special Issue Editors


E-Mail Website
Guest Editor

E-Mail Website
Guest Editor
1. Institut de Radioprotection et de Sureté Nucléaire (IRSN), 92260 Fontenay-aux-Roses, France
2. Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
Interests: ionizing radiation; genotoxicity; DNA damage; DNA repair; mutagenesis; carcinogenesis; radioprotection
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Ionizing radiation exposure is known to cause a variety of biological effects that can lead to disease in humans. Understanding the molecular mechanisms can help to evaluate and manage these health risks.

This Special Issue will highlight the latest research on cellular and molecular effects of ionizing radiation exposures, such as DNA damage and repair, signal transduction and epigenetic rearrangement, and how they can contribute to cancer and non-cancer diseases. Research articles that present results of original research, reviews, and/or perspectives that address or systematize knowledge in this area are warmly welcomed.

The specific topics that can be covered include, but are not limited to, the following:

  • Links between initial DNA damage and subsequent mutagenesis and carcinogenesis;
  • Mechanisms of radioadaptive responses and hormetic effects;
  • Molecular biomarkers of exposure and bioindicators of health risks;
  • Individual radiosensitivity;
  • Effects of dose rates;
  • Effects of chronic cosmic radiation exposures associated with long-term manned space missions;
  • Advances in molecular epidemiology;
  • Application of artificial intelligence/machine learning to decoding ionizing radiation exposure molecular mechanisms.

We look forward to your valuable contributions.

Prof. Dr. Andreyan N. Osipov
Dr. Dmitry Klokov
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biophysica is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • ionizing radiation
  • DNA damage and repair
  • molecular mechanisms
  • cellular radiation effects
  • radioadaptive response
  • radiation hormesis
  • bystander effect
  • biomarkers
  • molecular epidemiology
  • carcinogenesis
  • radioprotection

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review, Other

9 pages, 1065 KiB  
Communication
Neurite Growth and Electrical Activity in PC-12 Cells: Effects of H3 Receptor-Inspired Electromagnetic Fields and Inherent Schumann Frequencies
by Landon M. Lefebvre, Adam D. Plourde-Kelly, Kevin S. Saroka and Blake T. Dotta
Biophysica 2024, 4(1), 74-82; https://doi.org/10.3390/biophysica4010005 - 07 Feb 2024
Viewed by 450
Abstract
Cells are continually exposed to a range of electromagnetic fields (EMFs), including those from the Schumann resonance to radio waves. The effects of EMFs on cells are diverse and vary based on the specific EMF type. Recent research suggests potential therapeutic applications of [...] Read more.
Cells are continually exposed to a range of electromagnetic fields (EMFs), including those from the Schumann resonance to radio waves. The effects of EMFs on cells are diverse and vary based on the specific EMF type. Recent research suggests potential therapeutic applications of EMFs for various diseases. In this study, we explored the impact of a physiologically patterned EMF, inspired by the H3 receptor associated with wakefulness, on PC-12 cells in vitro. Our hypothesis posited that the application of this EMF to differentiated PC-12 cells could enhance firing patterns at specific frequencies. Cell electrophysiology was assessed using a novel device, allowing the computation of spectral power density (SPD) scores for frequencies between 1 Hz and 128 Hz. T-tests comparing SPD at certain frequencies (e.g., 29 Hz, 30 Hz, and 79 Hz) between the H3-EMF and control groups showed a significantly higher SPD in the H3 group (p < 0.050). Moreover, at 7.8 Hz and 71 Hz, a significant correlation was observed between predicted and percentages of cells with neurites (R = 0.542). Key findings indicate the efficacy of the new electrophysiology measure for assessing PC-12 cell activity, a significant increase in cellular activity with the H3-receptor-inspired EMF at specific frequencies, and the influence of 7.8 Hz and 71 Hz frequencies on neurite growth. The overall findings support the idea that the electrical frequency profiles of developing cell systems can serve as an indicator of their progression and eventual cellular outcomes. Full article
(This article belongs to the Special Issue Biological Effects of Ionizing Radiation)
Show Figures

Figure 1

12 pages, 2634 KiB  
Article
The Effect of UV-Vis Radiation on DNA Systems Containing the Photosensitizers Methylene Blue and Acridine Orange
by Thais P. Pivetta, Paulo A. Ribeiro and Maria Raposo
Biophysica 2024, 4(1), 22-33; https://doi.org/10.3390/biophysica4010002 - 12 Jan 2024
Viewed by 644
Abstract
As a vital biomolecule, DNA is known as a target of antineoplastic drugs for cancer therapy. These drugs can show different modes of interaction with DNA, with intercalation and groove binding being the most common types. The intercalation of anticancer drugs with DNA [...] Read more.
As a vital biomolecule, DNA is known as a target of antineoplastic drugs for cancer therapy. These drugs can show different modes of interaction with DNA, with intercalation and groove binding being the most common types. The intercalation of anticancer drugs with DNA can lead to the disruption of its normal function, influencing cell proliferation. Methylene blue (MB) and acridine orange (AO) are examples of DNA-intercalating agents that have been studied for their application against some types of cancer, mainly for photodynamic therapy. In this work, the impact of light irradiation on these compounds in the absence and presence of DNA was analyzed by means of UV-vis spectroscopy. Bathochromic and hypochromic shifts were observed in the absorbance spectra, revealing the intercalation of the dyes with the DNA base pairs. Dyes with and without DNA present different profiles of photodegradation, whereby the dyes alone were more susceptible to degradation. This can be justified by the intercalation of the dyes on the DNA base pairs allowing the DNA molecule to partially hinder the molecules’ exposition and, therefore, reducing their degradation. Full article
(This article belongs to the Special Issue Biological Effects of Ionizing Radiation)
Show Figures

Figure 1

12 pages, 3383 KiB  
Article
The Effectiveness of Suffruticosol B in Treating Lung Cancer by the Laser Trapping Technique
by Mulugeta S. Goangul, Rance M. Solomon, Daniel L. Devito, Charles A. Brown, James Coopper, Daniel B. Erenso, Ying Gao, Aline Pellizzaro, Jennifer M. Revalee and Horace T. Crogman
Biophysica 2023, 3(1), 109-120; https://doi.org/10.3390/biophysica3010008 - 13 Feb 2023
Cited by 1 | Viewed by 1412
Abstract
We used laser trapping to study the effects of suffruticosol B on lung cancer cells. Physical and mechanical changes were found to be statistically significant, with a 63.97% increase over untreated cells and a 79.57% increase over untreated cells after treatment for 3 [...] Read more.
We used laser trapping to study the effects of suffruticosol B on lung cancer cells. Physical and mechanical changes were found to be statistically significant, with a 63.97% increase over untreated cells and a 79.57% increase over untreated cells after treatment for 3 or 6 h, respectively. The treatment affected the internal structure of the cells, with changes in their elastic properties. The cellular responses showed that treatment with suffruticosol B resulted in the decreased proliferation and invasion of cancer cells. These results suggest that the treatment may be useful in preventing or treating lung cancer. Full article
(This article belongs to the Special Issue Biological Effects of Ionizing Radiation)
Show Figures

Figure 1

Review

Jump to: Research, Other

23 pages, 1456 KiB  
Review
Low-Energy Electron Generation for Biomolecular Damage Inquiry: Instrumentation and Methods
by Elahe Alizadeh, Dipayan Chakraborty and Sylwia Ptasińska
Biophysica 2022, 2(4), 475-497; https://doi.org/10.3390/biophysica2040041 - 17 Nov 2022
Cited by 4 | Viewed by 2568
Abstract
Technological advancement has produced a variety of instruments and methods to generate electron beams that have greatly assisted in the extensive theoretical and experimental efforts devoted to investigating the effect of secondary electrons with energies approximately less than 100 eV, which are referred [...] Read more.
Technological advancement has produced a variety of instruments and methods to generate electron beams that have greatly assisted in the extensive theoretical and experimental efforts devoted to investigating the effect of secondary electrons with energies approximately less than 100 eV, which are referred as low-energy electrons (LEEs). In the past two decades, LEE studies have focused on biomolecular systems, which mainly consist of DNA and proteins and their constituents as primary cellular targets of ionizing radiation. These studies have revealed that compared to other reactive species produced by high-energy radiation, LEEs have distinctive pathways and considerable efficiency in inducing lethal DNA lesions. The present work aims to briefly discuss the current state of LEE production technology and to motivate further studies and improvements of LEE generation techniques in relation to biological electron-driven processes associated with such medical applications as radiation therapy and cancer treatment. Full article
(This article belongs to the Special Issue Biological Effects of Ionizing Radiation)
Show Figures

Figure 1

Other

Jump to: Research, Review

16 pages, 356 KiB  
Opinion
Does Proprioception Involve Synchronization with Theta Rhythms by a Novel Piezo2 Initiated Ultrafast VGLUT2 Signaling?
by Balázs Sonkodi
Biophysica 2023, 3(4), 695-710; https://doi.org/10.3390/biophysica3040046 - 18 Dec 2023
Cited by 1 | Viewed by 1035
Abstract
This opinion manuscript outlines how the hippocampal theta rhythm could receive two novel peripheral inputs. One of the ways this could be achieved is through Piezo2 channels and atypical hippocampal-like metabotropic glutamate receptors coupled to phospholipase D containing proprioceptive primary afferent terminals. Accordingly, [...] Read more.
This opinion manuscript outlines how the hippocampal theta rhythm could receive two novel peripheral inputs. One of the ways this could be achieved is through Piezo2 channels and atypical hippocampal-like metabotropic glutamate receptors coupled to phospholipase D containing proprioceptive primary afferent terminals. Accordingly, activated proprioceptive terminal Piezo2 on Type Ia fibers synchronizes to the theta rhythm with the help of hippocampal Piezo2 and medial septal glutamatergic neurons. Second, after baroreceptor Piezo2 is entrained to activated proprioceptive Piezo2, it could turn on the Cav1.3 channels, which pace the heart rhythm and regulate pacemaker cells during cardiac sympathetic activation. This would allow the Cav1.3 channels to synchronize to theta rhythm pacemaker hippocampal parvalbumin-expressing GABAergic neurons. This novel Piezo2-initiated proton–proton frequency coupling through VGLUT2 may provide the ultrafast long-range signaling pathway for the proposed Piezo2 synchronization of the low-frequency glutamatergic cell surface membrane oscillations in order to provide peripheral spatial and speed inputs to the space and speed coding of the hippocampal theta rhythm, supporting locomotion, learning and memory. Moreover, it provides an ultrafast signaling for postural and orthostatic control. Finally, suggestions are made as to how Piezo2 channelopathy could impair this ultrafast communication in many conditions and diseases with not entirely known etiology, leading to impaired proprioception and/or autonomic disbalance. Full article
(This article belongs to the Special Issue Biological Effects of Ionizing Radiation)
27 pages, 21549 KiB  
Perspective
Dual Nucleosomal Double-Strand Breaks Are the Key Effectors of Curative Radiation Therapy
by Anders Brahme and Yvonne Lorat
Biophysica 2023, 3(4), 668-694; https://doi.org/10.3390/biophysica3040045 - 14 Dec 2023
Cited by 1 | Viewed by 669
Abstract
Most ionizing radiation produces δ-rays of ≈1 keV that can impart MGy doses to 100 nm3 volumes of DNA. These events can produce severe dual double-strand breaks (DDSBs) on nucleosomes, particularly in dense heterochromatic DNA. This is the most common multiply [...] Read more.
Most ionizing radiation produces δ-rays of ≈1 keV that can impart MGy doses to 100 nm3 volumes of DNA. These events can produce severe dual double-strand breaks (DDSBs) on nucleosomes, particularly in dense heterochromatic DNA. This is the most common multiply damaged site, and their probabilities determine the biological effectiveness of different types of radiation. We discuss their frequency, effect on cell survival, DNA repair, and imaging by gold nanoparticle tracers and electron microscopy. This new and valuable nanometer resolution information can be used for determining the optimal tumor cure by maximizing therapeutic effects on tumors and minimizing therapeutic effects on normal tissues. The production of DDSBs makes it important to deliver a rather high dose and LET to the tumor (>2.5 Gy/Fr) and at the same time reach approximately 1.8–2.3 Gy of the lowest possible LET per fraction in TP53 intact normal tissues at risk. Therefore, their intrinsic low-dose hyper-sensitivity (LDHS)-related optimal daily fractionation window is utilized. Before full p53 activation of NHEJ and HR repair at ≈½ Gy, the low-dose apoptosis (LDA) and LDHS minimize normal tissue mutation probabilities. Ion therapy should thus ideally produce the lowest possible LET in normal tissues to avoid elevated DDSBs. Helium to boron ions can achieve this with higher-LET Bragg peaks, producing increased tumor DDSB densities. Interestingly, the highest probability of complication-free cure with boron or heavier ions requires a low LET round-up for the last 10–15 GyE, thereby steepening the dose response and further minimizing normal tissue damage. In conclusion, the new high-resolution DSB and DDSB diagnostic methods, and the new more accurate DNA-repair-based radiation biology, have been combined to increase our understanding of what is clinically important in curative radiation therapy. In fact, we must understand that we already passed the region of optimal LET and need to go back one step rather than forward, with oxygen being contemplated. As seen by the high overkill and severely high LET in the distal tumor and the increased LET to normal tissues (reminding of neutrons or neon ions), it is therefore preferable to use lithium–boron ions or combine carbon with an optimal 10–15 GyE photon, electron, or perhaps even a proton round-up, thus allowing optimized, fractionated, curative, almost complication-free treatments with photons, electrons, and light ions, introducing a real paradigm shift in curative radiation therapy with a potential 5 GyE tumor boost, 25% increase in complication-free cure and apoptotic–senescent Bragg Peak molecular light ion radiation therapy. Full article
(This article belongs to the Special Issue Biological Effects of Ionizing Radiation)
Show Figures

Graphical abstract

Back to TopTop