The Role of Genetics in Central Precocious Puberty: Confirmed and Potential Neuroendocrine Genetic and Epigenetic Contributors and Their Interactions with Endocrine Disrupting Chemicals (EDCs)
Abstract
:1. Introduction
2. Physiology of Normal Puberty
3. Diagnosis and Treatment of Central Precocious Puberty
4. Confirmed Genetic and Epigenetic Causes of CPP
4.1. Kisspeptin (KISS1) and Kisspeptin Receptor (KISS1R or GPR54)
4.2. Makorin Ring Finger Protein 3 (MKRN3)
4.3. Delta-Like Noncanonical Notch Ligand 1 (DLK1)
4.4. Methyl-CpG-Binding Protein 2 (MECP2)
5. Other Potential Genetic Contributors to Normal and/or Precocious Puberty
5.1. Gamma-Aminobutyric Acid Receptor Subunit Alpha-1 (GABRA1)
5.2. Neurokinin B (NKB, or Tachykinin 3 TAC3) and Tachykinin 3 Receptor (TACR3)
5.3. Leptin (ob)
5.4. Neuropeptide Y Receptor (NPY1R)
5.5. Lin-28 Homolog B (Gene LIN28B)
5.6. Melanoma Antigen L2 (MAGEL2)
6. Genetic and Epigenetic Causes of Syndromic CPP
6.1. Prader–Willi Syndrome (PWS)
6.2. Russell–Silver Syndrome (RSS)
6.3. Temple Syndrome (TS14)
6.4. Neurofibromatosis Type 1 (NF1)
6.5. Rett Syndrome
6.6. Williams–Beuren Syndrome
7. Future Directions
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Rosenfield, R.L.; Cooke, D.W.; Radovick, S. Puberty in the Female and Its Disorders. In Sperling Pediatric Endocrinology, 5th ed.; Sperling, M., Majzoub, J.A., Menon, R.K., Stratakis, C.A., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2021; pp. 528–626. [Google Scholar] [CrossRef]
- Palmert, M.R.; Chan, Y.-M.; Dunkel, L. Puberty and Its Disorders in the Male, 5th ed; Sperling, M., Majzoub, J.A., Menon, R.K., Stratakis, C.A., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2021. [Google Scholar] [CrossRef]
- Marshall, W.A.; Tanner, J.M. Variations in pattern of pubertal changes in girls. Obstet. Gynecol. Surv. 1969, 25, 694–696. [Google Scholar] [CrossRef] [Green Version]
- Marshall, W.A.; Tanner, J.M. Variations in the Pattern of Pubertal Changes in Boys. Arch. Dis. Child. 1970, 45, 13–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bräuner, E.V.; Busch, A.S.; Eckert-Lind, C.; Koch, T.; Hickey, M.; Juul, A. Trends in the Incidence of Central Precocious Puberty and Normal Variant Puberty Among Children in Denmark, 1998 to 2017. JAMA Netw. Open 2020, 3, e2015665. [Google Scholar] [CrossRef]
- Teilmann, G.; Pedersen, C.B.; Jensen, T.K.; Skakkebaek, N.E.; Juul, A. Prevalence and incidence of precocious pubertal development in Denmark: An epidemiologic study based on national registries. Pediatrics 2005, 116, 1323–1328. [Google Scholar] [CrossRef] [PubMed]
- Soriano-Guillén, L.; Corripio, R.; Labarta, J.I.; Cañete, R.; Castro-Feijóo, L.; Espino, R.; Argente, J. Central precocious puberty in children living in Spain: Incidence, prevalence, and influence of adoption and immigration. J. Clin. Endocrinol. Metab. 2010, 95, 4305–4313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Moal, J.; Rigou, A.; Le Tertre, A.; De Crouy-Channel, P.; Léger, J.; Carel, J.C. Marked geographic patterns in the incidence of idiopathic central precocious puberty: A nationwide study in France. Eur. J. Endocrinol. 2018, 178, 33–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.H.; Huh, K.; Won, S.; Lee, K.W.; Park, M.J. A Significant Increase in the Incidence of Central Precocious Puberty among Korean Girls from 2004 to 2010. PLoS ONE 2015, 10, e0141844. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.J.; Kwon, A.; Jung, M.K.; Kim, K.E.; Suh, J.; Chae, H.W.; Kim, D.H.; Ha, S.; Seo, G.H.; Kim, H.S. Incidence and Prevalence of Central Precocious Puberty in Korea: An Epidemiologic Study Based on a National Database. J. Pediatr. 2019, 208, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Rodriguez, D.; Franssen, D.; Heger, S.; Parent, A.S. Endocrine-disrupting chemicals and their effects on puberty. Best Pract. Res. Clin. Endocrinol. Metab. 2021, 35, 1–12. [Google Scholar] [CrossRef]
- Spaziani, M.; Tarantino, C.; Tahani, N.; Gianfrilli, D.; Sbardella, E.; Lenzi, A.; Radicioni, A.F. Hypothalamo-Pituitary axis and puberty. Mol. Cell. Endocrinol. 2021, 520, 111094. [Google Scholar] [CrossRef] [PubMed]
- Buluş, A.D.; Aşci, A.; Erkekoglu, P.; Balci, A.; Andiran, N.; Koçer-Gümüşel, B. The evaluation of possible role of endocrine disruptors in central and peripheral precocious puberty. Toxicol. Mech. Methods 2016, 26, 493–500. [Google Scholar] [CrossRef]
- Rattan, S.; Flaws, J.A. The epigenetic impacts of endocrine disruptors on female reproduction across generations. Biol. Reprod. 2019, 101, 635–644. [Google Scholar] [CrossRef] [PubMed]
- Butz, H.; Nyírő, G.; Kurucz, P.A.; Likó, I.; Patócs, A. Molecular genetic diagnostics of hypogonadotropic hypogonadism: From panel design towards result interpretation in clinical practice. Hum. Genet. 2021, 140, 113–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, J.; Kusa, T.O.; Chan, Y.M. Genetics of pubertal timing. Curr. Opin. Pediatr. 2018, 30, 532–540. [Google Scholar] [CrossRef] [PubMed]
- Roberts, S.A.; Kaiser, U.B. Genetics in endocrinology genetic etiologies of central precocious puberty and the role of imprinted genes. Eur. J. Endocrinol. 2020, 183, R107–R117. [Google Scholar] [CrossRef] [PubMed]
- Aguirre, R.S.; Eugster, E.A. Central precocious puberty: From genetics to treatment. Best Pract. Res. Clin. Endocrinol. Metab. 2018, 32, 343–354. [Google Scholar] [CrossRef] [Green Version]
- Manotas, M.C.; González, D.M.; Céspedes, C.; Forero, C.; Rojas Moreno, A.P. Genetic and Epigenetic Control of Puberty. Sex. Dev. 2021, 16, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Kuiri-Hänninen, T.; Sankilampi, U.; Dunkel, L. Activation of the hypothalamic-pituitary-gonadal axis in infancy: Minipuberty. Horm. Res. Paediatr. 2014, 82, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, H.; Schwarz, H.P. Serum concentrations of LH and FSH in the healthy newborn. Eur. J. Endocrinol. 2000, 143, 213–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toro, C.A.; Aylwin, C.F.; Lomniczi, A. Hypothalamic epigenetics driving female puberty. J. Neuroendocrinol. 2018, 30, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Uenoyama, Y.; Nagae, M.; Tsuchida, H.; Inoue, N.; Tsukamura, H. Role of KNDy Neurons Expressing Kisspeptin, Neurokinin B, and Dynorphin A as a GnRH Pulse Generator Controlling Mammalian Reproduction. Front. Endocrinol. 2021, 12, 724632. [Google Scholar] [CrossRef] [PubMed]
- Lebrethon, M.C.; Vandersmissen, E.; Gérard, A.; Parent, A.S.; Junien, J.L.; Bourguignon, J.P. In vitro stimulation of the prepubertal rat gonadotropin-releasing hormone pulse generator by leptin and neuropeptide Y through distinct mechanisms. Endocrinology 2000, 141, 1464–1469. [Google Scholar] [CrossRef] [PubMed]
- Herman-Giddens, M.E.; Slora, E.J.; Wasserman, R.C.; Bourdony, C.J.; Bhapkar, M.V.; Koch, G.G.; Hasemeier, C.M. Secondary sexual characteristics and menses in young girls seen in office practice: A study from the pediatric research in office settings network. Pediatrics 1997, 99, 505–512. [Google Scholar] [CrossRef] [PubMed]
- Biro, F.M.; Galvez, M.P.; Greenspan, L.C.; Succop, P.A.; Vangeepuram, N.; Pinney, S.M.; Teitelbaum, S.; Windham, G.C.; Kushi, L.H.; Wolff, M.S. Pubertal assessment method and baseline characteristics in a mixed longitudinal study of girls. Pediatrics 2010, 126, 583–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, A.; Reinehr, T.; Roth, C.L. Connections between obesity and puberty. Curr. Opin. Endocr. Metab. Res. 2020, 14, 160–168. [Google Scholar] [CrossRef]
- Sørensen, K.; Mouritsen, A.; Aksglaede, L.; Hagen, C.P.; Mogensen, S.S.; Juul, A. Recent secular trends in pubertal timing: Implications for evaluation and diagnosis of precocious puberty. Horm. Res. Paediatr. 2012, 77, 137–145. [Google Scholar] [CrossRef]
- Houk, C.P.; Kunselman, A.R.; Lee, P.A. Adequacy of a single unstimulated luteinizing hormone level to diagnose central precocious puberty in girls. Pediatrics 2009, 123, 1059–1063. [Google Scholar] [CrossRef] [PubMed]
- Mucaria, C.; Tyutyusheva, N.; Baroncelli, G.; Peroni, D.; Bertelloni, S. Central Precocious Puberty in Boys and Girls: Similarities and Differences. Sexes 2021, 2, 119–131. [Google Scholar] [CrossRef]
- Ibanez, L.; Potau, N.; Zampolli, M.; Virdis, R.; Gussinyé, M.; Carrascosa, A.; Saenger, P.; Vicens-Calvet, E. Use of leuprolide acetate response patterns in the early diagnosis of pubertal disorders: Comparison with the gonadotropin-releasing hormone test. J. Clin. Endocrinol. Metab. 1994, 78, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Latronico, A.C.; Brito, V.N.; Carel, J.C. Causes, diagnosis, and treatment of central precocious puberty. Lancet Diabetes Endocrinol. 2016, 4, 265–274. [Google Scholar] [CrossRef]
- Talarico, V.; Rodio, M.B.; Viscomi, A.; Galea, E.; Galati, M.C.; Raiola, G. The role of pelvic ultrasound for the diagnosis and management of central precocious puberty: An update. Acta Biomed. 2021, 92, e2021480. [Google Scholar] [CrossRef] [PubMed]
- Badouraki, M.; Christoforidis, A.; Economou, I.; Dimitriadis, A.S.; Katzos, G. Evaluation of pelvic ultrasonography in the diagnosis and differentiation of various forms of sexual precocity in girls. Ultrasound Obstet. Gynecol. 2008, 32, 819–827. [Google Scholar] [CrossRef]
- Kaplowitz, P.B.; Slora, E.J.; Wasserman, R.C.; Pedlow, S.E.; Herman-Giddens, M.E. Earlier onset of puberty in girls: Relation to increased body mass index and race. Pediatrics 2001, 108, 347–353. [Google Scholar] [CrossRef] [PubMed]
- Carel, J.C.; Eugster, E.A.; Rogol, A.; Ghizzoni, L.; Palmert, M.R. Consensus statement on the use of gonadotropin-releasing hormone analogs in children. Pediatrics 2009, 123, e752–e762. [Google Scholar] [CrossRef] [PubMed]
- Cantas-Orsdemir, S.; Garb, J.L.; Allen, H.F. Prevalence of cranial MRI findings in girls with central precocious puberty: A systematic review and meta-analysis. J. Pediatr. Endocrinol. Metab. 2018, 31, 701–710. [Google Scholar] [CrossRef] [PubMed]
- Klein, K.; Freire, A.; Gryngarten, M.G.; Kletter, G.B.; Benson, M.; Miller, B.S.; Dajani, T.S.; A Eugster, E.; Mauras, N. Phase 3 trial of a small-volume subcutaneous 6-month duration leuprolide acetate treatment for central precocious puberty. J. Clin. Endocrinol. Metab. 2020, 105, 3660–3671. [Google Scholar] [CrossRef]
- Hirsch, H.J.; Gillis, D.; Strich, D.; Chertin, B.; Farkas, A.; Lindenberg, T.; Gelber, H.; Spitz, I.M. The histrelin implant: A novel treatment for central precocious puberty. Pediatrics 2005, 116, e798–e802. [Google Scholar] [CrossRef] [Green Version]
- Lewis, K.A.; Goldyn, A.K.; West, K.W.; Eugster, E.A. A single histrelin implant is effective for 2 years for treatment of central precocious puberty. J. Pediatr. 2013, 163, 1214–1216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazar, L.; Padoa, A.; Phillip, M. Growth pattern and final height after cessation of gonadotropin-suppressive therapy in girls with central sexual precocity. J. Clin. Endocrinol. Metab. 2007, 92, 3483–3489. [Google Scholar] [CrossRef] [Green Version]
- Pasquino, A.M.; Pucarelli, I.; Accardo, F.; Demiraj, V.; Segni, M.; Di Nardo, R. Long-term observation of 87 girls with idiopathic central precocious puberty treated with gonadotropin-releasing hormone analogs: Impact on adult height, body mass index, bone mineral content, and reproductive function. J. Clin. Endocrinol. Metab. 2008, 93, 190–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paul, D.; Conte, F.A.; Grumbach, M.M.; Kaplan, S.L. Long Term Effect of Gonadotropin-Releasing on Final and Near-Final Age of Less Than 5 Years. J. Clin. Endocrinol. Metab. 1995, 80, 546–551. [Google Scholar] [PubMed] [Green Version]
- Xhrouet-Heinrichs, D.; Lagrou, K.; Heinrichs, C.; Craen, M.; Dooms, L.; Malvaux, P.; Kanen, F.; Bourguignon, J.-P. Longitudinal study of behavioral and affective patterns in girls with central precocious puberty during long-acting triptorelin therapy. Acta Paediatr. Int. J. Paediatr. 1997, 86, 808–815. [Google Scholar] [CrossRef] [PubMed]
- Schoelwer, M.J.; Donahue, K.L.; Didrick, P.; Eugster, E.A. One-Year Follow-Up of Girls with Precocious Puberty and Their Mothers: Do Psychological Assessments Change over Time or with Treatment? Horm. Res. Paediatr. 2017, 88, 347–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, X.; Liang, Y.; Hou, L.; Wu, W.; Ying, Y.; Ye, F. Long-term efficacy and safety of gonadotropin-releasing hormone analog treatment in children with idiopathic central precocious puberty: A systematic review and meta-analysis. Clin. Endocrinol. 2021, 94, 786–796. [Google Scholar] [CrossRef] [PubMed]
- Ke, R.; Ma, X.; Lee, L.T. Understanding the functions of kisspeptin and kisspeptin receptor (Kiss1R) from clinical case studies. Peptides 2019, 120, 170019. [Google Scholar] [CrossRef]
- Pinilla, L.; Aguilar, E.; Dieguez, C.; Millar, R.P.; Tena-Sempere, M. Kisspeptins and reproduction: Physiological roles and regulatory mechanisms. Physiol. Rev. 2012, 92, 1235–1316. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, M.; Babwah, A.V. Kisspeptin: Beyond the brain. Endocrinology 2015, 156, 1218–1227. [Google Scholar] [CrossRef] [Green Version]
- Martin, C.; Navarro, V.M.; Simavli, S.; Vong, L.; Carroll, R.S.; Lowell, B.B.; Kaiser, U.B. Leptin-responsive GABAergic neurons regulate fertility through pathways that result in reduced kisspeptinergic tone. J. Neurosci. 2014, 34, 6047–6056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cravo, R.M.; Frazao, R.; Perello, M.; Osborne-Lawrence, S.; Williams, K.; Zigman, J.M.; Vianna, C.; Elias, C.F. Leptin signaling in Kiss1 neurons arises after pubertal development. PLoS ONE 2013, 8, e58698. [Google Scholar] [CrossRef] [Green Version]
- Dungan, H.M.; Clifton, D.K.; Steiner, R.A. Minireview: Kisspeptin neurons as central processors in the regulation of gonadotropin-releasing hormone secretion. Endocrinology 2006, 147, 1154–1158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leka-Emiri, S.; Chrousos, G.P.; Kanaka-Gantenbein, C. The mystery of puberty initiation: Genetics and epigenetics of idiopathic central precocious puberty (ICPP). J. Endocrinol. Investig. 2017, 40, 789–802. [Google Scholar] [CrossRef] [PubMed]
- Shahab, M.; Lippincott, M.; Chan, Y.-M.; Davies, A.; Merino, P.M.; Plummer, L.; Mericq, V.; Seminara, S. Discordance in the Dependence on Kisspeptin Signaling in Minipuberty vs Adolescent Puberty: Human Genetic Evidence. J. Clin. Endocrinol. Metab. 2018, 103, 1273–1276. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Lee, K.; Herbison, A.E. Kisspeptin excites gonadotropin-releasing hormone neurons through a phospholipase C/calcium-dependent pathway regulating multiple ion channels. Endocrinology 2008, 149, 4605–4614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Roux, N.; Genin, E.; Carel, J.C.; Matsuda, F.; Chaussain, J.L.; Milgrom, E. Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc. Natl. Acad. Sci. USA 2003, 100, 10972–10976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seminara, S.B.; Messager, S.; Chatzidaki, E.E.; Thresher, R.R.; Acierno, J.S.; Shagoury, J.K.; Bo-Abbas, Y.; Kuohung, W.; Schwinof, K.M.; Hendrick, A.G.; et al. The GPR54 gene as a regulator of puberty. N. Engl. J. Med. 2003, 349, 1614–1627. [Google Scholar] [CrossRef] [Green Version]
- Bianco, S.D.C.; Kaiser, U.B. The genetic and molecular basis of idiopathic hypogonadotropic hypogonadism. Nat. Rev. Endocrinol. 2009, 5, 569–576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teles, M.G.; Bianco, S.D.; Brito, V.N.; Trarbach, E.B.; Kuohung, W.; Xu, S.; Seminara, S.B.; Mendonca, B.B.; Kaiser, U.B.; Latronico, A.C. A GPR54 -Activating Mutation in a Patient with Central Precocious Puberty. N. Engl. J. Med. 2008, 358, 709–715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silveira, L.G.; Noel, S.D.; Silveira-Neto, A.P.; Abreu, A.P.; Brito, V.N.; Santos, M.; Bianco, S.; Kuohung, W.; Xu, S.; Gryngarten, M.; et al. Mutations of the KISS1 gene in disorders of puberty. J. Clin. Endocrinol. Metab. 2010, 95, 2276–2280. [Google Scholar] [CrossRef] [PubMed]
- Pagani, S.; Calcaterra, V.; Acquafredda, G.; Montalbano, C.; Bozzola, E.; Ferrara, P.; Gasparri, M.; Villani, A.; Bozzola, M. MKRN3 and KISS1R mutations in precocious and early puberty. Ital. J. Pediatr. 2020, 46, 1–6. [Google Scholar] [CrossRef]
- Rhie, Y.J.; Lee, K.H.; Ko, J.M.; Lee, W.J.; Kim, J.H.; Kim, H.S. KISS1 gene polymorphisms in Korean girls with central precocious puberty. J. Korean Med. Sci. 2014, 29, 1120–1125. [Google Scholar] [CrossRef] [Green Version]
- Ghaemi, N.; Ghahraman, M.; Asl, S.N.; Vakili, R.; Golyan, F.F.; Moghbeli, M.; Abbaszadegan, M.R. Novel DNA variation of GPR54 gene in familial central precocious puberty. Ital. J. Pediatr. 2019, 45, 4–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, D.; Wu, Y.; Cheng, J.; Liu, L.; Li, X.; Chen, D.; Huang, S.; Wen, Y.; Ke, Y.; Yao, Y.; et al. Association of polymorphisms in the kisspeptin/GPR54 pathway genes with risk of early puberty in Chinese girls. J. Clin. Endocrinol. Metab. 2020, 105, E1458–E1467. [Google Scholar] [CrossRef] [PubMed]
- Özgen, I.T.; Torun, E.; Bayraktar-Tanyeri, B.; Durmaz, E.; Klllç, E.; Cesur, Y. The relation of urinary bisphenol A with kisspeptin in girls diagnosed with central precocious puberty and premature thelarche. J. Pediatr. Endocrinol. Metab. 2016, 29, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Pino, F.; Miceli, D.; Franssen, D.; Vazquez, M.J.; Farinetti, A.; Castellano, J.M.; Panzica, G.; Tena-Sempere, M. Environmentally relevant perinatal exposures to bisphenol a disrupt postnatal Kiss1/NKB neuronal maturation and puberty onset in female mice. Env. Health Perspect. 2019, 127, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Di, T.; Cao, X.; Liu, Z.; Xie, J.; Zhang, S. Chronic exposure to perfluorohexane sulfonate leads to a reproduction deficit by suppressing hypothalamic kisspeptin expression in mice. J. Ovarian Res. 2021, 14, 1–13. [Google Scholar] [CrossRef]
- Penatti, C.A.A.; Oberlander, J.G.; Davis, M.C.; Porter, D.M.; Henderson, L.P. Chronic exposure to anabolic androgenic steroids alters activity and synaptic function in neuroendocrine control regions of the female mouse. Neuropharmacology 2011, 61, 653–664. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Lu, W.; Yang, L.; Li, Z.; Zhou, X.; Guo, R.; Wang, J.; Wu, Z.; Dong, Z.; Ning, G.; et al. MKRN3 regulates the epigenetic switch of mammalian puberty via ubiquitination of MBD3. Natl. Sci. Rev. 2020, 7, 671–685. [Google Scholar] [CrossRef] [Green Version]
- Abreu, A.P.; Toro, C.A.; Song, Y.B.; Navarro, V.M.; Bosch, M.A.; Eren, A.; Liang, J.N.; Carroll, R.S.; Latronico, A.C.; Ronnekleiv, O.K.; et al. MKRN3 inhibits the reproductive axis through actions in kisspeptin-expressing neurons. J. Clin. Investig. 2020, 140, 4486–4500. [Google Scholar] [CrossRef]
- Meader, B.N.; Albano, A.; Sekizkardes, H.; Delaney, A. Heterozygous Deletions in MKRN3 Cause Central Precocious Puberty without Prader-Willi Syndrome. J. Clin. Endocrinol. Metab. 2020, 105, 2732–2739. [Google Scholar] [CrossRef]
- Neocleous, V.; Fanis, P.; Toumba, M.; Gorka, B.; Kousiappa, I.; Tanteles, G.A.; Iasonides, M.; Nicolaides, N.C.; Christou, Y.P.; Michailidou, K.; et al. Pathogenic and Low-Frequency Variants in Children With Central Precocious Puberty. Front. Endocrinol. 2021, 12, 1187. [Google Scholar] [CrossRef]
- Fanis, P.; Skordis, N.; Toumba, M.; Papaioannou, N.; Makris, A.; Kyriakou, A.; Neocleous, V.; Phylactou, L.A. Central Precocious Puberty Caused by Novel Mutations in the Promoter and 5′-UTR Region of the Imprinted MKRN3 Gene. Front. Endocrinol. 2019, 10, 677. [Google Scholar] [CrossRef]
- Abreu, A.P.; Dauber, A.; Macedo, D.B.; Noel, S.D.; Brito, V.N.; Gill, J.C.; Cukier, P.; Thompson, I.R.; Navarro, V.M.; Gagliardi, P.C.; et al. Central Precocious Puberty Caused by Mutations in the Imprinted Gene MKRN3. N. Engl. J. Med. 2013, 368, 2467–2475. [Google Scholar] [CrossRef] [Green Version]
- Valadares, L.P.; Meireles, C.; De Toledo, I.P.; De Oliveira, R.S.; de Castro, L.C.G.; Abreu, A.P.; Carroll, R.S.; Latronico, A.C.; Kaiser, U.B.; Guerra, E.N.S.; et al. MKRN3 mutations in central precocious puberty: A systematic review and meta-analysis. J. Endocr. Soc. 2019, 3, 979–995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seraphim, C.E.; Canton, A.P.M.; Montenegro, L.; Piovesan, M.R.; Macedo, D.B.; Cunha, M.; Guimaraes, A.; Ramos, C.O.; Benedetti, A.F.F.; Leal, A.D.C.; et al. Genotype-Phenotype Correlations in Central Precocious Puberty Caused by MKRN3 Mutations. J. Clin. Endocrinol. Metab. 2021, 106, 1041–1050. [Google Scholar] [CrossRef] [PubMed]
- Shim, Y.S.; Sang, L.H.; Hwang, J.S. Genetic Factors in Precocious Puberty. Clin. Exp. Pediatr. 2021, 65, 172–181. [Google Scholar] [CrossRef]
- Andersson, E.R.; Sandberg, R.; Lendahl, U. Notch signaling: Simplicity in design, versatility in function. Development 2011, 138, 3593–3612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macedo, D.B.; Kaiser, U.B. DLK1, Notch Signaling and the Timing of Puberty. Semin. Reprod. Med. 2019, 37, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Perry, J.R.B.; Australian Ovarian Cancer Study; Day, F.; Elks, C.E.; Sulem, P.; Thompson, D.J.; Ferreira, T.; He, C.; Chasman, D.I.; Esko, T.; et al. Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche. Nature 2014, 514, 92–97. [Google Scholar] [CrossRef] [Green Version]
- Dauber, A.; Cunha-Silva, M.; Macedo, D.B.; Brito, V.N.; Abreu, A.P.; Roberts, S.A.; Montenegro, L.R.; Andrew, M.; Kirby, A.; Weirauch, M.T.; et al. Paternally Inherited DLK1 deletion associated with familial central precocious puberty. J. Clin. Endocrinol. Metab. 2017, 102, 1557–1567. [Google Scholar] [CrossRef]
- Kagami, M.; Nagasaki, K.; Kosaki, R.; Horikawa, R.; Naiki, Y.; Saitoh, S.; Tajima, T.; Yorifuji, T.; Numakura, C.; Mizuno, S.; et al. Temple syndrome: Comprehensive molecular and clinical findings in 32 Japanese patients. Genet. Med. 2017, 19, 1356–1366. [Google Scholar] [CrossRef] [Green Version]
- D’Mello, S.R. MECP2 and the biology of MECP2 duplication syndrome. J. Neurochem. 2021, 159, 29–60. [Google Scholar] [CrossRef] [PubMed]
- Ben-Shachar, S.; Chahrour, M.; Thaller, C.; Shaw, C.A.; Zoghbi, H.Y. Mouse models of MeCP2 disorders share gene expression changes in the cerebellum and hypothalamus. Hum. Mol. Genet. 2009, 18, 2431–2442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westberry, J.M.; Trout, A.L.; Wilson, M.E. Epigenetic regulation of estrogen receptor alpha gene expression in the mouse cortex during early postnatal development. Endocrinology 2010, 151, 731–740. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wu, Y.; Zheng, Y.F.; Wang, H.Y. MeCP2 duplication causes hyperandrogenism by upregulating LHCGR and downregulating ROR. Cell Death Dis. 2021, 12, 999. [Google Scholar] [CrossRef] [PubMed]
- Tsuji-Hosokawa, A.; Matsuda, N.; Kurosawa, K.; Kashimada, K.; Morio, T. A Case of MECP2 Duplication Syndrome with Gonadotropin-Dependent Precocious Puberty. Horm. Res. Paediatr. 2017, 87, 271–276. [Google Scholar] [CrossRef]
- Parent, A.S.; Matagne, V.; Bourguignon, J.P. Control of puberty by excitatory amino acid neurotransmitters and its clinical implications. Endocrine 2005, 28, 281–285. [Google Scholar] [CrossRef] [Green Version]
- Terasawa, E.; Garcia, J.P. Neuroendocrine mechanisms of puberty in non–human primates. Curr. Opin. Endocr. Metab. Res. 2020, 14, 145–151. [Google Scholar] [CrossRef]
- Brito, V.N.; Mendonca, B.B.; Guilhoto, L.M.F.F.; Monteiro Freitas, K.C.; Prado Arnhold, I.J.; Latronico, A.C. Allelic variants of the γ-aminobutyric acid-A receptor α1-subunit gene (GABRA1) are not associated with idiopathic gonadotropin-dependent precocious puberty in girls with and without electroencephalographic abnormalities. J. Clin. Endocrinol. Metab. 2006, 91, 2432–2436. [Google Scholar] [CrossRef] [Green Version]
- Defazio, R.A.; Elias, C.F.; Moenter, S.M. GABAergic transmission to kisspeptin neurons is differentially regulated by time of day and estradiol in female mice. J. Neurosci. 2014, 34, 16296–16308. [Google Scholar] [CrossRef] [Green Version]
- Franssen, D.; Gérard, A.; Hennuy, B.; Donneau, A.F.; Bourguignon, J.P.; Parent, A.S. Delayed neuroendocrine sexual maturation in female rats after a very low dose of bisphenol a through altered gabaergic neurotransmission and opposing effects of a high dose. Endocrinology 2016, 157, 1740–1750. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Rodriguez, D.; Franssen, D.; Bakker, J.; Lomniczi, A.; Parent, A.S. Cellular and molecular features of EDC exposure: Consequences for the GnRH network. Nat. Rev. Endocrinol. 2021, 17, 83–96. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Tan, J.; Xu, X.; Yang, H.; Wu, F.; Xu, B.; Liu, W.; Shi, P.; Xu, Z.; Deng, Y. Prepubertal overexposure to manganese induce precocious puberty through GABAA receptor/nitric oxide pathway in immature female rats. Ecotoxicol. Environ. Saf. 2020, 188, 109898. [Google Scholar] [CrossRef] [PubMed]
- Topaloglu, A.K.; Reimann, F.; Guclu, M.; Yalin, A.S.; Kotan, L.D.; Porter, K.M.; Serin, A.; O Mungan, N.; Cook, J.R.; Ozbek, M.N.; et al. TAC3 and TACR3 mutations in familial hypogonadotropic hypogonadism reveal a key role for Neurokinin B in the central control of reproduction. Nat. Genet. 2009, 41, 354–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gianetti, E.; Tusset, C.; Noel, S.D.; Au, M.G.; Dwyer, A.; Hughes, V.A.; Abreu, A.P.; Carroll, J.; Trarbach, E.; Silveira, L.; et al. TAC3/TACR3 mutations reveal preferential activation of gonadotropin- releasing hormone release by neurokinin B in neonatal life followed by reversal in adulthood. J. Clin. Endocrinol. Metab. 2010, 95, 2857–2867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teles, M.G.; Silveira, L.F.G.; Tusset, C.; Latronico, A.C. New genetic factors implicated in human GnRH-dependent precocious puberty: The role of kisspeptin system. Mol. Cell. Endocrinol. 2011, 346, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Xin, X.; Zhang, J.; Chang, Y.; Wu, Y. Association Study of TAC3 and TACR3 gene polymorphisms with idiopathic precocious puberty in Chinese girls. J. Pediatr. Endocrinol. Metab. 2015, 28, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Tusset, C.; Noel, S.D.; Trarbach, E.B.; Silveira, L.F.; Jorge, A.A.; Brito, V.N.; Cukier, P.; Seminara, S.B.; de Mendonça, B.B.; Kaiser, U.B.; et al. Mutational Analysis of TAC3 and TACR3 Genes in Patients with Idiopathic Central Pubertal Disorders Cintia. Arq. Bras. Endocrinol. Metab. 2012, 56, 646–652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groenendyk, J.; Dabrowska, M.; Michalak, M. Mutational Analysis of TAC and TACR3 in Central Precocious Puberty. Biochim. Biophys. Acta (BBA) Biomembr. 2014, 35, 129–132. [Google Scholar] [CrossRef] [Green Version]
- Eckert-Lind, C.; Busch, A.S.; Petersen, J.H.; Biro, F.M.; Butler, G.; Bräuner, E.; Juul, A. Worldwide Secular Trends in Age at Pubertal Onset Assessed by Breast Development among Girls: A Systematic Review and Meta-analysis. JAMA Pediatr. 2020, 174, e195881. [Google Scholar] [CrossRef] [PubMed]
- Huang, A.; Roth, C.L. The link between obesity and puberty: What is new? Curr. Opin. Pediatr. 2021, 33, 449–457. [Google Scholar] [CrossRef]
- Walley, S.N.; Roepke, T.A. Perinatal exposure to endocrine disrupting compounds and the control of feeding behavior—An overview. Horm. Behav. 2018, 101, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Halaas, J.L.; Gajiwala, K.S.; Maffei, M.; Cohen, S.L.; Chait, B.T.; Rabinowitz, D.; Lallone, R.L.; Burley, S.K.; Friedman, J.M. Weight-reducing effects of the plasma protein encoded by the obese gene. Science 1995, 269, 543–546. [Google Scholar] [CrossRef] [PubMed]
- Frisch, R.E. Pubertal adipose tissue: Is it necessary for normal sexual maturation? Evidence from the rat and human female. Fed. Proc. 1980, 39, 2395–2400. [Google Scholar] [PubMed]
- Frisch, R.E.; Revelle, R.; Cook, S. Components of weight at menarche and the initiation of the adolescent growth spurt in girls: Estimated total water, lean body weight and fat. Hum. Biol. 1973, 45, 469–483. [Google Scholar]
- Shalitin, S.; Kiess, W. Putative effects of obesity on linear growth and puberty. Horm. Res. Paediatr. 2017, 88, 101–110. [Google Scholar] [CrossRef]
- MacKay, H.; Patterson, Z.R.; Abizaid, A. Perinatal exposure to low-dose bisphenol-a disrupts the structural and functional development of the hypothalamic feeding circuitry. Endocrinology 2017, 158, 768–777. [Google Scholar] [CrossRef] [Green Version]
- Plant, T.M.; Barker-Gibb, M.L. Neurobiological mechani87sms of puberty in higher primates. Hum. Reprod. Update 2004, 10, 67–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freitas, K.C.M.; Ryan, G.; Brito, V.N.; Tao, Y.-X.; Costa, E.M.F.; Mendonca, B.B.; Segaloff, D.; Latronico, A.C. Molecular analysis of the neuropeptide Y1 receptor gene in human idiopathic gonadotropin-dependent precocious puberty and isolated hypogonadotropic hypogonadism. Fertil. Steril. 2007, 87, 627–634. [Google Scholar] [CrossRef]
- Barker-Gibb, M.; Plant, T.M.; White, C.; Lee, P.A.; Feldman Witchel, S. Genotype analysis of the neuropeptide Y (NPY) Y1 and NPY Y5 receptor genes in gonadotropin-releasing hormone-dependent precocious gonadarche. Fertil. Steril. 2004, 82, 491–494. [Google Scholar] [CrossRef]
- MacKay, H.; Patterson, Z.R.; Khazall, R.; Patel, S.; Tsirlin, D.; Abizaid, A. Organizational effects of perinatal exposure to bisphenol-a and diethylstilbestrol on arcuate nucleus circuitry controlling food intake and energy expenditure in male and female CD-1 mice. Endocrinology 2013, 154, 1465–1475. [Google Scholar] [CrossRef]
- Ong, K.K.; Elks, C.E.; Li, S.; Zhao, J.H.; Luan, J.; Andersen, L.B.; Bingham, A.S.; Brage, S.; Smith, D.G.; Ekelund, U.; et al. Genetic variation in LIN28B is associated with the timing of puberty. Nat. Genet. 2009, 41, 729–733. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; Chen, R.; Cai, C. Association of genetic polymorphisms around the LIN28B gene and idiopathic central precocious puberty risks among Chinese girls. Pediatr. Res. 2016, 80, 521–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tommiska, J.; Sørensen, K.; Aksglaede, L.; Koivu, R.; Puhakka, L.; Juul, A.; Raivio, T. LIN28B, LIN28A, KISS1, and KISS1R in idiopathic central precocious uberty. BMC Res. Notes 2011, 4, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mercer, R.E.; Wevrick, R. Loss of Magel2, a candidate gene for features of Prader- Willi syndrome, impairs reproductive function in mice. PLoS ONE 2009, 4, e4291. [Google Scholar] [CrossRef] [Green Version]
- Fon Tacer, K.; Potts, P.R. Cellular and disease functions of the Prader-Willi Syndrome gene MAGEL2. Biochem. J. 2018, 474, 2177–2190. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Cho, S.Y.; Jin, D.-K. Prader-Willi syndrome: An update on obesity and endocrine problems. Ann. Pediatr. Endocrinol. Metab. 2021, 26, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Canton, A.P.M.; Seraphim, C.E.; Brito, V.N.; Latronico, A.C. Pioneering studies on monogenic central precocious puberty. Arch. Endocrinol. Metab. 2019, 63, 438–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Correa-da-Silva, F.; Fliers, E.; Swaab, D.F.; Yi, C.X. Hypothalamic neuropeptides and neurocircuitries in Prader Willi syndrome. J. Neuroendoc. 2021, 33, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Kanber, D.; Giltay, J.; Wieczorek, D.; Zogel, C.; Hochstenbach, R.; Caliebe, A.; Kuechler, A.; Horsthemke, B.; Buiting, K. A paternal deletion of MKRN3, MAGEL2 and NDN does not result in Prader-Willi syndrome. Eur. J. Hum. Genet. 2009, 17, 582–590. [Google Scholar] [CrossRef] [Green Version]
- Wakeling, E.L.; Brioude, F.; Lokulo-Sodipe, O.; O’Connell, S.M.; Salem, J.; Bliek, J.; Canton, A.P.M.; Chrzanowska, K.H.; Davies, J.H.; Dias, R.P.; et al. Diagnosis and management of Silver-Russell syndrome: First international consensus statement. Nat. Rev. Endocrinol. 2017, 13, 105–124. [Google Scholar] [CrossRef] [PubMed]
- Saxena, K.M. Endocrine manifestations of neurofibromatosis in children. Am. J. Dis. Child. 1970, 120, 265–271. [Google Scholar] [CrossRef]
- Cnossen, M.H.; Stam, E.N.; Cooiman, L.C.M.G.; Simonsz, H.J.; Stroink, H.; Oranje, A.P.; Halley, D.J.J.; de Goede-Bolder, A.; Niermeijer, M.F.; Keizer-Schrama, S.M.P.F.D.M. Endocrinologic disorders and optic pathway gliomas in children with neurofibromatosis type 1. Pediatrics 1997, 100, 667–670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Habiby, R.; Silverman, B.; Listernick, R.; Charrow, J. Precocious puberty in children with neurofibromatosis type 1. J. Pediatr. 1995, 126, 364–367. [Google Scholar] [CrossRef]
- Grumbach, M.; Kaplan, S. The neuroendocrinology of human puberty: An ontogenetic perspective. In Control of the Onset of Puberty; Sizonenko, P., Aubert, M., Eds.; William & Wilkins: Philadelphia, PA, USA, 1990; pp. 1–68. [Google Scholar]
- Laue, L.; Comite, F.; Hench, K.; Loriaux, D.L.; Cutler, G.B.; Pescovitz, O.H. Precocious puberty associated with neurofibromatosis and optic gliomas. Treatment with luteinizing hormone releasing hormone analogue. Am. J. Dis. Child. 1985, 139, 1097–1100. [Google Scholar] [CrossRef]
- Listernick, R.; Darling, C.; Greenwald, M.; Strauss, L.; Charrow, J. Optic pathway tumors in children: The effect of neurofibromatosis type 1 on clinical manifestations and natural history. J. Pediatr. 1995, 127, 718–722. [Google Scholar] [CrossRef]
- Bizzarri, C.; Bottaro, G. Endocrine implications of neurofibromatosis 1 in childhood. Horm. Res. Paediatr. 2015, 83, 232–241. [Google Scholar] [CrossRef]
- Killian, J.T.; Lane, J.B.; Cutter, G.R.; Skinner, S.A.; Kaufmann, W.E.; Tarquinio, D.C.; Glaze, D.G.; Motil, K.J.; Neul, J.M.; Percy, A.K. Pubertal Development in Rett Syndrome Deviates from Typical Females. Pediatr. Neurol. 2014, 51, 769–775. [Google Scholar] [CrossRef] [Green Version]
- Huppke, P.; Roth, C.; Christen, H.J.; Brockmann, K.; Hanefeld, F. Endocrinological study on growth retardation in Rett syndrome. Acta Paediatr. 2001, 90, 1257–1261. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Rudaz, C.; Deng, V.; Matagne, V.; Ronnekleiv, O.K.; Bosch, M.; Han, V.; Ojeda, S.R. FXYD1, a modulator of Na,K-ATPase activity, facilitates female sexual development by maintaining gonadotrophin-releasing hormone neuronal excitability. J. Neuroendocrinol. 2009, 21, 108–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarquinio, D.C.; Motil, K.J.; Hou, W.; Lee, H.-S.; Glaze, D.G.; Skinner, S.A.; Neul, J.L.; Annese, F.; McNair, L.; Barrish, J.O.; et al. Growth failure and outcome in Rett syndrome: Specific growth references. Neurology 2012, 79, 1653–1661. [Google Scholar] [CrossRef] [Green Version]
- Knight, O.; Bebbington, A.; Siafarikas, A.; Woodhead, H.; Girdler, S.; Leonard, H. Pubertal trajectory in females with Rett syndrome: A population-based study. Brain Dev. 2013, 35, 912–920. [Google Scholar] [CrossRef]
- Bernstein, U.; Demuth, S.; Puk, O.; Eichhorn, B.; Schulz, S. Novel MECP2 Mutation c.1162_1172del; p.Pro388* in Two Patients with Symptoms of Atypical Rett Syndrome. Mol. Syndromol. 2019, 10, 223–228. [Google Scholar] [CrossRef]
- Pober, B.R. Williams–Beuren Syndrome. New Eng. 2010, 362, 239–252. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Chen, Q.; Yuan, K.; He, M.; Zhu, J.; Fang, Y.; Hu, J.; Yan, Q. The first central precocious puberty proteomic profiles revealed multiple metabolic networks and novel key disease-associated proteins. Aging 2021, 13, 24236–24250. [Google Scholar] [CrossRef] [PubMed]
- Cintra, R.G.; Wajnsztejn, R.; Trevisan, C.M.; Zaia, V.; Laganà, A.S.; Bianco, B.; Montagna, E. Kisspeptin Levels in Girls with Precocious Puberty: A Systematic Review and Meta-Analysis. Horm. Res. Paediatr. 2020, 93, 589–598. [Google Scholar] [CrossRef]
- Ge, W.; Wang, H.L.; Shao, H.J.; Liu, H.W.; Xu, R.Y. Evaluation of serum makorin ring finger protein 3 (MKRN3) levels in girls with idiopathic central precocious puberty and premature thelarche. Physiol. Res. 2020, 69, 127–133. [Google Scholar] [CrossRef]
- Blumenfeld, Z. Investigational and experimental GnRH analogs and associated neurotransmitters. Expert Opin Investig. Drugs 2017, 26, 661–667. [Google Scholar] [CrossRef]
- Newton, C.L.; Anderson, R.C.; Millar, R.P. Therapeutic neuroendocrine agonist and antagonist analogs of hypothalamic neuropeptides as modulators of the hypothalamic-pituitary-gonadal axis. Endocr. Dev. 2016, 30, 106–129. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mucci, A.; Clemente, E. The Role of Genetics in Central Precocious Puberty: Confirmed and Potential Neuroendocrine Genetic and Epigenetic Contributors and Their Interactions with Endocrine Disrupting Chemicals (EDCs). Endocrines 2022, 3, 433-451. https://doi.org/10.3390/endocrines3030035
Mucci A, Clemente E. The Role of Genetics in Central Precocious Puberty: Confirmed and Potential Neuroendocrine Genetic and Epigenetic Contributors and Their Interactions with Endocrine Disrupting Chemicals (EDCs). Endocrines. 2022; 3(3):433-451. https://doi.org/10.3390/endocrines3030035
Chicago/Turabian StyleMucci, Andrea, and Ethel Clemente. 2022. "The Role of Genetics in Central Precocious Puberty: Confirmed and Potential Neuroendocrine Genetic and Epigenetic Contributors and Their Interactions with Endocrine Disrupting Chemicals (EDCs)" Endocrines 3, no. 3: 433-451. https://doi.org/10.3390/endocrines3030035
APA StyleMucci, A., & Clemente, E. (2022). The Role of Genetics in Central Precocious Puberty: Confirmed and Potential Neuroendocrine Genetic and Epigenetic Contributors and Their Interactions with Endocrine Disrupting Chemicals (EDCs). Endocrines, 3(3), 433-451. https://doi.org/10.3390/endocrines3030035