A Review of Prader–Willi Syndrome
Abstract
:1. Introduction
2. Genetics
The PWS Region
3. Updates to Genes of Interest in the PWS Region
3.1. MKRN3
3.2. MAGEL2, NDN, and Circadian Rhythm
3.3. SNORD116
3.4. MAGEL2 and Schaaf-Yang Syndrome
4. Clinical Presentation and Diagnostics
5. Clinical Criteria and the Diagnostic Pathway
6. Emerging Technologies in PWS Diagnosis
7. Prenatal Diagnosis
8. Management
8.1. Growth Hormone Therapy
8.2. Hyperphagia and Obesity
8.3. Behavioral Health
9. Future Developments
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
BDNF | Brain-derived neurotrophic factor |
BMI | Body mass index |
BP | Break points |
CGH | Comparative genetic hybridization |
CLOCK:BMAL | Circadian locomotor output cycles kaput brain and muscle ARNT-Like 1 |
CMA | Chromosomal microarray analysis |
SNURF | SNRPN upstream open reading frame |
CPP | Central precocious puberty |
CR1 | Complement C3b/C4b receptor 1 |
CRY1/2 | Cryptochrome circadian regulator 1/2 |
CVS | Chorionic villus sampling |
CYFIP1 | CytoplasmicFMR1 interacting protein 1 |
CYP | Cytochrome P450 |
EMHT2/G9a | Euchromatic histone lysine methyltransferase 2 |
FISH | Fluorescence in situ hybridization |
GH | Growth hormone |
GLP-1 | Glucagon-like peptide 1 |
HPG | Hypothalamic-pituitary-gonadal |
ICR | Imprinting control region |
IGF-1 | Insulin-like growth factor 1 |
KISS1 | Kisspeptin 1 |
MAGEL2:MAGE | Family member L2 |
MKRN3 | Makorin ring finger protein 3 |
MS-MLPA | Methylation-specific multiplex ligation-dependent probe amplification |
MS-PCR | Methylation-specific polymerase chain reaction |
mUPD | Maternal uniparental disomy |
NIPA1/2 | NIPA magnesium transporter 1/2 |
NIPS | Non-invasive prenatal screening |
OCD | Obsessive-compulsive disorder |
OMIM | Online Mendelian Inheritance In Man |
PCR | Polymerase chain reaction |
PER | Period circadian protein homolog |
PWS | Prader–Willi syndrome |
rhGH | Recombinant human growth hormone |
SCF | Skp, Cullin, F-box containing coplex |
SMCHD1 | Structural Maintenance of Chromosomes flexible Hinge Domain Containing 1 |
SNORD115/116 | Small nucleolar RNA, C/D box 115/116 cluster |
SNP | single nucleotide polymorphisms |
SNURPN | Small nucleolar ribonucleoprotein polypeptide N |
SSRI | Selective serotonin reuptake inhibitor |
STR | Short tandem repeat |
TAC3 | Tachykinin precursor 3 |
TUBGCP5 | Tubulin gamma complex associated protein 5 |
UBE3a | Ubiquitin protein ligase E3A |
USP7 | Ubiquitin-specific-processing protease 7 |
References
- Down, J.L. Lettsomian Lectures on some of the Mental Affections of Childhood and Youth. Br. Med. J. 1887, 1, 149–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prader, A.; Labhart, A.; Willi, H. Ein Syndrome von Adipositas, Kleinwuchs, Kryptochismus und Oligophrenie nach myatonieartigem Zustand in Neugeborenenalter. Schweiz Med. Wochenschr 1956, 86, 1260–1261. [Google Scholar]
- Butler, M.G.; Miller, J.L.; Forster, J.L. Prader-Willi Syndrome-Clinical Genetics, Diagnosis and Treatment Approaches: An Update. Curr. Pediatr. Rev. 2019, 15, 207–244. [Google Scholar] [CrossRef]
- Butler, M.G. Prader-Willi syndrome: Current understanding of cause and diagnosis. Am. J. Med. Genet. 1990, 35, 319–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gross, N.; Rabinowitz, R.; Gross-Tsur, V.; Hirsch, H.J.; Eldar-Geva, T. Prader-Willi syndrome can be diagnosed prenatally. Am. J. Med. Genet. Part A 2015, 167, 80–85. [Google Scholar] [CrossRef]
- Cassidy, S.B.; Schwartz, S.; Miller, J.L.; Driscoll, D.J. Prader-Willi syndrome. Genet. Med. 2012, 14, 10–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butler, M.G.; Manzardo, A.M.; Heinemann, J.; Loker, C.; Loker, J. Causes of death in Prader-Willi syndrome: Prader-Willi Syndrome Association (USA) 40-year mortality survey. Genet. Med. 2017, 19, 635–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cassidy, S.B.; Driscoll, D.J. Prader-Willi syndrome. Eur. J. Hum. Genet. 2009, 17, 3–13. [Google Scholar] [CrossRef]
- Angulo, M.A.; Butler, M.G.; Cataletto, M.E. Prader-Willi syndrome: A review of clinical, genetic, and endocrine findings. J. Endocrinol. Investig. 2015, 38, 1249–1263. [Google Scholar] [CrossRef] [Green Version]
- Kalsner, L.; Chamberlain, S.J. Prader-Willi, Angelman, and 15q11-q13 Duplication Syndromes. Pediatr. Clin. N. Am. 2015, 62, 587–606. [Google Scholar] [CrossRef] [Green Version]
- Cattanach, B.M.; Kirk, M. Differential activity of maternally and paternally derived chromosome regions in mice. Nature 1985, 315, 496–498. [Google Scholar] [CrossRef] [PubMed]
- Tucci, V.; Isles, A.R.; Kelsey, G.; Ferguson-Smith, A.C. Genomic Imprinting and Physiological Processes in Mammals. Cell 2019, 176, 952–965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butler, M.G.; Hartin, S.N.; Hossain, W.A.; Manzardo, A.M.; Kimonis, V.; Dykens, E.; Gold, J.A.; Kim, S.-J.; Weisensel, N.; Tamura, R.; et al. Molecular genetic classification in Prader-Willi syndrome: A multisite cohort study. J. Med. Genet. 2018, 56, 149–153. [Google Scholar] [CrossRef]
- Lu, R.; Dong, Y.; Li, J.-D. Necdin regulates BMAL1 stability and circadian clock through SGT1-HSP90 chaperone machinery. Nucleic Acids Res. 2020, 48, 7944–7957. [Google Scholar] [CrossRef] [PubMed]
- Cox, D.M.; Butler, M.G. The 15q11.2 BP1-BP2 microdeletion syndrome: A review. Int. J. Mol. Sci. 2015, 16, 4068–4082. [Google Scholar] [CrossRef] [PubMed]
- Chai, J.-H.; Locke, D.; Greally, J.; Knoll, J.; Ohta, T.; Dunai, J.; Yavor, A.; Eichler, E.; Nicholls, R. Identification of Four Highly Conserved Genes between Breakpoint Hotspots BP1 and BP2 of the Prader-Willi/Angelman Syndromes Deletion Region That Have Undergone Evolutionary Transposition Mediated by Flanking Duplicons. Am. J. Hum. Genet. 2003, 73, 898–925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butler, M.G.; Fischer, W.; Kibiryeva, N.; Bittel, D.C. Array comparative genomic hybridization (aCGH) analysis in Prader-Willi syndrome. Am. J. Med Genet. Part A 2008, 146A, 854–860. [Google Scholar] [CrossRef] [Green Version]
- Butler, M.G.; Bittel, D.C.; Kibiryeva, N.; Talebizadeh, Z.; Thompson, T. Behavioral Differences Among Subjects with Prader-Willi Syndrome and Type I or Type II Deletion and Maternal Disomy. Pediatrics 2004, 113, 565–573. [Google Scholar] [CrossRef]
- Bittel, D.C.; Kibiryeva, N.; Butler, M.G. Expression of 4 Genes Between Chromosome 15 Breakpoints 1 and 2 and Behavioral Outcomes in Prader-Willi Syndrome. Pediatrics 2006, 118, e1276-83. [Google Scholar] [CrossRef] [Green Version]
- Murthy, S.; Nygren, A.; El Shakankiry, H.; Schouten, J.; Al Khayat, A.; Ridha, A.; Al Ali, M. Detection of a novel familial deletion of four genes between BP1 and BP2 of the Prader-Willi/Angelman syndrome critical region by oligo-array CGH in a child with neurological disorder and speech impairment. Cytogenet. Genome Res. 2007, 116, 135–140. [Google Scholar] [CrossRef]
- Doornbos, M.; Sikkema-Raddatz, B.; Ruijvenkamp, C.A.; Dijkhuizen, T.; Bijlsma, E.K.; Gijsbers, A.C.; Hilhorst-Hofstee, Y.; Hordijk, R.; Verbruggen, K.T.; Kerstjens-Frederikse, W.; et al. Nine patients with a microdeletion 15q11.2 between breakpoints 1 and 2 of the Prader–Willi critical region, possibly associated with behavioural disturbances. Eur. J. Med Genet. 2009, 52, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Abreu, A.P.; Dauber, A.; Macedo, D.B.; Noel, S.D.; Brito, V.N.; Gill, J.C.; Cukier, P.; Thompson, I.R.; Navarro, V.M.; Gagliardi, P.C.; et al. Central Precocious Puberty Caused by Mutations in the Imprinted Gene MKRN3. N. Engl. J. Med. 2013, 368, 2467–2475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abreu, A.P.; Toro, C.A.; Song, Y.B.; Navarro, V.M.; Bosch, M.A.; Eren, A.; Liang, J.N.; Carroll, R.S.; Latronico, A.C.; Ronnekleiv, O.K.; et al. MKRN3 inhibits the reproductive axis through actions in kisspeptin-expressing neurons. J. Clin. Investig. 2020, 130, 4486–4500. [Google Scholar] [CrossRef]
- Carias, K.V.; Zoeteman, M.; Seewald, A.; Sanderson, M.R.; Bischof, J.M.; Wevrick, R. A MAGEL2-deubiquitinase complex modulates the ubiquitination of circadian rhythm protein CRY1. PLoS ONE 2020, 15, e0230874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tacer, K.F.; Potts, P.R. Cellular and disease functions of the Prader–Willi Syndrome gene MAGEL2. Biochem. J. 2017, 474, 2177–2190. [Google Scholar] [CrossRef]
- Schaaf, C.P.; Gonzalez-Garay, M.L.; Xia, F.; Potocki, L.; Gripp, K.W.; Zhang, B.; Peters, B.A.; A McElwain, M.; Drmanac, R.; Beaudet, A.L.; et al. Truncating mutations of MAGEL2 cause Prader-Willi phenotypes and autism. Nat. Genet. 2013, 45, 1405–1408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahoo, T.; Del Gaudio, D.; German, J.R.; Shinawi, M.; Peters, S.U.; Person, R.E.; Garnica, A.; Cheung, S.W.; Beaudet, A.L. Prader-Willi phenotype caused by paternal deficiency for the HBII-85 C/D box small nucleolar RNA cluster. Nat. Genet. 2008, 40, 719–721. [Google Scholar] [CrossRef] [Green Version]
- De Smith, A.J.; Purmann, C.; Walters, R.; Ellis, R.J.; Holder, S.E.; Van Haelst, M.M.; Brady, A.F.; Fairbrother, U.L.; Dattani, M.; Keogh, J.M.; et al. A deletion of the HBII-85 class of small nucleolar RNAs (snoRNAs) is associated with hyperphagia, obesity and hypogonadism. Hum. Mol. Genet. 2009, 18, 3257–3265. [Google Scholar] [CrossRef]
- Yin, Q.-F.; Yang, L.; Zhang, Y.; Xiang, J.-F.; Wu, Y.-W.; Carmichael, G.G.; Chen, L.-L. Long Noncoding RNAs with snoRNA Ends. Mol. Cell 2012, 48, 219–230. [Google Scholar] [CrossRef] [Green Version]
- Coulson, R.L.; Yasui, D.H.; Dunaway, K.W.; Laufer, B.I.; Ciernia, A.V.; Zhu, Y.; Mordaunt, C.E.; Totah, T.S.; LaSalle, J.M. Snord116-dependent diurnal rhythm of DNA methylation in mouse cortex. Nat. Commun. 2018, 9, 1616. [Google Scholar] [CrossRef] [Green Version]
- Patke, A.; Young, M.W.; Axelrod, S. Molecular mechanisms and physiological importance of circadian rhythms. Nat. Rev. Mol. Cell Biol. 2020, 21, 67–84. [Google Scholar] [CrossRef] [PubMed]
- Yoo, S.-H.; Mohawk, J.A.; Siepka, S.M.; Shan, Y.; Huh, S.K.; Hong, H.-K.; Kornblum, I.; Kumar, V.; Koike, N.; Xu, M.; et al. Competing E3 Ubiquitin Ligases Govern Circadian Periodicity by Degradation of CRY in Nucleus and Cytoplasm. Cell 2013, 152, 1091–1105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Runte, M.; Varon, R.; Horn, D.; Horsthemke, B.; Buiting, K. Exclusion of the C/D box snoRNA gene cluster HBII-52 from a major role in Prader-Willi syndrome. Qual. Life Res. 2004, 116, 228–230. [Google Scholar] [CrossRef]
- Ledbetter, D.H.; Riccardi, V.M.; Airhart, S.D.; Strobel, R.J.; Keenan, B.S.; Crawford, J.D. Deletions of Chromosome 15 as a Cause of the Prader–Willi Syndrome. N. Engl. J. Med. 1981, 304, 325–329. [Google Scholar] [CrossRef]
- Butler, M.G. Benefits and limitations of prenatal screening for Prader-Willi syndrome. Prenat Diagn. 2017, 37, 81–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimonis, V.E.; Tamura, R.; Gold, J.-A.; Patel, N.; Surampalli, A.; Manazir, J.; Miller, J.L.; Roof, E.; Dykens, E.; Butler, M.G.; et al. Early Diagnosis in Prader–Willi Syndrome Reduces Obesity and Associated Co-Morbidities. Genes 2019, 10, 898. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Zhang, X.; Wang, J.; Zhang, Y.; Wang, A.; Lu, J.; Huang, Y.; Liu, S.; Wu, J.; Du, L.; et al. Genetic testing for Prader-Willi syndrome and Angelman syndrome in the clinical practice of Guangdong Province, China. Mol. Cytogenet. 2019, 12, 7. [Google Scholar] [CrossRef] [PubMed]
- Srebnik, N.; Even-Zohar, N.G.; Salama, A.; Sela, H.Y.; Hirsch, H.J.; Gross-Tsur, V.; Eldar-Geva, T. Recognizing the unique prenatal phenotype of Prader-Willi Syndrome (PWS) indicates the need for a diagnostic methylation test. Prenat. Diagn. 2020, 40, 878–884. [Google Scholar] [CrossRef]
- Yang, L.; Ma, B.; Mao, S.; Zhou, Q.; Zou, C. Establishing perinatal and neonatal features of Prader-Willi syndrome for efficient diagnosis and outcomes. Expert Opin. Orphan Drugs 2020, 8, 265–271. [Google Scholar] [CrossRef]
- Chen, C.; Visootsak, J.; Dills, S.; Graham, J.M. Prader-Willi Syndrome: An Update and Review for the Primary Pediatrician. Clin. Pediatr. 2007, 46, 580–591. [Google Scholar] [CrossRef]
- Strom, S.P.; Hossain, W.A.; Grigorian, M.; Li, M.; Fierro, J.; Scaringe, W.; Yen, H.-Y.; Teguh, M.; Liu, J.; Gao, H.; et al. A Streamlined Approach to Prader-Willi and Angelman Syndrome Molecular Diagnostics. Front. Genet. 2021, 12, 608889. [Google Scholar] [CrossRef]
- Rosenberg, A.G.W.; Pater, M.R.A.; Pellikaan, K.; Davidse, K.; Kattentidt-Mouravieva, A.A.; Kersseboom, R.; Bos-Roubos, A.G.; van Eeghen, A.; Veen, J.M.C.; van der Meulen, J.J.; et al. What Every Internist-Endocrinologist Should Know about Rare Genetic Syndromes in Order to Prevent Needless Diagnostics, Missed Diagnoses and Medical Complications: Five Years of ‘Internal Medicine for Rare Genetic Syndromes’. J. Clin. Med. 2021, 10, 5457. [Google Scholar] [CrossRef] [PubMed]
- Holm, V.A.; Cassidy, S.B.; Butler, M.G.; Hanchett, J.M.; Greenswag, L.R.; Whitman, B.Y.; Greenberg, F. Prader-Willi Syndrome: Consensus Diagnostic Criteria. Pediatrics 1993, 91, 398–402. [Google Scholar] [CrossRef]
- Kim, Y.; Wang, S.E.; Jiang, Y.-H. Epigenetic therapy of Prader–Willi syndrome. Transl. Res. 2019, 208, 105–118. [Google Scholar] [CrossRef] [PubMed]
- A Méndez-Rosado, L.; García, D.; Molina-Gamboa, O.; García, A.; De León, N.; Lantigua-Cruz, A.; Liehr, T. Algorithm for the diagnosis of patients with neurodevelopmental disorders and suspicion of a genetic syndrome. Arch. Argent. Pediatr. 2020, 118, 52–55. [Google Scholar] [CrossRef]
- Gunay-Aygun, M.; Schwartz, S.; Heeger, S.; O’Riordan, M.A.; Cassidy, S.B. The Changing Purpose of Prader-Willi Syndrome Clinical Diagnostic Criteria and Proposed Revised Criteria. Pediatrics 2001, 108, e92. [Google Scholar] [CrossRef] [Green Version]
- El-Bassyouni, H.T.; Hassan, N.; Mahfouz, I.; Abd-Elnaby, A.E.; Mostafa, M.I.; Tosson, A.M. Early Detection and Management of Prader-Willi Syndrome in Egyptian Patients. J. Pediatr. Genet. 2019, 08, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Traisrisilp, K.; Sirikunalai, P.; Sirilert, S.; Chareonsirisuthigul, T.; Tongsong, T. Cardiac rhabdomyoma as a possible new prenatal sonographic feature of Prader–Willi syndrome. J. Obstet. Gynaecol. Res. 2021, 48, 239–243. [Google Scholar] [CrossRef]
- Monaghan, K.G.; Wiktor, A.; Van Dyke, D.L. Diagnostic testing for Prader-Willi syndrome and Angelman syndrome: A cost comparison. Genet. Med. 2002, 4, 448–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tauber, M.; Hoybye, C. Endocrine disorders in Prader-Willi syndrome: A model to understand and treat hypothalamic dysfunction. Lancet Diabetes Endocrinol. 2021, 9, 235–246. [Google Scholar] [CrossRef]
- Beygo, J.; Buiting, K.; Ramsden, S.C.; Ellis, R.; Clayton-Smith, J.; Kanber, D. Update of the EMQN/ACGS best practice guidelines for molecular analysis of Prader-Willi and Angelman syndromes. Eur. J. Hum. Genet. 2019, 27, 1326–1340. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.; Liu, S.; Li, J.; Li, J.; Chen, Q.; Luo, J.; Li, C.; Li, H.; Qi, H.; Li, R. Possibility of early diagnosis in a fetus affected by Prader-Willi syndrome with maternal hetero-UPD15: A lesson to be learned. Mol. Med. Rep. 2019, 20, 95–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pellikaan, K.; Rosenberg, A.G.W.; Kattentidt-Mouravieva, A.A.; Kersseboom, R.; Bos-Roubos, A.G.; Veen-Roelofs, J.M.C.; Wieringen, N.V.A.-V.; Hoekstra, F.M.E.; Berg, S.A.A.V.D.; Van Der Lely, A.J.; et al. Missed Diagnoses and Health Problems in Adults with Prader-Willi Syndrome: Recommendations for Screening and Treatment. J. Clin. Endocrinol. Metab. 2020, 105, e4671–e4687. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, S.; Feng, B.; Yang, Y.; Zhang, H.; Dong, R.; Liu, Y.; Gai, Z. Clinical Application of an Innovative Multiplex-Fluorescent-Labeled STRs Assay for Prader-Willi Syndrome and Angelman Syndrome. PLoS ONE 2016, 11, e0147824. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Park, Y.; Cho, S.I.; Kim, M.J.; Chae, J.-H.; Kim, J.Y.; Seong, M.-W.; Park, A.S.S. Clinical Utility of Methylation-Specific Multiplex Ligation-Dependent Probe Amplification for the Diagnosis of Prader–Willi Syndrome and Angelman Syndrome. Ann. Lab. Med. 2022, 42, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Law, H.-Y.; Chong, S.S. Detection and Discrimination between Deletional and Non-Deletional Prader-Willi and Angelman Syndromes by Methylation-Specific PCR and Quantitative Melting Curve Analysis. J. Mol. Diagn. 2009, 11, 446–449. [Google Scholar] [CrossRef] [Green Version]
- AlBanji, M.H.; AlSaad, A.N.; AlAnazi, R.F.; Aleisa, Z.A.; Alam, D.S.; Alhashim, A.H. Utility of Hypotonia Diagnostic Investigations: A 12-year Single Center Study. Mol. Genet. Metab. Rep. 2020, 25, 100665. [Google Scholar] [CrossRef]
- Li, H.; Meng, S.; Chen, Z.; Li, H.; Du, M.; Ma, H.; Wei, H.; Duan, H.; Zheng, H.; Wenren, Q.; et al. Molecular Genetic Diagnostics of Prader-Willi Syndrome: A Validation of Linkage Analysis for the Chinese Population. J. Genet. Genom. 2007, 34, 885–891. [Google Scholar] [CrossRef]
- Driscoll, D.; Miller, J.; Schwartz, S.; Cassidy, S. Prader-Willi Syndrome. Neuropediatrics 2017, 29, 124–126. [Google Scholar]
- Yang, L.; Zhou, Q.; Ma, B.; Mao, S.; Dai, Y.; Zhu, M.; Zou, C. Perinatal features of Prader-Willi syndrome: A Chinese cohort of 134 patients. Orphanet J. Rare Dis. 2020, 15, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manning, F.A. FETAL BIOPHYSICAL PROFILE. Obstet. Gynecol. Clin. N. Am. 1999, 26, 557. [Google Scholar] [CrossRef]
- Cassidy, S.B.; Forsythe, M.; Heeger, S.; Nicholls, R.D.; Schork, N.; Benn, P.; Schwartz, S. Comparison of phenotype between patients with Prader-Willi syndrome due to deletion 15q and uniparental disomy 15. Am. J. Med. Genet. 1997, 68, 433–440. [Google Scholar] [CrossRef]
- Bamfo, J.E.A.K.; Odibo, A.O. Diagnosis and Management of Fetal Growth Restriction. J. Pregnancy 2011, 2011, 640715. [Google Scholar] [CrossRef] [Green Version]
- Shubina, J.; Barkov, I.Y.; Stupko, O.K.; Kuznetsova, M.V.; Goltsov, A.Y.; Kochetkova, T.O.; Trofimov, D.Y.; Sukhikh, G.T. Prenatal diagnosis of Prader-Willi syndrome due to uniparental disomy with NIPS: Case report and literature review. Mol. Genet. Genom. Med. 2020, 8, e1448. [Google Scholar] [CrossRef]
- Gross, N.E.-Z.; Geva-Eldar, T.; Pollak, Y.; Hirsch, H.J.; Gross, I.; Gross-Tsur, V. Attitudes toward prenatal genetic testing and therapeutic termination of pregnancy among parents of offspring with Prader-Willi syndrome. Eur. J. Med Genet. 2017, 60, 205–211. [Google Scholar] [CrossRef]
- Cobo, J.; Coronas, R.; Pousa, E.; Oliva, J.-C.; Giménez-Palop, O.; Esteba-Castillo, S.; Novell, R.; Palao, D.; Caixàs, A. Multidimensional Evaluation of Awareness in Prader-Willi Syndrome. J. Clin. Med. 2021, 10, 2007. [Google Scholar] [CrossRef] [PubMed]
- Heksch, R.; Kamboj, M.; Anglin, K.; Obrynba, K. Review of Prader-Willi syndrome: The endocrine approach. Transl. Pediatr. 2017, 6, 274–285. [Google Scholar] [CrossRef] [Green Version]
- Whittington, J.E.; Holland, A.J.; Webb, T.; Butler, J.; Clarke, D.; Boer, H. Population prevalence and estimated birth incidence and mortality rate for people with Prader-Willi syndrome in one UK Health Region. J. Med. Genet. 2001, 38, 792–798. [Google Scholar] [CrossRef] [Green Version]
- Alfaro, D.L.P.; Lemoine, P.; Ehlinger, V.; Molinas, C.; Diene, G.; Valette, M.; Pinto, G.; Coupaye, M.; Poitou-Bernert, C.; Thuilleaux, D.; et al. Causes of death in Prader-Willi syndrome: Lessons from 11 years’ experience of a national reference center. Orphanet J. Rare Dis. 2019, 14, 238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Höybye, C.; Holland, A.J.; Driscoll, D.J. Time for a general approval of growth hormone treatment in adults with Prader-Willi syndrome. Orphanet J. Rare Dis. 2021, 16, 69. [Google Scholar] [CrossRef]
- Deal, C.L.; Tony, M.; Höybye, C.; Allen, D.B.; Tauber, M.; Christiansen, J.S. GrowthHormone Research Society workshop summary: Consensus guidelines for recombinant human growth hormone therapy in Prader-Willi syndrome. J. Clin. Endocrinol. Metab. 2013, 98, E1072–E1087. [Google Scholar] [CrossRef] [PubMed]
- Lecka-Ambroziak, A.; Wysocka-Mincewicz, M.; Doleżal-Ołtarzewska, K.; Zygmunt-Górska, A.; Wędrychowicz, A.; Żak, T.; Noczyńska, A.; Birkholz-Walerzak, D.; Stawerska, R.; Hilczer, M.; et al. Effects of Recombinant Human Growth Hormone Treatment, Depending on the Therapy Start in Different Nutritional Phases in Paediatric Patients with Prader–Willi Syndrome: A Polish Multicentre Study. J. Clin. Med. 2021, 10, 3176. [Google Scholar] [CrossRef]
- Donze, S.H.; Damen, L.; Mahabier, E.F.; Hokken-Koelega, A.C. Cognitive functioning in children with Prader–Willi syndrome during 8 years of growth hormone treatment. Eur. J. Endocrinol. 2020, 182, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Angulo, M.; Abuzzahab, M.J.; Pietropoli, A.; Ostrow, V.; Kelepouris, N.; Tauber, M. Outcomes in children treated with growth hormone for Prader-Willi syndrome: Data from the ANSWER Program® and NordiNet® International Outcome Study. Int. J. Pediatr. Endocrinol. 2020, 2020, 20. [Google Scholar] [CrossRef] [PubMed]
- Höybye, C.; Thorén, M.; Böhm, B. Cognitive, emotional, physical and social effects of growth hormone treatment in adults with Prader-Willi syndrome. J. Intellect. Disabil. Res. 2005, 49, 245–252. [Google Scholar] [CrossRef]
- Donze, S.H.; Kuppens, R.J.; Bakker, N.E.; Velden, J.A.V.A.-V.D.; Hokken-Koelega, A.C. Bone mineral density in young adults with Prader-Willi syndrome: A randomized, placebo-controlled, crossover GH trial. Clin. Endocrinol. 2018, 88, 806–812. [Google Scholar] [CrossRef]
- Oto, Y.; Murakami, N.; Matsubara, K.; Saima, S.; Ogata, H.; Ihara, H.; Nagai, T.; Matsubara, T. Effects of growth hormone treatment on thyroid function in pediatric patients with Prader–Willi syndrome. Am. J. Med Genet. Part A 2020, 182, 659–663. [Google Scholar] [CrossRef]
- Tan, Q.; Orsso, C.E.; Deehan, E.C.; Triador, L.; Field, C.; Tun, H.M.; Han, J.C.; Müller, T.D.; Haqq, A.M. Current and emerging therapies for managing hyperphagia and obesity in Prader-Willi syndrome: A narrative review. Obes. Rev. 2019, 21, e12992. [Google Scholar] [CrossRef]
- Michel, L.M.; Haqq, A.M.; Wismer, W.V. A review of chemosensory perceptions, food preferences and food-related behaviours in subjects with Prader–Willi Syndrome. Appetite 2016, 99, 17–24. [Google Scholar] [CrossRef]
- Kim, Y.-M.; Lee, Y.J.; Kim, S.Y.; Cheon, C.K.; Lim, H.H. Successful rapid weight reduction and the use of liraglutide for morbid obesity in adolescent Prader-Willi syndrome. Ann. Pediatr. Endocrinol. Metab. 2020, 25, 52–56. [Google Scholar] [CrossRef]
- Muscogiuri, G.; Barrea, L.; Faggiano, F.; Maiorino, M.I.; Parrillo, M.; Pugliese, G.; Ruggeri, R.M.; Scarano, E.; Savastano, S.; Colao, A.; et al. Obesity in Prader–Willi syndrome: Physiopathological mechanisms, nutritional and pharmacological approaches. J. Endocrinol. Investig. 2021, 44, 2057–2070. [Google Scholar] [CrossRef] [PubMed]
- Consoli, A.; Berthoumieu, S.; Raffin, M.; Thuilleaux, D.; Poitou, C.; Coupaye, M.; Pinto, G.; Lebbah, S.; Zahr, N.; Tauber, M.; et al. Effect of topiramate on eating behaviours in Prader-Willi syndrome: TOPRADER double-blind randomised placebo-controlled study. Transl. Psychiatry 2019, 9, 274. [Google Scholar] [CrossRef] [Green Version]
- Griggs, J.L.; Mathai, M.L.; Sinnayah, P. Caralluma fimbriata extract activity involves the 5-HT2c receptor in PWS Snord116 deletion mouse model. Brain Behav. 2018, 8, e01102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griggs, J. Single-Case Study of Appetite Control in Prader-Willi Syndrome, Over 12-Years by the Indian Extract Caralluma fimbriata. Genes 2019, 10, 447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duje, B.; Nevena, K.; Katja, D.K.; Anita, U.; Igor, M.; Jurica, V. 208 Use of GLP-1 analog in a patient with prader-willi syndrome. Abstracts 2021, 106, A88. [Google Scholar] [CrossRef]
- Fintini, D.; Grugni, G.; Brufani, C.; Bocchini, S.; Cappa, M.; Crinò, A. Use of GLP-1 Receptor Agonists in Prader-Willi Syndrome: Report of Six Cases. Diabetes Care 2014, 37, e76–e77. [Google Scholar] [CrossRef] [Green Version]
- Forster, J.; Duis, J.; Butler, M. Pharmacogenetic Testing of Cytochrome P450 Drug Metabolizing Enzymes in a Case Series of Patients with Prader-Willi Syndrome. Genes 2021, 12, 152. [Google Scholar] [CrossRef]
- Takahashi, P.Y.; Ryu, E.; Pathak, J.; Jenkins, G.D.; Batzler, A.; Hathcock, M.A.; Black, J.L.; Olson, J.E.; Cerhan, J.R.; Bielinski, S.J. Increased risk of hospitalization for ultrarapid metabolizers of cytochrome P450 2D6. Pharm. Pers. Med. 2017, 10, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Pennington, S.; Stutzman, D.; Sannar, E. Pitolisant in an Adolescent with Prader-Willi Syndrome. J. Pediatr. Pharmacol. Ther. 2021, 26, 405–4100. [Google Scholar] [CrossRef]
- Schaller, F.; Watrin, F.; Sturny, R.; Massacrier, A.; Szepetowski, P.; Muscatelli, F. A single postnatal injection of oxytocin rescues the lethal feeding behaviour in mouse newborns deficient for the imprinted Magel2 gene. Hum. Mol. Genet. 2010, 19, 4895–4905. [Google Scholar] [CrossRef] [PubMed]
- Damen, L.; Grootjen, L.N.; Juriaans, A.F.; Donze, S.H.; Huisman, T.M.; Visser, J.A.; Delhanty, P.J.; Hokken-Koelega, A.C. Oxytocin in young children with Prader-Willi syndrome: Results of a randomized, double-blind, placebo-controlled, crossover trial investigating 3 months of oxytocin. Clin. Endocrinol. 2020, 94, 774–785. [Google Scholar] [CrossRef] [PubMed]
- Langouët, M.; Gorka, D.; Orniacki, C.; Dupont-Thibert, C.M.; Chung, M.S.; Glatt-Deeley, H.R.; Germain, N.; Crandall, L.J.; Cotney, J.L.; E Stoddard, C.; et al. Specific ZNF274 binding interference at SNORD116 activates the maternal transcripts in Prader-Willi syndrome neurons. Hum. Mol. Genet. 2020, 29, 3285–3295. [Google Scholar] [CrossRef] [PubMed]
- Ran, F.A.; Hsu, P.D.; Wright, J.; Agarwala, V.; Scott, D.A.; Zhang, F. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 2013, 8, 2281–2308. [Google Scholar] [CrossRef] [Green Version]
- Syding, L.A.; Nickl, P.; Kasparek, P.; Sedlacek, R. CRISPR/Cas9 Epigenome Editing Potential for Rare Imprinting Diseases: A Review. Cells 2020, 9, 993. [Google Scholar] [CrossRef]
- Burnett, L.C.; LeDuc, C.A.; Sulsona, C.R.; Paull, D.; Eddiry, S.; Levy, B.; Salles, J.P.; Tauber, M.; Driscoll, D.J.; Egli, D.; et al. Induced pluripotent stem cells (iPSC) created from skin fibroblasts of patients with Prader-Willi syndrome (PWS) retain the molecular signature of PWS. Stem Cell Res. 2016, 17, 526–530. [Google Scholar] [CrossRef] [Green Version]
- Foundation for Prader-Willi Research. Targeting SMCHD1 to Address the Underlying Cause of PWS and SYS. Available online: https://www.fpwr.org/fpwr-funded-projects/targeting-smchd1-to-address-the-underlying-cause-of-pws-and-sys (accessed on 18 April 2022).
- Foundation for Prader-Willi Research. Gene Therapy of Obesity in Prader-Willi Syndrome by an Autoregulatory BDNF Vector. Available online: https://www.fpwr.org/fpwr-funded-projects/gene-therapy-of-obesity-in-prader-willi-syndrome-by-an-autoregulatory-bdnf-vector (accessed on 18 April 2022).
- Kim, Y.; Lee, H.-M.; Xiong, Y.; Sciaky, N.; Hulbert, S.W.; Cao, X.; Everitt, J.I.; Jin, J.; Roth, B.L.; Jiang, Y.-H. Targeting the histone methyltransferase G9a activates imprinted genes and improves survival of a mouse model of Prader–Willi syndrome. Nat. Med. 2016, 23, 213–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crunkhorn, S. Steps towards epigenetic therapy for PWS. Nat. Rev. Drug Discov. 2017, 16, 85. [Google Scholar] [CrossRef]
- Foundation for Prader-Willi Research. Genetic Therapy for Prader-Willi Syndrome. Available online: https://www.fpwr.org/genetic-therapy-for-prader-willi-syndrome (accessed on 18 April 2022).
Gene | Function | Mutant Phenotype | Source |
---|---|---|---|
MKRN3 | Molecular brake on GnRH via inhibition of KISS1 and TAC3 in KISS1 neurons | Central Precocious Puberty | [22,23] |
MAGEL2 | Works withs USP7, and SCF-E3 ligases in complex to modulate CRY1 stability; works with USP7 and other E3 ligases to modulate unknown proteins involved in neural development | Possibly sleep wake disturbances; Schaaf–Yang Syndrome (nonsense mutation) | [24,25,26] |
NDN | Stabilization of the core circadian protein BMALI | Possibly sleep–wake disturbances | [14] |
SNORD116 | Largely unknown, this sno-lncRNA may modulate epigenetic mechanisms of gene expression | Deletion results in PWS phenotype | [27,28,29,30] |
Modality | Advantages | Disadvantages | Source |
---|---|---|---|
CVS/Amnio + CMA/CMA-SNP array | Increasingly common testing modality in clinical practice, gives detailed info on deletion size | Invasive, lower sensitivity than methylation testing (does not detect all UPDs, e.g., heterodisomy) | [52,58,59] |
CVS/Amnio + Methylation testing | High specificity and sensitivity for PWS | Invasive, necessitates follow-up testing for disease mechanism depending on methylation test used, not commonly performed in prenatal screening | [59] |
NIPS | Non-invasive, can be performed early in pregnancy, results in 7 days, high utility in detecting aneuploidies | High false positives, indeterminate test results, limited ability to detect UPD, mixed availability | [37,59,64] |
Prenatal Ultrasound | Non-invasive, affordable | Low specificity and low sensitivity for PWS | [37,39,48,60] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szabadi, S.; Sila, Z.; Dewey, J.; Rowland, D.; Penugonda, M.; Ergun-Longmire, B. A Review of Prader–Willi Syndrome. Endocrines 2022, 3, 329-348. https://doi.org/10.3390/endocrines3020027
Szabadi S, Sila Z, Dewey J, Rowland D, Penugonda M, Ergun-Longmire B. A Review of Prader–Willi Syndrome. Endocrines. 2022; 3(2):329-348. https://doi.org/10.3390/endocrines3020027
Chicago/Turabian StyleSzabadi, Stephen, Zachary Sila, John Dewey, Dustin Rowland, Madhuri Penugonda, and Berrin Ergun-Longmire. 2022. "A Review of Prader–Willi Syndrome" Endocrines 3, no. 2: 329-348. https://doi.org/10.3390/endocrines3020027
APA StyleSzabadi, S., Sila, Z., Dewey, J., Rowland, D., Penugonda, M., & Ergun-Longmire, B. (2022). A Review of Prader–Willi Syndrome. Endocrines, 3(2), 329-348. https://doi.org/10.3390/endocrines3020027