Molecular Basis for Hypochondroplasia in Japan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. FGFR3 Genotype
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bellus, G.A.; McIntosh, I.; Smith, E.A.; Aylsworth, A.S.; Kaitila, I.; Horton, W.A.; Greenhaw, G.A.; Hecht, J.T.; Francomano, C.A. A Recurrent Mutation in the Tyrosine Kinase Domain of Fibroblast Growth Factor Receptor 3 Causes Hypochondroplasia. Nat. Genet. 1995, 10, 357–359. [Google Scholar] [CrossRef] [PubMed]
- Çetin, T.; Şıklar, Z.; Kocaay, P.; Berberoğlu, M. Evaluation of Efficacy of Long-Term Growth Hormone Therapy in Patients with Hypochondroplasia. J. Clin. Res. Pediatr. Endocrinol. 2018, 10, 373–376. [Google Scholar] [PubMed] [Green Version]
- Mortier, G.R.; Cohn, D.H.; Cormier-Daire, V.; Hall, C.; Krakow, D.; Mundlos, S.; Nishimura, G.; Robertson, S.; Sangiorgi, L.; Savarirayan, R.; et al. Nosology and Classification of Genetic Skeletal Disorders: 2019 Revision. Am. J. Med. Genet. A 2019, 78, 2393–2419. [Google Scholar] [CrossRef] [PubMed]
- Harada, D.; Yamanaka, Y.; Ueda, K.; Tanaka, H.; Seino, Y. FGFR3-Related Dwarfism and Cell Signaling. J. Bone Min. Metab. 2009, 27, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Rousseau, F.; Bonaventure, J.; Legeai-Mallet, L.; Schmidt, H.; Weissenbach, J.; Maroteaux, P.; Munnich, A.; Le Merrer, M. Clinical and Genetic Heterogeneity of Hypochondroplasia. J. Med. Genet. 1996, 33, 749–752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katsumata, N.; Mikami, S.; Nagashima-Miyokawa, A.; Nimura, A.; Sato, N.; Horikawa, R.; Tanae, A.; Tanaka, T. Analysis of the FGFR3 Gene in Japanese Patients with Achondroplasia and Hypochondroplasia. Endocr. J. 2000, 47, S121–S124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saito, T.; Nagasaki, K.; Nishimura, G.; Takagi, M.; Tomonobuu, H.; Uchiyama, M. Radiological Clues to the Early Diagnosis of Hypochondroplasia in the Neonatal Period: Report of Two Patients. Am. J. Med. Genet. A 2012, 158A, 630–634. [Google Scholar] [CrossRef] [PubMed]
- Saito, T.; Nagasaki, K.; Nishimura, G.; Wada, M.; Nyuzuki, H.; Takagi, M.; Hasegawa, T.; Amano, N.; Murotsuki, J.; Sawai, H.; et al. Criteria for Radiologic Diagnosis of Hypochondroplasia in Neonates. Pediatr. Radiol. 2016, 46, 513–518. [Google Scholar] [CrossRef] [PubMed]
- Nagahara, K.; Harada, Y.; Futami, T.; Takagi, M.; Nishimura, G.; Hasegawa, Y. A Japanese Familial Case of Hypochondroplasia with a Novel Mutation in FGFR3. Clin. Pediatr. Endocrinol. 2016, 25, 103–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramos Mejia, R.; del Pino, M.; Fano, V. Growth Topics in FGFR3-Related Skeletal Dysplasias. Curr. Treat. Options Pediatr. 2021, 7, 82–98. [Google Scholar] [CrossRef]
- Ahmadi, M.; Herting, A.; Mueffelmann, B.; Woermann, F.G.; Abou Jamra, R.; Bien, C.G.; Polster, T.; Brandt, C. Hypochondroplasia and Temporal Lobe Epilepsy—A Series of 4 Cases. Epilepsy Behav. 2022, 126, 108479. [Google Scholar] [CrossRef] [PubMed]
- Doherty, M.; Hertel, N.; Hove, H.; Haagerup, A. Neurological Symptoms, Evaluation and Treatment in Danish Patients with Achondroplasia and Hypochondroplasia. J. Rare Dis. Res. Treat. 2017, 2, 25–32. [Google Scholar] [CrossRef]
- Linnankivi, T.; Mäkitie, O.; Valanne, L.; Toiviainen-Salo, S. Neuroimaging and Neurological Findings in Patients with Hypochondroplasia and FGFR3 N540K Mutation. Am. J. Med. Genet. A 2012, 158, 3119–3125. [Google Scholar] [CrossRef] [PubMed]
Case | Family | Sex | FGFR3 Genotype | Age at Diagnosis (Years) | Height SDS at Diagnosis | Intellectual Disability | Epilepsy | Temporal Lobe Dysgenesis |
---|---|---|---|---|---|---|---|---|
1 | 1 | M | c.1948A>C, p.Lys650Gln | 0 | NA | − | − | − |
2 | 1 | M | c.1948A>C, p.Lys650Gln | 1 | NA | − | − | − |
3 | 1 | F | c.1948A>C, p.Lys650Gln | 35 | −5.6 | − | − | − |
4 | 2 | M | c.970C>G, p.Leu324Val | 3 | −3.1 | − | − | NA |
5 | 3 | M | c.1620C>A, p.Asn540Lys | 3 | −3.0 | − | − | NA |
6 | 4 | M | c.1620C>A, p.Asn540Lys | 0 | NA | NA | NA | NA |
7 | 5 | F | c.1620C>A, p.Asn540Lys | 3 | −3.7 | − | − | − |
8 | 5 | F | c.1620C>A, p.Asn540Lys | Adult | NA | − | − | NA |
9 | 6 | M | c.1052 C>G, p.Ser351Cys | 1 | −3.0 | NA | NA | NA |
10 | 6 | F | c.1052 C>G, p.Ser351Cys | Adult | NA | NA | NA | NA |
11 | 7 | F | c.1620C>A, p.Asn540Lys | 5 | −2.2 | NA | NA | NA |
12 | 8 | M | c.1949A>C, p.Lys650Thr | 6 | −2.9 | NA | NA | NA |
13 | 9 | M | c.1620C>A, p.Asn540Lys | 2 | −2.4 | NA | NA | NA |
14 | 10 | M | c.1620C>A, p.Asn540Lys | NA | NA | + | + | − |
15 | 11 | F | c.1620C>A, p.Asn540Lys | 5 | −2.9 | − | + | NA |
16 | 12 | F | c.1620C>A, p.Asn540Lys | NA | NA | NA | + | + |
17 | 13 | F | c.1620C>A, p.Asn540Lys | 5 | −5.1 | + | + | − |
18 | 14 | F | c.1620C>A, p.Asn540Lys | NA | NA | NA | NA | NA |
19 | 15 | M | c.1620C>A, p.Asn540Lys | 0 | NA | + | + | + |
20 | 16 | M | c.1620C>A, p.Asn540Lys | 1 | NA | − | − | NA |
21 | 17 | F | c.1620C>A, p.Asn540Lys | 2 | −3.2 | − | − | − |
22 | 18 | M | c.1620C>A, p.Asn540Lys | NA | NA | NA | NA | NA |
23 | 19 | F | c.1950G>T, p.Lys650Gln | NA | NA | NA | NA | NA |
24 | 20 | F | c.1620C>A, p.Asn540Lys | Adult | NA | NA | NA | NA |
25 | 20 | F | c.1620C>A, p.Asn540Lys | 0.7 | −2.9 | + | NA | − |
26 | 21 | F | c.1620C>A, p.Asn540Lys | NA | NA | NA | NA | NA |
27 | 22 | M | c.1620C>A, p.Asn540Lys | 0.3 | −0.6 | NA | + | NA |
28 | 23 | M | c.971T>A, p.Leu324His | 0.9 | −3.6 | NA | NA | NA |
29 | 24 | F | c.971T>A, p.Leu324His | 4 | −3.9 | NA | NA | NA |
30 | 25 | M | c.1620C>A, p.Asn540Lys | 1 | −3.3 | NA | NA | NA |
31 | 26 | F | c.1620C>A, p.Asn540Lys | 0 | −0.3 | NA | NA | NA |
32 | 27 | F | c.1620C>A, p.Asn540Lys | 3 | −3.5 | NA | NA | NA |
33 | 28 | M | c.1620C>A, p.Asn540Lys | 2 | −4.3 | NA | NA | NA |
34 | 29 | F | c.1620C>A, p.Asn540Lys | 2 | −3.4 | NA | NA | NA |
35 | 30 | M | c.1620C>A, p.Asn540Lys | 5 | −3.2 | NA | NA | NA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishii, T.; Takagi, M.; Nagasaki, K.; Ohara, T.; Miyai, K.; Kosho, T.; Takada, F.; Nishimura, G.; Hasegawa, T. Molecular Basis for Hypochondroplasia in Japan. Endocrines 2022, 3, 428-432. https://doi.org/10.3390/endocrines3030034
Ishii T, Takagi M, Nagasaki K, Ohara T, Miyai K, Kosho T, Takada F, Nishimura G, Hasegawa T. Molecular Basis for Hypochondroplasia in Japan. Endocrines. 2022; 3(3):428-432. https://doi.org/10.3390/endocrines3030034
Chicago/Turabian StyleIshii, Tomohiro, Masaki Takagi, Keisuke Nagasaki, Toshio Ohara, Kentaro Miyai, Tomoki Kosho, Fumio Takada, Gen Nishimura, and Tomonobu Hasegawa. 2022. "Molecular Basis for Hypochondroplasia in Japan" Endocrines 3, no. 3: 428-432. https://doi.org/10.3390/endocrines3030034
APA StyleIshii, T., Takagi, M., Nagasaki, K., Ohara, T., Miyai, K., Kosho, T., Takada, F., Nishimura, G., & Hasegawa, T. (2022). Molecular Basis for Hypochondroplasia in Japan. Endocrines, 3(3), 428-432. https://doi.org/10.3390/endocrines3030034