The Impact of Time-Restricted Diet on Sleep and Metabolism in Obese Volunteers
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Statistical Analysis
2.3. Diet
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Harvie, M.; Howell, A. Potential benefits and harms of intermittent energy restriction and intermittent fasting amongst obese, overweight and normal weight subjects—A narrative review of human and animal evidence. Behav. Sci. 2017, 7, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martel, J.; Ojcius, D.M.; Chang, C.J.; Lin, C.S.; Lu, C.C.; Ko, Y.F.; Tseng, S.F.; Lai, H.C.; Young, J.D. Anti-obesogenic and antidiabetic effects of plants and mushrooms. Nat. Rev. Endocrinol. 2017, 13, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Ganesan, K.; Xu, B. Anti-obesity effects of medicinal and edible mushrooms. Molecules 2018, 23, 2880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kundakovic, T.; Kolundzic, M. Therapeutic properties of mushrooms in managing adverse effects in the metabolic syndrome. Curr. Topics Med. Chem. 2013, 13, 2734–2744. [Google Scholar] [CrossRef] [PubMed]
- Gill, S.; Panda, S. A smartphone app reveals erratic diurnal eating patterns in humans that can be modulated for health benefits. Cell Metab. 2015, 22, 789–798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilkinson, M.J.; Manoogian, E.N.; Zadourian, A.; Lo, H.; Fakhouri, S.; Shoghi, A.; Wang, X.; Fleischer, J.G.; Navlakha, S.; Panda, S.; et al. Ten-hour time-restricted eating reduces weight, blood pressure, and atherogenic lipids in patients with metabolic syndrome. Cell Metab. 2020, 31, 92–104. [Google Scholar] [CrossRef] [PubMed]
- Williams, K.V.; Mullen, M.L.; Kelley, D.E.; Wing, R.R. The effect of short periods of caloric restriction on weight loss and glycemic control in type 2 diabetes. Diabetes Care 1998, 21, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Almeneessier, A.S.; Pandi-Perumal, S.R.; BaHammam, A.S. Intermittent fasting, insufficient sleep, and circadian rhythm: Interaction and effects on the cardiometabolic system. Curr. Sleep Med. Rep. 2018, 4, 179–195. [Google Scholar] [CrossRef]
- Hatori, M.; Vollmers, C.; Zarrinpar, A.; DiTacchio, L.; Bushong, E.A.; Gill, S.; Leblanc, M.; Chaix, A.; Joens, M.; Fitzpatrick, J.A.; et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab. 2012, 15, 848–860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaix, A.; Zarrinpar, A.; Miu, P.; Panda, S. Time-restricted feeding is a preventative and therapeutic intervention against diverse nutritional challenges. Cell Metab. 2014, 20, 991–1005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gill, S.; Le, H.D.; Melkani, G.C.; Panda, S. Time-restricted feeding attenuates age-related cardiac decline in Drosophila. Science 2015, 347, 1265–1269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kudo, T.; Akiyama, M.; Kuriyama, K.; Sudo, M.; Moriya, T.; Shibata, S. Night-time restricted feeding normalises clock genes and Pai-1 gene expression in the db/db mouse liver. Diabetologia 2004, 47, 1425–1436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manoogian, E.N.; Panda, S. Circadian rhythms, time-restricted feeding, and healthy aging. Ageing Res. Rev. 2017, 39, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Melkani, G.C.; Panda, S. Time-restricted feeding for prevention and treatment of cardiometabolic disorders. J. Physiol. 2017, 595, 3691–3700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roky, R.; Chapotot, F.; Hakkou, F.; Benchekroun, M.T.; Buguet, A. Sleep during Ramadan intermittent fasting. J. Sleep Res. 2001, 10, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Aalling, N.N.; Nedergaard, M.; DiNuzzo, M. Cerebral metabolic changes during sleep. Curr. Neurol. Neurosci. Rep. 2018, 189, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sachiko, C.; Noriyuki, S.; Tetsuya, S.; Hiroyoshi, S. Ketone body metabolism and sleep homeostasis in mice. Neuropharmacology 2014, 79, 399–404. [Google Scholar]
Nutrition Composition (g) | % kcal | |||||
---|---|---|---|---|---|---|
Carbohydrate | Protein | Fat | Carbohydrate | Protein | Fat | |
1, 2 weeks | 26.8 | 88.5 | 90.1 | 8 | 28 | 64 |
3 weeks | 32.5 | 90.6 | 97.6 | 9 | 26 | 65 |
4 weeks | 65.4 | 85.2 | 90.0 | 18 | 24 | 58 |
Before Program | After Program | p | |
---|---|---|---|
Body weight (kg) | 82.0 ± 15.6 | 78.2 ± 14.1 | 0.539 |
Body Mass Index (kg/m2) | 29.3 ± 4.6 | 27.9 ± 3.8 | 0.233 |
Body fat mass (kg) | 29.5 ± 8.7 | 26.1 ± 7.6 | 0.285 |
Body muscle mass (kg) | 29.4 ± 7.1 | 29.0 ± 6.8 | 0.870 |
Low Ketone Group (n = 6) | High Ketone Group (n = 9) | p | |||
---|---|---|---|---|---|
Before | After | Before | After | ||
Body weight (kg) | 75.23 ± 75.14 | 73.90 ± 14.66 | 86.43 ± 15.03 | 81.13 ± 13.71 | 0.006 |
Body Mass Index (kg/m2) | 27.33 ± 1.64 | 26.93 ± 1.90 | 30.61 ± 5.56 | 28.62 ± 4.71 | 0.008 |
Body fat mass (kg) | 28.40 ± 2.42 | 27.22 ± 2.71 | 30.20 ± 11.23 | 25.42 ± 9.69 | 0.007 |
Body muscle mass (kg) | 25.83 ± 8.70 | 25.65 ± 8.06 | 31.76 ± 4.98 | 31.29 ± 5.03 | 0.522 |
Low Ketone Group (n = 6) | High Ketone Group (n = 9) | p | |||
---|---|---|---|---|---|
Before | After | Before | After | ||
AST | 20.50 ± 3.45 | 23.00 ± 6.23 | 31.11 ± 16.10 | 31.89 ± 19.19 | 0.600 |
ALT | 19.83 ± 9.41 | 20.17 ± 7.22 | 62.33 ± 75.22 | 45.33 ± 47.42 | 0.192 |
BUN | 11.55 ± 3.16 | 12.50 ± 4.61 | 14.74 ± 2.88 | 14.27 ± 2.79 | 0.521 |
Creatine | 0.56 ± 0.10 | 0.58 ± 0.11 | 0.76 ± 0.15 | 0.83 ± 0.16 | 0.223 |
γ-GTP | 35.00 ± 13.60 | 24.00 ± 10.77 | 42.67 ± 34.44 | 19.89 ± 13.60 | 0.257 |
ALP | 69.17 ± 20.17 | 70.17 ± 15.68 | 63.78 ± 15.68 | 66.22 ± 18.55 | 0.803 |
Total Cholesterol | 173.33 ± 31.94 | 169.17 ± 21.10 | 186.22 ± 33.46 | 180.56 ± 45.36 | 0.910 |
LDL Cholesterol | 105.00 ± 24.23 | 99.67 ± 16.08 | 116.89 ± 25.30 | 110.44 ± 32.01 | 0.909 |
TG | 119.50 ± 55.39 | 129.33 ± 73.55 | 153.67 ± 67.54 | 172.89 ± 231.20 | 0.934 |
Glucose | 95.67 ± 29.04 | 104.33 ± 5.99 | 115.56 ± 45.12 | 96.33 ± 8.03 | 0.175 |
Insulin | 8.70 ± 1.72 | 8.08 ± 1.31 | 15.37 ± 5.53 | 8.14 ± 5.53 | 0.006 |
HOMA IR | 2.27 ± 0.58 | 2.09 ± 0.42 | 4.79 ± 3.98 | 2.00 ± 1.49 | 0.052 |
Low Ketone Group (n = 6) | High Ketone Group (n = 9) | p | |||
---|---|---|---|---|---|
Variables | Before | After | Before | After | |
PSQI-K 1 | 8.00 ± 3.46 | 6.50 ± 1.22 | 7.11 ± 2.37 | 5.11 ± 0.78 | 0.759 |
STOP BANG | 2.50 ± 1.64 | 2.50 ± 1.64 | 3.00 ± 1.00 | 3.00 ± 1.00 | - |
SSS 2 | 2.17 ± 0.98 | 2.83 ± 1.17 | 2.56 ± 0.23 | 2.67 ± 0.50 | 0.256 |
ESS 3 | 9.00 ± 3.46 | 10.00 ± 2.19 | 9.11 ± 4.59 | 8.89 ± 4.91 | 0.465 |
HADS 4 Anxiety | 4.67 ± 2.34 | 6.33 ± 3.93 | 6.78 ± 2.54 | 6.44 ± 2.55 | 0.225 |
HADS Depression | 3.33 ± 1.86 | 4.50 ± 1.38 | 4.67 ± 3.32 | 4.11 ± 2.37 | 0.082 |
ISI 5 | 6.17 ± 3.87 | 5.00 ± 1.41 | 7.75 ± 1.83 | 5.38 ± 2.97 | 0.529 |
Low Ketone Group (n = 6) | High Ketone Group (n = 9) | p | |||
---|---|---|---|---|---|
Before | After | Before | After | ||
Total Sleep Time (min) | 425.53 ± 37.96 | 415.32 ± 97.12 | 428.39 ± 51.76 | 442.87 ± 42.44 | 0.547 |
Latency to sleep onset | 11.30 ± 3.91 | 27.02 ± 21.57 | 28.23 ± 34.01 | 27.61 ± 31.93 | 0.295 |
Latency to REM onset | 90.03 ± 30.02 | 81.82 ± 52.77 | 148.90 ± 129.27 | 69.80 ± 61.56 | 0.220 |
Sleep Efficiency (%) | 90.40 ± 7.57 | 89.17 ± 6.19 | 89.09 ± 8.99 | 86.50 ± 6.07 | 0.776 |
Sleep stage N1 (%) | 1.80 ± 0.49 | 1.48 ± 0.33 | 3.49 ± 4.49 | 2.63 ± 1.26 | 0.775 |
Sleep stage N2 (%) | 54.23 ± 8.97 | 52.83 ± 10.90 | 59.92 ± 13.38 | 55.50 ± 6.49 | 0.683 |
Sleep stage N3 (%) | 19.73 ± 8.35 | 21.42 ± 5.80 | 15.51 ± 3.91 | 19.09 ± 8.67 | 0.699 |
Sleep stage REM (%) | 24.25 ± 3.69 | 24.27 ± 5.65 | 21.10 ± 10.00 | 22.57 ± 5.41 | 0.745 |
Wake After Sleep Onset | 45.40 ± 41.60 | 44.92 ± 35.97 | 51.56 ± 42.63 | 69.54 ± 41.63 | 0.472 |
AHI | 9.05 ± 5.78 | 9.02 ± 7.13 | 25.27 ± 12.67 | 15.11 ± 11.50 | 0.025 |
PLMSi | 4.78 ± 7.86 | 2.85 ± 5.28 | 30.90 ± 49.32 | 19.57 ± 44.70 | 0.752 |
Oxygen desaturation index | 4.07 ± 3.02 | 5.87 ± 6.59 | 18.43 ± 12.79 | 10.69 ± 10.69 | 0.004 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.; Jang, B.J.; Jung, A.R.; Kim, J.; Ju, H.j.; Kim, Y.I. The Impact of Time-Restricted Diet on Sleep and Metabolism in Obese Volunteers. Medicina 2020, 56, 540. https://doi.org/10.3390/medicina56100540
Kim H, Jang BJ, Jung AR, Kim J, Ju Hj, Kim YI. The Impact of Time-Restricted Diet on Sleep and Metabolism in Obese Volunteers. Medicina. 2020; 56(10):540. https://doi.org/10.3390/medicina56100540
Chicago/Turabian StyleKim, Hyeyun, Bong Jin Jang, A Ram Jung, Jayoung Kim, Hyo jin Ju, and Yeong In Kim. 2020. "The Impact of Time-Restricted Diet on Sleep and Metabolism in Obese Volunteers" Medicina 56, no. 10: 540. https://doi.org/10.3390/medicina56100540
APA StyleKim, H., Jang, B. J., Jung, A. R., Kim, J., Ju, H. j., & Kim, Y. I. (2020). The Impact of Time-Restricted Diet on Sleep and Metabolism in Obese Volunteers. Medicina, 56(10), 540. https://doi.org/10.3390/medicina56100540