Cooking/Window Opening and Associated Increases of Indoor PM2.5 and NO2 Concentrations of Children’s Houses in Kaohsiung, Taiwan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Study Design
2.3. Air Sampling
2.4. Household Characteristics
2.5. Ethics
2.6. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Idavain, J.; Julge, K.; Rebane, T.; Lang, A.; Orru, H. Respiratory symptoms, asthma and levels of fractional exhaled nitric oxide in schoolchildren in the industrial areas of Estonia. Sci. Total. Environ. 2019, 650, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Martuzzi, M.; Pasetto, R.; Martin-Olmedo, P. Industrially Contaminated Sites and Health. J. Environ. Public Health 2014, 2014, 198574. [Google Scholar] [CrossRef] [PubMed]
- Kurt, O.K.; Zhang, J.; Pinkerton, K.E. Pulmonary health effects of air pollution. Curr. Opin. Pulm. Med. 2016, 22, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Rice, M.B.; Rifas-Shiman, S.L.; Litonjua, A.A.; Oken, E.; Gillman, M.W.; Kloog, I.; Luttmann-Gibson, H.; Zanobetti, A.; Coull, B.A.; Schwartz, J.; et al. Lifetime Exposure to Ambient Pollution and Lung Function in Children. Am. J. Respir. Crit. Care Med. 2016, 193, 881–888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, Q.; Lu, C.; Norbäck, D.; Bornehag, C.G.; Zhang, Y.; Liu, W.; Yuan, H.; Sundell, J. Early life exposure to ambient air pollution and childhood asthma in China. Environ. Res. 2015, 143, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, P.; Marcon, A.; Pesce, G.; Paolo, G.; Guarda, L.; Pironi, V.; Fracasso, M.E.; Ricci, P.; de Marco, R. Children living near chipboard and wood industries are at an increased risk of hospitalization for respiratory diseases: A prospective study. Int. J. Hyg. Environ. Health 2014, 217, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Silvers, A.; Florence, B.T.; Rourke, D.L.; Lorimor, R.J. How Children Spend Their Time: A Sample Survey for Use in Exposure and Risk Assessments. Risk Anal. 1994, 14, 931–944. [Google Scholar] [CrossRef]
- Cannistraro, G.; Cannistraro, A.; Cannistraro, M.; Galvagno, A. Analysis of air pollution in the urban center of four cities sicilian. Int. J. Heat Technol. 2016, 34, S219–S225. [Google Scholar]
- Cannistraro, M.; Cannistraro, G.; Chao, J.; Ponterio, L. New Technique Monitoring and Transmission Environmental Data with Mobile. Instrum. Meas. Metrol. 2018, 18, 549–562. [Google Scholar] [CrossRef]
- Cannistraro, M.; Chao, J.; Ponterio, L. Experimental Study of Air Pollution in the Urban Centre of the City of Messina. Model. Meas. Control C 2018, 79, 133–139. [Google Scholar] [CrossRef]
- Leung, D.Y.C. Outdoor-indoor air pollution in urban environment: Challenges and opportunity. Front. Environ. Sci. 2015. [Google Scholar] [CrossRef]
- Brand, A.; McLean, K.E.; Henderson, S.B.; Fournier, M.; Liu, L.; Kosatsky, T.; Smargiassi, A. Respiratory hospital admissions in young children living near metal smelters, pulp mills and oil refineries in two Canadian provinces. Environ. Int. 2016, 94, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Zeng, Q.; Dong, W.; Guo, Q.; Wu, Z.; Pan, X.; Li, G.; Liu, Y. Addressing the source contribution of PM2.5on mortality: An evaluation study of its impacts on excess mortality in China. Environ. Res. Lett. 2017, 12, 104016. [Google Scholar] [CrossRef]
- Topacoglu, H.; Katsakoglou, S.; Ipekci, A. Effect of exhaust emissions on carbon monoxide levels in employees working at indoor car wash facilities. Hippokratia 2014, 18, 37–39. [Google Scholar] [PubMed]
- Srithawirat, T.; Latif, M.T.; Sulaiman, F.R. Indoor PM10 and Its Heavy Metal Composition at a Roadside Residential Environment; Atmosfera: Phitsanulok, Thailand, 2016; Volume 29, pp. 311–322. [Google Scholar]
- United States Environmental Protection Agency. Available online: https://www.epa.gov/report-environment/indoor-air-quality (accessed on 20 August 2019).
- World Health Organization. Household (Indoor) Air Pollution. 2014. Available online: https://www.who.int/indoorair/en/ (accessed on 20 August 2019).
- Han, I.; Guo, Y.; Afshar, M.; Symanski, E.; Stock, T.H. Comparison of trace elements in size-fractionated particles in two communities with contrasting socioeconomic status in Houston, TX. Environ. Monit. Assess. 2017, 189, 67. [Google Scholar] [CrossRef] [PubMed]
- Hart, J.E.; Garshick, E.; Dockery, D.W.; Smith, T.J.; Ryan, L.; Laden, F. Long-term ambient multipollutant exposures and mortality. Am. J. Respir. Crit. Care Med. 2011, 183, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Milà, C.; Salmon, M.; Sanchez, M.; Ambrós, A.; Bhogadi, S.; Sreekanth, V.; Nieuwenhuijsen, M.; Kinra, S.; Marshall, J.D.; Tonne, C. When, Where, and What? Characterizing Personal PM2.5 Exposure in Periurban India by Integrating GPS, Wearable Camera, and Ambient and Personal Monitoring Data. Environ. Sci. Technol. 2018, 52, 13481–13490. [Google Scholar] [CrossRef]
- Pekey, B.; Bozkurt, Z.B.; Pekey, H.; Doğan, G.; Zararsız, A.; Efe, N.; Tuncel, G.; Zararsiz, A. Indoor/outdoor concentrations and elemental composition of PM10/PM2.5 in urban/industrial areas of Kocaeli City, Turkey. Indoor Air 2010, 20, 112–125. [Google Scholar] [CrossRef]
- Pekey, H.; Arslanba, D. The Relationship Between Indoor, Outdoor and Personal VOC Concentrations in Homes, Offices and Schools in the Metropolitan Region of Kocaeli, Turkey. Water Air Soil Pollut. 2008, 191, 113–129. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, J.; Zhang, L.; Turpin, B.; Weisel, C.; Morandi, M.; Stock, T.; Colome, S.; Korn, L. Estimating contributions of indoor and outdoor sources to indoor carbonyl concentrations in three urban areas of the United States. Atmos. Environ. 2006, 40, 2202–2214. [Google Scholar] [CrossRef]
- Najjar, Y. Gaseous Pollutants Formation and Their Harmful Effects on Health and Environment. Innov. Energy Policies 2011, 1. [Google Scholar] [CrossRef]
- Du, X.; Liu, J. Relationship between outdoor and indoor ozone pollution concentration. Trans. Tianjin Univ. 2009, 15, 330–335. [Google Scholar] [CrossRef]
- Jianhui, B.; Singh, N.; Chauhan, S.; Singh, K.; Saud, T.; Saxena, M.; Soni, D.; Mandal, T.K.; Bassin, J.K.; Gupta, P.K. Study on surface O3 chemistry and photochemistry by UV energy conservation. Atmos. Pollut. Res. 2010, 1, 118–127. [Google Scholar] [CrossRef]
- Taiwan Environmental Protection Agency. Available online: https://taqm.epa.gov.tw/taqm/tw/PSIOver100MonthlyReport.aspx (accessed on 20 August 2019).
- Persily, A.; De Jonge, L. Carbon dioxide generation rates for building occupants. Indoor Air 2017, 27, 868–879. [Google Scholar] [CrossRef] [PubMed]
- Penney, D.; Benignus, V.; Kephalopoulos, S.; Kotzias, D.; Kleinman, M.; Verrier, A. WHO Guidelines for Indoor Air Quality: Selected Pollutants; WHO Regional Office for Europe: Denmark, 2010. [Google Scholar]
- Taiwan Environmental Protection Agency. Available online: https://erdb.epa.gov.tw/DataRepository/Statistics/StatSceAreapop.aspx (accessed on 20 August 2019).
- Satish, U.; Mendell, M.J.; Shekhar, K.; Hotchi, T.; Sullivan, D.; Streufert, S.; Fisk, W.J. Is CO2 an Indoor Pollutant? Direct Effects of Low-to-Moderate CO2 Concentrations on Human Decision-Making Performance. Environ. Health Perspect. 2012, 120, 1671–1677. [Google Scholar] [CrossRef]
- Chao, H.-R.; Hsu, J.-W.; Ku, H.-Y.; Wang, S.-L.; Huang, H.-B.; Liou, S.-H.; Tsou, T.-C. Inflammatory Response and PM2.5 Exposure of Urban Traffic Conductors. Aerosol. Air Qual. Res. 2018, 18, 2633–2642. [Google Scholar] [CrossRef] [Green Version]
- Bilsback, K.R.; Dahlke, J.; Fedak, K.M.; Good, N.; Hecobian, A.; Herckes, P.; L’Orange, C.; Mehaffy, J.; Sullivan, A.; Tryner, J.; et al. A Laboratory Assessment of 120 Air Pollutant Emissions from Biomass and Fossil Fuel Cookstoves. Environ. Sci. Technol. 2019, 53, 7114–7125. [Google Scholar] [CrossRef]
- Shen, G.; Hays, M.D.; Smith, K.R.; Williams, C.; Faircloth, J.W.; Jetter, J.J. Evaluating the Performance of Household Liquefied Petroleum Gas Cookstoves. Environ. Sci. Technol. 2018, 52, 904–915. [Google Scholar] [CrossRef]
- Shen, G.; Gaddam, C.K.; Ebersviller, S.M.; Wal, R.L.V.; Williams, C.; Faircloth, J.W.; Jetter, J.J.; Hays, M.D. A Laboratory Comparison of Emission Factors, Number Size Distributions, and Morphology of Ultrafine Particles from 11 Different Household Cookstove-Fuel Systems. Environ. Sci. Technol. 2017, 51, 6522–6532. [Google Scholar] [CrossRef]
- Smith, K.R.; Uma, R.; Kishore, V.V.N.; Zhang, J.; Joshi, V.; Khalil, M.A.K. Greenhouse Implications of Household Stoves: An Analysis for India. Annu. Rev. Energy Environ. 2000, 25, 741–763. [Google Scholar] [CrossRef] [Green Version]
- Delp, W.W.; Singer, B.C. Performance Assessment of U.S. Residential Cooking Exhaust Hoods. Environ. Sci. Technol. 2012, 46, 6167–6173. [Google Scholar] [CrossRef] [PubMed]
- Deveci, S.E.; Deveci, F.; Açik, Y.; Ozan, A.T. The measurement of exhaled carbon monoxide in healthy smokers and non-smokers. Respir Med. 2004, 98, 551–556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryter, S.W.; Choi, A.M. Carbon monoxide in exhaled breath testing and therapeutics. J. Breath Res. 2013, 7, 017111. [Google Scholar] [CrossRef] [PubMed]
- Alberts, W.M. Indoor air pollution: NO, NO2, CO, and CO2. J. Allergy Clin. Immunol. 1994, 94, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.C.; Guo, H.; Kwok, N.H. Emissions of air pollutants from burning of incense by using large environmental chamber. In Proceedings of the Indoor Air 2002: 9th International Conference on Indoor Air Quality and Climate, Monterey, CA, USA, 30 June–5 July 2002; Volume 1. [Google Scholar]
- Lee, S.C.; Wang, B. Characteristics of emissions of air pollutants from mosquito coils and candles burning in a large environmental chamber. Atmos. Environ. 2006, 40, 2128–2138. [Google Scholar] [CrossRef]
- Ferro, A.R.; Kopperud, R.J.; Hildemann, L.M. Source Strengths for Indoor Human Activities that Resuspend Particulate Matter. Environ. Sci. Technol. 2004, 38, 1759–1764. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Available online: https://www.epa.gov/indoor-air-quality-iaq/volatile-organic-compounds-impact-indoor-air-quality (accessed on 20 August 2019).
- El Fadel, M.; Alameddine, I.; Kazopoulo, M.; Hamdan, M.; Nasrallah, R. Carbon Monoxide and Volatile Organic Compounds as Indicators of Indoor Air Quality in Underground Parking Facilities. Indoor Built Environ. 2001, 10, 70–82. [Google Scholar] [CrossRef]
- Sribanurekha, V.; Wijerathne, S.N.; Wijepala, L.H.S.; Jayasinghe, C. Effect of Different Ventilation Conditions on Indoor CO2 Levels. In Proceedings of the International Conference on Disaster Resilience, At Kandalama, Sri Lanaka, 19–21 July 2011. [Google Scholar]
- Nematollahi, N.; Kolev, S.D.; Steinemann, A. Volatile chemical emissions from essential oils. Air Qual. Atmos. Heal. 2018, 11, 949–954. [Google Scholar] [CrossRef]
- Chao, C.J.; Wu, P.C.; Chang, H.Y.; Su, H.J. The effects of evaporating essential oils on indoor air quality. In Proceedings of the Indoor Air 2005, 10th International Conference on Indoor Air Quality and Climate, Beijing, China, 4–9 September 2005. [Google Scholar]
- Young, C.J.; Zhou, S.; Siegel, J.A.; Kahan, T.F. Illuminating the Dark Side of Indoor Oxidants. Environ. Sci. Process. Impacts 2019, 21, 1229–1239. [Google Scholar] [CrossRef]
- Waring, M.S.; Wells, J.R. Volatile organic compound conversion by ozone, hydroxyl radicals, and nitrate radicals in residential indoor air: Magnitudes and impacts of oxidant sources. Atmos. Environ. 2015, 106, 382–391. [Google Scholar] [CrossRef]
Mean | Median | Standard Deviation | Minimum | Maximum | p-Value # | ||
---|---|---|---|---|---|---|---|
CO (ppm) | indoor | 3.47 | 0.83 | 4.29 | 0.00 | 12.27 | 0.004 ‡ |
outdoor | 0.60 | 0.38 | 0.55 | 0.00 | 1.98 | ||
CO2 (ppm) | indoor | 655.43 | 479.55 | 321.60 | 413.82 | 1320.00 | <0.001 ‡ |
outdoor | 322.22 | 319.92 | 17.23 | 285.83 | 353.90 | ||
NO2 (ppb) | indoor | 185.30 | 177.97 | 41.52 | 127.28 | 251.41 | 0.008 ‡ |
outdoor | 107.54 | 118.22 | 36.83 | 39.90 | 149.80 | ||
SO2 (ppm) | indoor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.193 |
outdoor | 0.01 | 0.00 | 0.02 | 0.00 | 0.06 | ||
O3 (ppb) | indoor | 11.04 | 8.50 | 8.93 | 1.06 | 32.29 | 0.006 ‡ |
outdoor | 13.46 | 9.20 | 12.34 | 0.24 | 45.50 | ||
PM2.5 (μg/m3) | indoor | 60.00 | 40.00 | 50.00 | 10.00 | 210.00 | 0.001 ‡ |
outdoor | 110.00 | 90.00 | 90.00 | 30.00 | 410.00 | ||
Temperature (°C) | indoor | 31.00 | 31.00 | 1.76 | 26.00 | 34.00 | - |
Relative humidity (%) | indoor | 72.00 | 72.00 | 4.98 | 62.00 | 84.00 | - |
Area | |||
---|---|---|---|
Traffic | Industry | General | |
Window opening | 68.75 | 66.67 | 87.50 |
Occupants (>4 people) | 40.40 | 57.01 | 34.41 |
Cooking | 87.50 | 83.33 | 95.83 |
Air-conditioning use | 62.50 | 83.33 | 95.83 |
Making tea | 31.25 | 30.00 | 0 |
Smoker | 63.64 | 40.00 | 26.09 |
Incense burning | 72.73 | 50.00 | 29.17 |
Mosquito coil burning | 37.50 | 22.22 | 12.50 |
Essential oil using | 31.25 | 33.33 | 25.00 |
Ratios (Window Opening Periods/Reference Periods §) | Differences (Window Opening Periods − Reference Periods §) | p-Value # | |||||||
---|---|---|---|---|---|---|---|---|---|
Median | S.D. | Min. | Max. | Median | S.D. | Min. | Max. | ||
CO (ppm) | 0.98 | 1.34 | 0.57 | 4.44 | 0.00 | 1.31 | −2.42 | 3.67 | 0.53 |
CO2 (ppm) | 1.05 | 0.18 | 0.73 | 1.43 | 29 | 128 | −141 | 296 | 0.21 |
NO2 (ppb) | 1.56 | 1.30 | 0.94 | 5.23 | 18.71 | 16.05 | −9.40 | 53.25 | <0.01 ‡ |
SO2 (ppm) | 0.00 | 0.92 | 0.00 | 3.27 | 0.00 | 0.02 | 0.00 | 0.08 | 0.21 |
O3 (ppb) | 1.18 | 0.59 | 0.56 | 2.19 | 0.81 | 4.44 | −11.91 | 10.05 | 0.52 |
PM2.5 (μg/m3) | 1.13 | 0.31 | 0.69 | 1.85 | 7 | 16.20 | −6 | 44 | 0.04 † |
Ratios (Cooking Periods/Reference Periods §) | Differences (Cooking Periods − Reference Periods §) | p-Value # | |||||||
---|---|---|---|---|---|---|---|---|---|
Median | S.D. | Min. | Max. | Median | S.D. | Min. | Max. | ||
CO (ppm) | 0.93 | 0.22 | 0.46 | 1.51 | −0.25 | 0.84 | −3.53 | 0.61 | <0.01 ‡ |
CO2 (ppm) | 1.06 | 0.14 | 0.85 | 1.58 | 26.17 | 90.21 | −111.67 | 342.5 | <0.01 ‡ |
NO2 (ppb) | 1.11 | 0.98 | 0.51 | 5.43 | 5.40 | 29.71 | −71.17 | 101.75 | <0.01 ‡ |
O3 (ppb) | 1.08 | 0.69 | 0.46 | 4.36 | 0.27 | 8.89 | −35.14 | 17.08 | 0.94 |
PM2.5 (μg/m3) | 1.09 | 0.30 | 0.60 | 2.56 | 5 | 14 | −45 | 56 | 0.04 † |
CO (ppm) | CO2 (ppm) | NO2 (ppb) | SO2 (ppm) | O3 (ppb) | PM2.5 (μg/m3) | |
---|---|---|---|---|---|---|
Window opening (Yes vs. No) | 0.32 | 84.84 | −0.61 | 0.44 | 24.34 ‡ | −0.021 |
Occupants | 0.52 ‡ | 51.62 ‡ | 3.02 | −0.008 | −3.49 ‡ | 0.004 |
Cleaning (Yes vs. No) | 4.73 † | −317.49 | 1.39 | 0.43 | −6.24 | 0.047 † |
Cooking (Yes vs. No) | −3.89 † | 228.02 | −28.01 | −0.21 | 1.79 | 0.065 |
Fan using (Yes vs. No) | 1.42 | −32.97 | 10.58 | −0.0003 | −2.07 | 0.002 |
Air- conditioning use (Yes vs. No) | −1.22 | 246.99 ‡ | 87.87 | 0.25 | 21.59 | 0.008 |
Making tea (Yes vs. No) | 37.04 | - | −0.45 | −0.13 | 14.21 | −0.050 |
Smoking (Yes vs. No) | 17.21 † | 1988.44 ‡ | 547.36 ‡ | 2.98 ‡ | 1.69 | 0.173 |
Incense burning (Yes vs. No) | 18.21 † | 2927.87 † | 193.11 | 3.66 ‡ | −108.9 ‡ | 0.416 ‡ |
Mosquito coil burning (Yes vs. No) | 41.55 ‡ | −892.64 † | 673.52 | 2.67 | 2.29 | - |
Essential oil use (Yes vs. No) | 12.76 | 269.25 | 74.89 | −0.66 | −89.29 ‡ | −0.022 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yen, Y.-C.; Yang, C.-Y.; Mena, K.D.; Cheng, Y.-T.; Chen, P.-S. Cooking/Window Opening and Associated Increases of Indoor PM2.5 and NO2 Concentrations of Children’s Houses in Kaohsiung, Taiwan. Appl. Sci. 2019, 9, 4306. https://doi.org/10.3390/app9204306
Yen Y-C, Yang C-Y, Mena KD, Cheng Y-T, Chen P-S. Cooking/Window Opening and Associated Increases of Indoor PM2.5 and NO2 Concentrations of Children’s Houses in Kaohsiung, Taiwan. Applied Sciences. 2019; 9(20):4306. https://doi.org/10.3390/app9204306
Chicago/Turabian StyleYen, Yu-Chuan, Chun-Yuh Yang, Kristina Dawn Mena, Yu-Ting Cheng, and Pei-Shih Chen. 2019. "Cooking/Window Opening and Associated Increases of Indoor PM2.5 and NO2 Concentrations of Children’s Houses in Kaohsiung, Taiwan" Applied Sciences 9, no. 20: 4306. https://doi.org/10.3390/app9204306
APA StyleYen, Y.-C., Yang, C.-Y., Mena, K. D., Cheng, Y.-T., & Chen, P.-S. (2019). Cooking/Window Opening and Associated Increases of Indoor PM2.5 and NO2 Concentrations of Children’s Houses in Kaohsiung, Taiwan. Applied Sciences, 9(20), 4306. https://doi.org/10.3390/app9204306