The Methodological Trends of Traditional Herbal Medicine Employing Network Pharmacology
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion Criteria
2.3. Study Selection and Data Extraction
2.4. Categorizing Drug-Target Interaction Methods
2.5. Construction of the Co-Author Network and Affiliation Network
3. Results
3.1. Description of the Search
3.2. Methodological Trends in Constructing the Herb-Compound Network
3.3. Methodological Trends for Constructing Compound-Target Networks
3.4. Methodological Trends for Target Interpretation
3.5. Combinatorial Patterns in Methodologies of THM-NP Studies
3.6. Co-Author Network and Affiliation Network
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Kong, D.X.; Li, X.J.; Zhang, H.Y. Where is the hope for drug discovery? Let history tell the future. Drug Discov. Today 2009, 14, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Verpoorte, R.; Crommelin, D.; Danhof, M.; Gilissen, L.J.; Schuitmaker, H.; van der Greef, J.; Witkamp, R.F. Commentary: “A systems view on the future of medicine: Inspiration from Chinese medicine?”. J. Ethnopharmacol. 2009, 121, 479–481. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Wu, M.; Wang, H.; Li, S.; Wang, X.; Li, Y.; Wang, D.; Li, S. Network Pharmacology to Unveil the Biological Basis of Health-Strengthening Herbal Medicine in Cancer Treatment. Cancers (Basel) 2018, 10, 461. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.H.; Zheng, C.J.; Han, L.Y.; Xie, B.; Jia, J.; Cao, Z.W.; Li, Y.X.; Chen, Y.Z. Synergistic therapeutic actions of herbal ingredients and their mechanisms from molecular interaction and network perspectives. Drug Discov. Today 2009, 14, 579–588. [Google Scholar] [CrossRef] [PubMed]
- Berg, E.L. Systems biology in drug discovery and development. Drug Discov. Today 2014, 19, 113–125. [Google Scholar] [CrossRef] [PubMed]
- Barabási, A.-L.; Gulbahce, N.; Loscalzo, J. Network medicine: A network-based approach to human disease. Nat. Rev. Genet. 2011, 12, 56–68. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, A.L. Network pharmacology: The next paradigm in drug discovery. Nat. Chem. Biol. 2008, 4, 682–690. [Google Scholar] [CrossRef]
- Van der Greef, J. Perspective: All systems go. Nature 2011, 480, S87. [Google Scholar] [CrossRef]
- Li, S.; Fan, T.-P.; Jia, W.; Lu, A.; Zhang, W. Network Pharmacology in Traditional Chinese Medicine. Evid. Based Complement. Altern. Med. 2014, 2014, 138460. [Google Scholar] [CrossRef]
- Li, S.; Zhang, B. Traditional Chinese medicine network pharmacology: Theory, methodology and application. Chin. J. Nat. Med. 2013, 11, 110–120. [Google Scholar] [CrossRef]
- Zhang, R.; Zhu, X.; Bai, H.; Ning, K. Network Pharmacology Databases for Traditional Chinese Medicine: Review and Assessment. Front. Pharmacol. 2019, 10, 123. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Chen, J.-L.; Xu, L.-W.; Ji, G. Navigating Traditional Chinese Medicine Network Pharmacology and Computational Tools. Evid. Based Complement. Altern. Med. 2013, 2013, 731969. [Google Scholar] [CrossRef] [PubMed]
- Kibble, M.; Saarinen, N.; Tang, J.; Wennerberg, K.; Mäkelä, S.; Aittokallio, T. Network pharmacology applications to map the unexplored target space and therapeutic potential of natural products. Nat. Prod. Rep. 2015, 32, 1249–1266. [Google Scholar] [CrossRef] [PubMed]
- Hao, D.C.; Xiao, P.G. Network pharmacology: A rosetta stone for traditional chinese medicine. Drug Dev. Res. 2014, 75, 299–312. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ai, N.; Keys, A.; Fan, X.; Chen, M. Network Pharmacology for Traditional Chinese Medicine Research: Methodologies and Applications. Chin. Herb. Med. 2015, 7, 18–26. [Google Scholar] [CrossRef]
- Yu, H.; Chen, J.; Xu, X.; Li, Y.; Zhao, H.; Fang, Y.; Li, X.; Zhou, W.; Wang, W.; Wang, Y. A systematic prediction of multiple drug-target interactions from chemical, genomic, and pharmacological data. PLoS ONE 2012, 7, e37608. [Google Scholar] [CrossRef] [PubMed]
- Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; et al. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform. 2014, 6, 13. [Google Scholar] [CrossRef]
- Katsila, T.; Spyroulias, G.A.; Patrinos, G.P.; Matsoukas, M.T. Computational approaches in target identification and drug discovery. Comput. Struct. Biotechnol. J. 2016, 14, 177–184. [Google Scholar] [CrossRef]
- Macalino, S.J.Y.; Gosu, V.; Hong, S.; Choi, S. Role of computer-aided drug design in modern drug discovery. Arch. Pharm. Res. 2015, 38, 1686–1701. [Google Scholar] [CrossRef]
- Yang, S.Y. Pharmacophore modeling and applications in drug discovery: Challenges and recent advances. Drug Discov. Today 2010, 15, 444–450. [Google Scholar] [CrossRef]
- Ding, H.; Takigawa, I.; Mamitsuka, H.; Zhu, S. Similarity-basedmachine learning methods for predicting drug-target interactions: A brief review. Brief. Bioinform. 2013, 15, 734–747. [Google Scholar] [CrossRef] [PubMed]
- Lengauer, T.; Rarey, M. Computational methods for biomolecular docking. Curr. Opin. Struct. Biol. 1996, 6, 402–406. [Google Scholar] [CrossRef]
- Cherfils, J.; Duquerroy, S.; Janin, J. Protein-protein recognition analyzed by docking simulation. Proteins Struct. Funct. Bioinform. 1991, 11, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Vidal, D.; Garcia-Serna, R.; Mestres, J. Ligand-Based Approaches to In Silico Pharmacology. Methods Mol. Biol. 2010, 672, 489–502. [Google Scholar]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Xue, R.; Fang, Z.; Zhang, M.; Yi, Z.; Wen, C.; Shi, T. TCMID: Traditional Chinese medicine integrative database for herb molecular mechanism analysis. Nucleic Acids Res. 2013, 41, 1089–1095. [Google Scholar] [CrossRef]
- Chen, C.Y.C. TCM Database@Taiwan: The world’s largest traditional Chinese medicine database for drug screening In Silico. PLoS ONE 2011, 6, e15939. [Google Scholar] [CrossRef]
- Liu, X.; Ouyang, S.; Yu, B.; Liu, Y.; Huang, K.; Gong, J.; Zheng, S.; Li, Z.; Li, H.; Jiang, H. PharmMapper server: A web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Res. 2010, 38, 5–7. [Google Scholar] [CrossRef]
- Kuhn, M.; von Mering, C.; Campillos, M.; Jensen, L.J.; Bork, P. STITCH: Interaction networks of chemicals and proteins. Nucleic Acids Res. 2008, 36, 684–688. [Google Scholar] [CrossRef]
- Chen, X.; Ji, Z.L.; Chen, Y.Z. TTD: Therapeutic Target Database. Nucleic Acids Res. 2002, 30, 412–415. [Google Scholar] [CrossRef]
- Keiser, M.J.; Roth, B.L.; Armbruster, B.N.; Ernsberger, P.; Irwin, J.J.; Shoichet, B.K. Relating protein pharmacology by ligand chemistry. Nat. Biotechnol. 2007, 25, 197–206. [Google Scholar] [CrossRef]
- Ye, H.; Ye, L.; Kang, H.; Zhang, D.; Tao, L.; Tang, K.; Liu, X.; Zhu, R.; Liu, Q.; Chen, Y.Z.; et al. HIT: Linking herbal active ingredients to targets. Nucleic Acids Res. 2011, 39, 1055–1059. [Google Scholar] [CrossRef]
- Wishart, D.S. DrugBank: A comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 2005, 34, D668–D672. [Google Scholar] [CrossRef]
- Ogata, H.; Goto, S.; Sato, K.; Fujibuchi, W.; Bono, H.; Kanehisa, M. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 1999, 28, 27–30. [Google Scholar] [CrossRef]
- Harris, M.A.; Clark, J.; Ireland, A.; Lomax, J.; Ashburner, M.; Foulger, R.; Eilbeck, K.; Lewis, S.; Marshall, B.; Mungall, C.; et al. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res. 2004, 32, D258–D261. [Google Scholar]
- Hamosh, A.; Scott, A.F.; Amberger, J.S.; Bocchini, C.A.; McKusick, V.A. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res. 2005, 33, D514–D517. [Google Scholar] [CrossRef]
- Hewett, M.; Oliver, D.E.; Rubin, D.L.; Easton, K.L.; Stuart, J.M.; Altman, R.B.; Klein, T.E. PharmGKB: The pharmacogenetics knowledge base. Nucleic Acids Res. 2002, 30, 163–165. [Google Scholar] [CrossRef]
- Safran, M.; Solomon, I.; Shmueli, O.; Lapidot, M.; Shen-Orr, S.; Adato, A.; Ben-Dor, U.; Esterman, N.; Rosen, N.; Peter, I.; et al. GeneCardsTM 2002: Towards a complete, object-oriented, human gene compendium. Bioinformatics 2002, 18, 1542–1543. [Google Scholar] [CrossRef]
- Wang, X.; Xu, X.; Tao, W.; Li, Y.; Wang, Y.; Yang, L. A Systems Biology Approach to Uncovering Pharmacological Synergy in Herbal Medicines with Applications to Cardiovascular Disease. Evid. Based Complement. Altern. Med. 2012, 2012, 519031. [Google Scholar] [CrossRef]
- Vistoli, G.; Pedretti, A.; Testa, B. Assessing drug-likeness—What are we missing? Drug Discov. Today 2008, 13, 285–294. [Google Scholar] [CrossRef]
- Kanehisa, M.; Furumichi, M.; Tanabe, M.; Sato, Y.; Morishima, K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017, 45, D353–D361. [Google Scholar] [CrossRef]
- Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res. 2018, 46, D1074–D1082. [Google Scholar] [CrossRef]
- Soundararajan, K.; Ho, H.K.; Su, B. Sankey diagram framework for energy and exergy flows. Appl. Energy 2014, 136, 1035–1042. [Google Scholar] [CrossRef]
- Liu, Z.; Guo, F.; Wang, Y.; Li, C.; Zhang, X.; Li, H.; Diao, L.; Gu, J.; Wang, W.; Li, D.; et al. BATMAN-TCM: A Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine. Sci. Rep. 2016, 6, 21146. [Google Scholar] [CrossRef]
- Zhang, R.Z.; Yu, S.J.; Bai, H.; Ning, K. TCM-Mesh: The database and analytical system for network pharmacology analysis for TCM preparations. Sci. Rep. 2017, 7, 2821. [Google Scholar] [CrossRef]
- Zhao, S.; Li, S. Network-based relating pharmacological and genomic spaces for drug target identification. PLoS ONE 2010, 5, e11764. [Google Scholar] [CrossRef]
- Wu, Z.; Lu, W.; Wu, D.; Luo, A.; Bian, H.; Li, J.; Li, W.; Liu, G.; Huang, J.; Cheng, F.; et al. In silico prediction of chemical mechanism of action via an improved network-based inference method. Br. J. Pharmacol. 2016, 173, 3372–3385. [Google Scholar] [CrossRef]
- Wang, X.; Shen, Y.; Wang, S.; Li, S.; Zhang, W.; Liu, X.; Lai, L.; Pei, J.; Li, H. PharmMapper 2017 update: A web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res. 2017, 45, W356–W360. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Santos, A.; Von Mering, C.; Jensen, L.J.; Bork, P.; Kuhn, M. STITCH 5: Augmenting protein-chemical interaction networks with tissue and affinity data. Nucleic Acids Res. 2016, 44, D380–D384. [Google Scholar] [CrossRef]
- Bahi, M.; Batouche, M. Deep semi-supervised learning for DTI prediction using large datasets and H2O-spark platform. In Proceedings of the 2018 International Conference on Intelligent Systems and Computer Vision (ISCV), Fez, Morocco, 2–4 April 2018; pp. 1–7. [Google Scholar]
- Wen, M.; Zhang, Z.; Niu, S.; Sha, H.; Yang, R.; Yun, Y.; Lu, H. Deep-Learning-Based Drug-Target Interaction Prediction. J. Proteome Res. 2017, 16, 1401–1409. [Google Scholar] [CrossRef]
Name | Providing Information | Description | Website | PMID (Reference) | ||
---|---|---|---|---|---|---|
H-C | C-T | TI | ||||
TCMSP | ○ | ○ | ○ | A system of pharmacology platforms that provide information about ingredients, ADME-related properties, targets, and diseases of herbal medicines. | http://lsp.nwu.edu.cn/tcmsp.php | 24735618 [26] |
TCMID | ○ | ○ | ○ | An integrative database which stores the information of herbs, herbal compounds, targets, and their related information from different resources and through text-mining method | http://www.megabionet.org/tcmid/ | 23203875 [17] |
TCM Databasetaiwan | ○ | A database that includes the information of molecular properties and substructures, TCM ingredients with their 2D and 3D structures. | http://tcm.cmu.edu.tw/ | 21253603 [27] | ||
PharmMapper | ○ | A web server for potential drug target identification by reversed pharmacophore matching the query compound against an in-house pharmacophore model database | http://lilab.ecust.edu.cn/pharmmapper/ | 20430828 [28] | ||
STITCH | ○ | A database that integrates disparate data sources of interactions between proteins and small molecules | http://stitch.embl.de/ | 18084021 [29] | ||
TTD | ○ | ○ | A database that provides information about the therapeutic targets in the literature, targeted disease condition, and the corresponding drugs/ligands directed at each of these targets. | http://xin.cz3.nus.edu.sg/group/ttd/ttd.asp | 11752352 [30] | |
SEA | ○ | A computational tool that relates proteins and chemicals based on the set-wise chemical similarity among their ligands. | http://sea.bkslab.org/ | 17287757 [31] | ||
HIT | ○ | ○ | A comprehensive and fully curated database for herbal ingredients with protein target information | http://lifecenter.sgst.cn/hit/ | 21097881 [32] | |
Drugbank | ○ | ○ | A unique bioinformatics and cheminformatics resource that combines detailed drug data with comprehensive drug target information | https://www.drugbank.ca/ | 16381955 [33] | |
KEGG | ○ | A database resource for understanding high-level functions and utilities of the biological system from molecular-level information | https://www.genome.jp/kegg/ | 9847135 [34] | ||
Gene ontology | ○ | The world’s largest source of information on the functions of genes | http://geneontology.org/ | 18792943 [35] | ||
OMIM | ○ | A comprehensive and authoritative compendium of human genes and genetic phenotypes | https://www.omim.org/ | 11752252 [36] | ||
PharmGkb | ○ | A database for the aggregation, curation, integration, and dissemination of knowledge regarding the impact of human genetic variation on drug response | https://www.pharmgkb.org/ | 11752281 [37] | ||
Genecards | ○ | A searchable and integrated database of human genes that provides concise genomic related information, on all known and predicted human genes. | https://www.genecards.org/ | 12424129 [38] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, W.-Y.; Lee, C.-Y.; Kim, Y.-S.; Kim, C.-E. The Methodological Trends of Traditional Herbal Medicine Employing Network Pharmacology. Biomolecules 2019, 9, 362. https://doi.org/10.3390/biom9080362
Lee W-Y, Lee C-Y, Kim Y-S, Kim C-E. The Methodological Trends of Traditional Herbal Medicine Employing Network Pharmacology. Biomolecules. 2019; 9(8):362. https://doi.org/10.3390/biom9080362
Chicago/Turabian StyleLee, Won-Yung, Choong-Yeol Lee, Youn-Sub Kim, and Chang-Eop Kim. 2019. "The Methodological Trends of Traditional Herbal Medicine Employing Network Pharmacology" Biomolecules 9, no. 8: 362. https://doi.org/10.3390/biom9080362
APA StyleLee, W.-Y., Lee, C.-Y., Kim, Y.-S., & Kim, C.-E. (2019). The Methodological Trends of Traditional Herbal Medicine Employing Network Pharmacology. Biomolecules, 9(8), 362. https://doi.org/10.3390/biom9080362