Effects of SHBG rs1799941 Polymorphism on Free Testosterone Levels and Hypogonadism Risk in Young Non-Diabetic Obese Males
Abstract
1. Introduction
2. Patients and Methods
2.1. Patients
2.2. Study Protocol
Polymorphism DNA Analysis
2.3. Statistical Analyses
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Disclosure Statement
References
- Bardou, M.; Barkun, A.N.; Martel, M. Republished: Obesity and Colorectal Cancer. Postgrad. Med. J. 2013, 89, 519–533. [Google Scholar] [CrossRef] [PubMed]
- Grossmann, M. Hypogonadism and Male Obesity: Focus on Unresolved Questions. Clin. Endocrinol. 2018. [Google Scholar] [CrossRef]
- Ventimiglia, E.; Ippolito, S.; Capogrosso, P.; Pederzoli, F.; Cazzaniga, W.; Boeri, L.; Cavarretta, I.; Alfano, M.; Viganò, P.; Montorsi, F.; et al. Primary, Secondary and Compensated Hypogonadism: A Novel Risk Stratification for Infertile Men. Andrology 2017, 5, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Maggio, M.; Basaria, S. Welcoming Low Testosterone as a Cardiovascular Risk Factor. Int. J. Impot. Res. 2009, 21, 261–264. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Pham, T.; Mcwhinney, B.C.; Ungerer, J.P.; Pretorius, C.J.; Richard, D.J.; Mortimer, R.H.; Emden, M.C.; Richard, K. Sex Hormone Binding Globulin Modifies Testosterone Action and Metabolism in Prostate Cancer Cells. Int. J. Endocrinol. 2016, 2016, 1–10. [Google Scholar] [CrossRef]
- Tint, A.N.; Hoermann, R.; Wong, H.; Ekinci, E.I.; Macisaac, R.J.; Jerums, G.; Zajac, J.D.; Grossmann, M. Association of Sex Hormone-Binding Globulin and Free Testosterone with Mortality in Men with Type 2 Diabetes Mellitus. Eur. J. Endocrinol. 2016, 174, 59–68. [Google Scholar] [CrossRef]
- Firtser, S.; Juonala, M.; Magnussen, C.G.; Jula, A.; Loo, B.M.; Marniemi, J.; Viikari, J.S.A.; Toppari, J.; Perheentupa, A.; Hutri-Kähönen, N.; et al. Relation of Total and Free Testosterone and Sex Hormone-Binding Globulin with Cardiovascular Risk Factors in Men Aged 24-45 Years. The Cardiovascular Risk in Young Finns Study. Atherosclerosis 2012, 222, 257–262. [Google Scholar] [CrossRef]
- Hammond, G.L. Molecular Properties of Corticosteroid Binding Globulin and the Sex-Steroid Binding Proteins. Endocr. Rev. 1990, 11, 65–79. [Google Scholar] [CrossRef]
- Ahn, J.; Schumacher, F.R.; Berndt, S.I.; Pfeiffer, R.; Albanes, D.; Andriole, G.L.; Ardanaz, E.; Boeing, H.; Bueno-de-Mesquita, B.; Chanock, S.J.; et al. Quantitative Trait Loci Predicting Circulating Sex Steroid Hormones in Men from the NCI-Breast and Prostate Cancer Cohort Consortium (BPC3). Hum. Mol. Genet. 2009, 18, 3749–3757. [Google Scholar] [CrossRef][Green Version]
- Nenonen, H.A.; Giwercman, A.; Hallengren, E.; Giwercman, Y.L. Non-Linear Association between Androgen Receptor CAG Repeat Length and Risk of Male Subfertility-a Meta-Analysis. Int. J. Androl. 2011, 34, 327–332. [Google Scholar] [CrossRef]
- Nenonen, H.; Björk, C.; Skjaerpe, P.-A.; Giwercman, A.; Rylander, L.; Svartberg, J.; Giwercman, Y.L. CAG Repeat Number Is Not Inversely Associated with Androgen Receptor Activity in Vitro. Mol. Hum. Reprod. 2010, 16, 153–157. [Google Scholar] [CrossRef]
- Ohlsson, C.; Wallaschofski, H.; Lunetta, K.L.; Stolk, L.; Perry, J.R.B.; Koster, A.; Petersen, A.K.; Eriksson, J.; Lehtimäki, T.; Huhtaniemi, I.T.; et al. Genetic Determinants of Serum Testosterone Concentrations in Men. PLoS Genet. 2011, 7. [Google Scholar] [CrossRef] [PubMed]
- Coviello, A.D.; Haring, R.; Wellons, M.; Vaidya, D.; Lehtimäki, T.; Keildson, S.; Lunetta, K.L.; He, C.; Fornage, M.; Lagou, V.; et al. A Genome-Wide Association Meta-Analysis of Circulating Sex Hormone-Binding Globulin Reveals Multiple Loci Implicated in Sex Steroid Hormone Regulation. PLoS Genet. 2012, 8. [Google Scholar] [CrossRef] [PubMed]
- Cangiano, B.; Duminuco, P.; Vezzoli, V.; Guizzardi, F.; Chiodini, I.; Corona, G.; Maggi, M.; Persani, L.; Bonomi, M. Evidence for a Common Genetic Origin of Classic and Milder Adult-Onset Forms of Isolated Hypogonadotropic Hypogonadism. J. Clin. Med. 2019, 8, 126. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, A.L.; Lorentzon, M.; Mellström, D.; Vandenput, L.; Swanson, C.; Andersson, N.; Hammond, G.L.; Jakobsson, J.; Rane, A.; Orwoll, E.S.; et al. SHBG Gene Promoter Polymorphisms in Men Are Associated with Serum Sex Hormone-Binding Globulin, Androgen and Androgen Metabolite Levels, and Hip Bone Mineral Density. J. Clin. Endocrinol. Metab. 2006, 91, 5029–5037. [Google Scholar] [CrossRef]
- Peter, A.; Kantartzis, K.; Machann, J.; Schick, F.; Staiger, H.; Machicao, F.; Schleicher, E.; Fritsche, A.; Häring, H.U.; Stefan, N. Relationships of Circulating Sex Hormone-Binding Globulin with Metabolic Traits in Humans. Diabetes 2010, 59, 3167–3173. [Google Scholar] [CrossRef]
- Jin, G.; Sun, J.; Kim, S.T.; Feng, J.; Wang, Z.; Tao, S.; Chen, Z.; Purcell, L.; Smith, S.; Isaacs, W.B.; et al. Genome-Wide Association Study Identifies a New Locus JMJD1C at 10q21 That May Influence Serum Androgen Levels in Men. Hum. Mol. Genet. 2012, 21, 5222–5228. [Google Scholar] [CrossRef]
- Svartberg, J.; Schirmer, H.; Wilsgaard, T.; Mathiesen, E.B.; Njølstad, I.; Løchen, M.L.; Jorde, R. Single-Nucleotide Polymorphism, Rs1799941 in the Sex Hormone-Binding Globulin (SHBG) Gene, Related to Both Serum Testosterone and SHBG Levels and the Risk of Myocardial Infarction, Type 2 Diabetes, Cancer and Mortality in Men: The Tromsø Study. Andrology 2014, 2, 212–218. [Google Scholar] [CrossRef]
- Moffat, S.D.; Zondrman, A.B.; Metter, E.J.; Kawas, C.; Blackman, M.R.; Harman, S.M.; Resnick, S.N. Free Testosterone and Risk of Alzheimer’s Disease in Older Men. Neurology 2004, 62, 188–193. [Google Scholar] [CrossRef]
- Hogervorst, E.; Bandelow, S.; Combrinck, M.; Smith, A.D. Low Free Testosterone Is an Independent Risk Factor for Alzheimer’s Disease. Exp. Gerontol. 2004, 39, 1633–1639. [Google Scholar] [CrossRef]
- Gururani, K.; Jose, J.; George, P.V. Testosterone as a Marker of Coronary Artery Disease Severity in Middle Aged Males. Indian Heart J. 2016, 68, S16–S20. [Google Scholar] [CrossRef] [PubMed]
- Vermeulen, A.; Verdonck, L.; Kaufman, J.M. A Critical Evaluation of Simple Methods for the Estimation of Free Testosterone in Serum. J. Clin. Endocrinol. Metab. 1999, 84, 3666–3672. [Google Scholar] [CrossRef] [PubMed]
- Morales, A.; Bebb, R.A.; Manjoo, P.; Assimakopoulos, P.; Axler, J.; Collier, C.; Elliott, S.; Goldenberg, L.; Gottesman, I.; Grober, E.D.; et al. Diagnosis and Management of Testosterone Deficiency Syndrome in Men: Clinical Practice Guideline. CMAJ 2015, 187, 1369–1377. [Google Scholar] [CrossRef] [PubMed]
- Khera, M.; Adaikan, G.; Buvat, J.; Carrier, S.; El-Meliegy, A.; Hatzimouratidis, K.; McCullough, A.; Morgentaler, A.; Torres, L.O.; Salonia, A. Diagnosis and Treatment of Testosterone Deficiency: Recommendations From the Fourth International Consultation for Sexual Medicine (ICSM 2015). J. Sex. Med. 2016, 13, 1787–1804. [Google Scholar] [CrossRef] [PubMed]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis Model Assessment: Insulin Resistance and Beta-Cell Function from Fasting Plasma Glucose and Insulin Concentrations in Man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Bornstein, S.R.; Allolio, B.; Arlt, W.; Barthel, A.; Don-Wauchope, A.; Hammer, G.D.; Husebye, E.S.; Merke, D.P.; Murad, M.H.; Stratakis, C.A.; et al. Diagnosis and Treatment of Primary Adrenal Insufficiency: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2016, 101, 364–389. [Google Scholar] [CrossRef] [PubMed]
- Li, J.-Y.; Li, X.-Y.; Li, M.; Zhang, G.-K.; Ma, F.-L.; Liu, Z.-M.; Zhang, N.-Y.; Meng, P. Decline of Serum Levels of Free Testosterone in Aging Healthy Chinese Men. Aging Male 2005, 8, 3–4. [Google Scholar] [CrossRef]
- Yavuz, B.B.; Ozkayar, N.; Halil, M.; Cankurtaran, M.; Ulger, Z.; Tezcan, E.; Gurlek, A.; Ariogul, S. Free Testosterone Levels and Implications on Clinical Outcomes in Elderly Men. Aging Clin. Exp. Res. 2008, 20, 201–206. [Google Scholar] [CrossRef]
- Yeap, B.B. Are Declining Testosterone Levels a Major Risk Factor for Ill-Health in Aging Men? Int. J. Impot. Res. 2009, 21, 24. [Google Scholar] [CrossRef]
- Cooper, L.A.; Page, S.T.; Amory, J.K.; Anawalt, B.D.; Matsumoto, A.M. The Association of Obesity with Sex Hormone-Binding Globulin Is Stronger than the Association with Ageing—Implications for the Interpretation of Total Testosterone Measurements. Clin. Endocrinol. 2015, 83, 828–833. [Google Scholar] [CrossRef]
- Anawalt, B.D.; Hotaling, J.M.; Walsh, T.J.; Matsumoto, A.M. Performance of Total Testosterone Measurement to Predict Free Testosterone for the Biochemical Evaluation of Male Hypogonadism. J. Urol. 2012, 187, 1369–1373. [Google Scholar] [CrossRef] [PubMed]
- Pye, S.R.; Phil, M.; Silman, A.J.; Finn, J.D.; Sc, B.; Neill, T.W.O.; Bartfai, G.; Casanueva, F.F.; Ph, D.; Forti, G.; et al. Identification of Late-Onset Hypogonadism in Middle-Aged and Elderly Men. N. Engl. J. Med. 2010, 363, 123–135. [Google Scholar]
- Ramasamy, R.; Golan, R.; Wilken, N.; Scovell, J.M.; Lipshultz, L.I. Association of Free Testosterone with Hypogonadal Symptoms in Men with Near-Normal Total Testosterone Levels HHS Public Access. Urology 2015, 86, 287–290. [Google Scholar] [CrossRef] [PubMed]
Eugonadal (n = 101) | Normal FT HG (n = 60) | HG (n = 51) | |
---|---|---|---|
Age (years) | 37.62 ± 7.65 | 36.12 ± 7.35 | 38.41 ± 7.59 |
Smokers (%) * | 31 | 19 | 15 |
BMI (kg/m2) | 36.76 ± 5.29a | 38.63 ± 5.76b | 44.49 ± 8.42c |
Waist (cm) | 119.55 ± 13.11a | 123.84 ± 13.33b | 136.11 ± 17.83c |
Glucose (mg/dl) | 91.39 ± 9.95 | 93.12 ± 11.33 | 93.25 ± 10.38 |
Insulin (μU/mL) | 16.36 ± 8.05a | 22.45 ± 11.65b | 25.58 ± 18.70b |
HOMA-IR | 3.74 ± 2.04a | 5.41 ± 6.48b | 5.95 ± 4.40b |
Triglycerides (mg/dl) | 151.26 ± 81.68 | 165.12 ± 72.19 | 151.12 ± 81.93 |
Chol (mg/dl) | 191.75 ± 34.68 | 185.73 ± 32.83 | 179.75 ± 29.46 |
HDL (mg/dl) | 42.94 ± 10.47 | 39.93 ± 7.04 | 41.02 ± 9.59 |
LDL (mg/dl) | 119.70 ± 29.57 | 114.20 ± 28.35 | 110.10 ± 24.81 |
CRP (mg/L) | 5.12 ± 3.63a | 6.74 ± 5.77b | 8.50 ± 6.09b |
HbA1c (%) | 5.32 ± 0.36a | 5.46 ± 0.32b | 5.52 ± 0.35b |
Hematocrit (%) | 46.50 ± 2.74 | 45.66 ± 3.02 | 45.65 ± 3.09 |
TSH (μU/mL) | 1.79 ± 0.97 | 1.81 ± 0.81 | 1.89 ± 0.93 |
FSH (mUI/mL) | 4.18 ± 2.43 | 3.89 ± 2.31 | 3.52 ± 2.09 |
LH (mUI/mL) | 4.10 ± 1.62a | 3.79 ± 1.62a,b | 3.21 ± 1.62b |
Estradiol (pg/mL) | 33.77 ± 12.58 | 31.56 ± 14.76 | 34.10 ± 13.39 |
Testosterone (ng/mL) | 4.83 ± 1.10a | 3.04 ± 0.32b | 2.41 ± 0.54c |
FT (pg/mL) | 111.33 ± 30.99a | 84.22 ± 9.54b | 56.90 ± 9.85c |
SHBG (nmol/L) | 30.00 ± 11.60a | 17.48 ± 5.47b | 24.82 ± 10.30c |
SHBG rs1799941 Polymorphism (%) | |||
---|---|---|---|
GG | GA | AA | |
Eugonadal | 52.5 | 36.6 | 10.9 |
Normal FT HG | 58.3 | 41.7 | 0.0 |
HG | 41.2 | 43.1 | 15.7 |
Free Testosterone (R = 0.442. R2 = 0.195) | |||
---|---|---|---|
β | p | 95% CI | |
Age (years) | −0.440 | 0.099 | −0.964–0.083 |
BMI (kg/m2) | −1.448 | 0.000 | −2.057–(−0.839) |
HOMA-IR | −0.186 | 0.704 | −1.146–0.775 |
LH (mUI/mL) | 3.305 | 0.007 | 0.925–5.685 |
SHBG rs1799941_GA | −9.950 | 0.020 | −18.335–(−1.564) |
SHBG rs1799941_AA | −17.994 | 0.016 | −32.664–(−3.324) |
Serum SHBG (R = 0.640. R2 = 0.410) | |||
---|---|---|---|
β | p | 95% CI | |
Age (years) | 0.391 | 0.000 | 0.232–0.551 |
BMI (kg/m2) | 0.155 | 0.121 | −0.041–0.351 |
HOMA-IR | −0.46 | 0.326 | −0.440–0.147 |
LH (mUI/mL) | −0.032 | 0.931 | −0.771–0.706 |
Testosterone (ng/mL) | 4.128 | 0.000 | 3.147–5.110 |
SHBG rs1799941_GA | 3.103 | 0.018 | 0.542–5.664 |
SHBG rs1799941_AA | 11.695 | 0.000 | 7.230–16.161 |
Normal FT HG/HG R2 = 0.197–0.264 | ||
---|---|---|
OR (95% CI) | p | |
Age | 1.05 (0.99–1.11) | 0.082 |
BMI | 1.13 (1.06–1.21) | 0.000 |
HOMA-IR | 0.95 (0.88–1.04) | 0.306 |
SHBG rs1799941 | ||
Absence A | 1 (reference) | |
Presence A | 2.54 (1.05–6.12) | 0.037 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castellano-Castillo, D.; Royo, J.L.; Martínez-Escribano, A.; Sánchez-Alcoholado, L.; Molina-Vega, M.; Queipo-Ortuño, M.I.; Ruiz-Galdon, M.; J. Álvarez-Millán, J.; Cabezas-Sanchez, P.; Reyes-Engel, A.; et al. Effects of SHBG rs1799941 Polymorphism on Free Testosterone Levels and Hypogonadism Risk in Young Non-Diabetic Obese Males. J. Clin. Med. 2019, 8, 1136. https://doi.org/10.3390/jcm8081136
Castellano-Castillo D, Royo JL, Martínez-Escribano A, Sánchez-Alcoholado L, Molina-Vega M, Queipo-Ortuño MI, Ruiz-Galdon M, J. Álvarez-Millán J, Cabezas-Sanchez P, Reyes-Engel A, et al. Effects of SHBG rs1799941 Polymorphism on Free Testosterone Levels and Hypogonadism Risk in Young Non-Diabetic Obese Males. Journal of Clinical Medicine. 2019; 8(8):1136. https://doi.org/10.3390/jcm8081136
Chicago/Turabian StyleCastellano-Castillo, Daniel, José Luis Royo, Ana Martínez-Escribano, Lidia Sánchez-Alcoholado, María Molina-Vega, María Isabel Queipo-Ortuño, Maximiliano Ruiz-Galdon, Juan J. Álvarez-Millán, Pablo Cabezas-Sanchez, Armando Reyes-Engel, and et al. 2019. "Effects of SHBG rs1799941 Polymorphism on Free Testosterone Levels and Hypogonadism Risk in Young Non-Diabetic Obese Males" Journal of Clinical Medicine 8, no. 8: 1136. https://doi.org/10.3390/jcm8081136
APA StyleCastellano-Castillo, D., Royo, J. L., Martínez-Escribano, A., Sánchez-Alcoholado, L., Molina-Vega, M., Queipo-Ortuño, M. I., Ruiz-Galdon, M., J. Álvarez-Millán, J., Cabezas-Sanchez, P., Reyes-Engel, A., Tinahones, F. J., Cardona, F., & Fernandez-Garcia, J. C. (2019). Effects of SHBG rs1799941 Polymorphism on Free Testosterone Levels and Hypogonadism Risk in Young Non-Diabetic Obese Males. Journal of Clinical Medicine, 8(8), 1136. https://doi.org/10.3390/jcm8081136